| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // This file contains std::string processing functions related to |
| // numeric values. |
| |
| #include "absl/strings/numbers.h" |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cfloat> // for DBL_DIG and FLT_DIG |
| #include <cmath> // for HUGE_VAL |
| #include <cstdint> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <cstring> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <utility> |
| |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/strings/ascii.h" |
| #include "absl/strings/internal/bits.h" |
| #include "absl/strings/internal/memutil.h" |
| #include "absl/strings/str_cat.h" |
| |
| namespace absl { |
| |
| bool SimpleAtof(absl::string_view str, float* value) { |
| *value = 0.0; |
| if (str.empty()) return false; |
| char buf[32]; |
| std::unique_ptr<char[]> bigbuf; |
| char* ptr = buf; |
| if (str.size() > sizeof(buf) - 1) { |
| bigbuf.reset(new char[str.size() + 1]); |
| ptr = bigbuf.get(); |
| } |
| memcpy(ptr, str.data(), str.size()); |
| ptr[str.size()] = '\0'; |
| |
| char* endptr; |
| *value = strtof(ptr, &endptr); |
| if (endptr != ptr) { |
| while (absl::ascii_isspace(*endptr)) ++endptr; |
| } |
| // Ignore range errors from strtod/strtof. |
| // The values it returns on underflow and |
| // overflow are the right fallback in a |
| // robust setting. |
| return *ptr != '\0' && *endptr == '\0'; |
| } |
| |
| bool SimpleAtod(absl::string_view str, double* value) { |
| *value = 0.0; |
| if (str.empty()) return false; |
| char buf[32]; |
| std::unique_ptr<char[]> bigbuf; |
| char* ptr = buf; |
| if (str.size() > sizeof(buf) - 1) { |
| bigbuf.reset(new char[str.size() + 1]); |
| ptr = bigbuf.get(); |
| } |
| memcpy(ptr, str.data(), str.size()); |
| ptr[str.size()] = '\0'; |
| |
| char* endptr; |
| *value = strtod(ptr, &endptr); |
| if (endptr != ptr) { |
| while (absl::ascii_isspace(*endptr)) ++endptr; |
| } |
| // Ignore range errors from strtod. The values it |
| // returns on underflow and overflow are the right |
| // fallback in a robust setting. |
| return *ptr != '\0' && *endptr == '\0'; |
| } |
| |
| namespace { |
| |
| // TODO(rogeeff): replace with the real released thing once we figure out what |
| // it is. |
| inline bool CaseEqual(absl::string_view piece1, absl::string_view piece2) { |
| return (piece1.size() == piece2.size() && |
| 0 == strings_internal::memcasecmp(piece1.data(), piece2.data(), |
| piece1.size())); |
| } |
| |
| // Writes a two-character representation of 'i' to 'buf'. 'i' must be in the |
| // range 0 <= i < 100, and buf must have space for two characters. Example: |
| // char buf[2]; |
| // PutTwoDigits(42, buf); |
| // // buf[0] == '4' |
| // // buf[1] == '2' |
| inline void PutTwoDigits(size_t i, char* buf) { |
| static const char two_ASCII_digits[100][2] = { |
| {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, |
| {'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, |
| {'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'}, |
| {'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'}, |
| {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'}, |
| {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'}, |
| {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, |
| {'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, |
| {'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'}, |
| {'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'}, |
| {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'}, |
| {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'}, |
| {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, |
| {'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, |
| {'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'}, |
| {'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'}, |
| {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'}, |
| {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'}, |
| {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, |
| {'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'} |
| }; |
| assert(i < 100); |
| memcpy(buf, two_ASCII_digits[i], 2); |
| } |
| |
| } // namespace |
| |
| bool SimpleAtob(absl::string_view str, bool* value) { |
| ABSL_RAW_CHECK(value != nullptr, "Output pointer must not be nullptr."); |
| if (CaseEqual(str, "true") || CaseEqual(str, "t") || |
| CaseEqual(str, "yes") || CaseEqual(str, "y") || |
| CaseEqual(str, "1")) { |
| *value = true; |
| return true; |
| } |
| if (CaseEqual(str, "false") || CaseEqual(str, "f") || |
| CaseEqual(str, "no") || CaseEqual(str, "n") || |
| CaseEqual(str, "0")) { |
| *value = false; |
| return true; |
| } |
| return false; |
| } |
| |
| // ---------------------------------------------------------------------- |
| // FastIntToBuffer() overloads |
| // |
| // Like the Fast*ToBuffer() functions above, these are intended for speed. |
| // Unlike the Fast*ToBuffer() functions, however, these functions write |
| // their output to the beginning of the buffer. The caller is responsible |
| // for ensuring that the buffer has enough space to hold the output. |
| // |
| // Returns a pointer to the end of the std::string (i.e. the null character |
| // terminating the std::string). |
| // ---------------------------------------------------------------------- |
| |
| namespace { |
| |
| // Used to optimize printing a decimal number's final digit. |
| const char one_ASCII_final_digits[10][2] { |
| {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0}, |
| {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0}, |
| }; |
| |
| } // namespace |
| |
| char* numbers_internal::FastIntToBuffer(uint32_t i, char* buffer) { |
| uint32_t digits; |
| // The idea of this implementation is to trim the number of divides to as few |
| // as possible, and also reducing memory stores and branches, by going in |
| // steps of two digits at a time rather than one whenever possible. |
| // The huge-number case is first, in the hopes that the compiler will output |
| // that case in one branch-free block of code, and only output conditional |
| // branches into it from below. |
| if (i >= 1000000000) { // >= 1,000,000,000 |
| digits = i / 100000000; // 100,000,000 |
| i -= digits * 100000000; |
| PutTwoDigits(digits, buffer); |
| buffer += 2; |
| lt100_000_000: |
| digits = i / 1000000; // 1,000,000 |
| i -= digits * 1000000; |
| PutTwoDigits(digits, buffer); |
| buffer += 2; |
| lt1_000_000: |
| digits = i / 10000; // 10,000 |
| i -= digits * 10000; |
| PutTwoDigits(digits, buffer); |
| buffer += 2; |
| lt10_000: |
| digits = i / 100; |
| i -= digits * 100; |
| PutTwoDigits(digits, buffer); |
| buffer += 2; |
| lt100: |
| digits = i; |
| PutTwoDigits(digits, buffer); |
| buffer += 2; |
| *buffer = 0; |
| return buffer; |
| } |
| |
| if (i < 100) { |
| digits = i; |
| if (i >= 10) goto lt100; |
| memcpy(buffer, one_ASCII_final_digits[i], 2); |
| return buffer + 1; |
| } |
| if (i < 10000) { // 10,000 |
| if (i >= 1000) goto lt10_000; |
| digits = i / 100; |
| i -= digits * 100; |
| *buffer++ = '0' + digits; |
| goto lt100; |
| } |
| if (i < 1000000) { // 1,000,000 |
| if (i >= 100000) goto lt1_000_000; |
| digits = i / 10000; // 10,000 |
| i -= digits * 10000; |
| *buffer++ = '0' + digits; |
| goto lt10_000; |
| } |
| if (i < 100000000) { // 100,000,000 |
| if (i >= 10000000) goto lt100_000_000; |
| digits = i / 1000000; // 1,000,000 |
| i -= digits * 1000000; |
| *buffer++ = '0' + digits; |
| goto lt1_000_000; |
| } |
| // we already know that i < 1,000,000,000 |
| digits = i / 100000000; // 100,000,000 |
| i -= digits * 100000000; |
| *buffer++ = '0' + digits; |
| goto lt100_000_000; |
| } |
| |
| char* numbers_internal::FastIntToBuffer(int32_t i, char* buffer) { |
| uint32_t u = i; |
| if (i < 0) { |
| *buffer++ = '-'; |
| // We need to do the negation in modular (i.e., "unsigned") |
| // arithmetic; MSVC++ apprently warns for plain "-u", so |
| // we write the equivalent expression "0 - u" instead. |
| u = 0 - u; |
| } |
| return numbers_internal::FastIntToBuffer(u, buffer); |
| } |
| |
| char* numbers_internal::FastIntToBuffer(uint64_t i, char* buffer) { |
| uint32_t u32 = static_cast<uint32_t>(i); |
| if (u32 == i) return numbers_internal::FastIntToBuffer(u32, buffer); |
| |
| // Here we know i has at least 10 decimal digits. |
| uint64_t top_1to11 = i / 1000000000; |
| u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000); |
| uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11); |
| |
| if (top_1to11_32 == top_1to11) { |
| buffer = numbers_internal::FastIntToBuffer(top_1to11_32, buffer); |
| } else { |
| // top_1to11 has more than 32 bits too; print it in two steps. |
| uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100); |
| uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100); |
| buffer = numbers_internal::FastIntToBuffer(top_8to9, buffer); |
| PutTwoDigits(mid_2, buffer); |
| buffer += 2; |
| } |
| |
| // We have only 9 digits now, again the maximum uint32_t can handle fully. |
| uint32_t digits = u32 / 10000000; // 10,000,000 |
| u32 -= digits * 10000000; |
| PutTwoDigits(digits, buffer); |
| buffer += 2; |
| digits = u32 / 100000; // 100,000 |
| u32 -= digits * 100000; |
| PutTwoDigits(digits, buffer); |
| buffer += 2; |
| digits = u32 / 1000; // 1,000 |
| u32 -= digits * 1000; |
| PutTwoDigits(digits, buffer); |
| buffer += 2; |
| digits = u32 / 10; |
| u32 -= digits * 10; |
| PutTwoDigits(digits, buffer); |
| buffer += 2; |
| memcpy(buffer, one_ASCII_final_digits[u32], 2); |
| return buffer + 1; |
| } |
| |
| char* numbers_internal::FastIntToBuffer(int64_t i, char* buffer) { |
| uint64_t u = i; |
| if (i < 0) { |
| *buffer++ = '-'; |
| u = 0 - u; |
| } |
| return numbers_internal::FastIntToBuffer(u, buffer); |
| } |
| |
| // Given a 128-bit number expressed as a pair of uint64_t, high half first, |
| // return that number multiplied by the given 32-bit value. If the result is |
| // too large to fit in a 128-bit number, divide it by 2 until it fits. |
| static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num, |
| uint32_t mul) { |
| uint64_t bits0_31 = num.second & 0xFFFFFFFF; |
| uint64_t bits32_63 = num.second >> 32; |
| uint64_t bits64_95 = num.first & 0xFFFFFFFF; |
| uint64_t bits96_127 = num.first >> 32; |
| |
| // The picture so far: each of these 64-bit values has only the lower 32 bits |
| // filled in. |
| // bits96_127: [ 00000000 xxxxxxxx ] |
| // bits64_95: [ 00000000 xxxxxxxx ] |
| // bits32_63: [ 00000000 xxxxxxxx ] |
| // bits0_31: [ 00000000 xxxxxxxx ] |
| |
| bits0_31 *= mul; |
| bits32_63 *= mul; |
| bits64_95 *= mul; |
| bits96_127 *= mul; |
| |
| // Now the top halves may also have value, though all 64 of their bits will |
| // never be set at the same time, since they are a result of a 32x32 bit |
| // multiply. This makes the carry calculation slightly easier. |
| // bits96_127: [ mmmmmmmm | mmmmmmmm ] |
| // bits64_95: [ | mmmmmmmm mmmmmmmm | ] |
| // bits32_63: | [ mmmmmmmm | mmmmmmmm ] |
| // bits0_31: | [ | mmmmmmmm mmmmmmmm ] |
| // eventually: [ bits128_up | ...bits64_127.... | ..bits0_63... ] |
| |
| uint64_t bits0_63 = bits0_31 + (bits32_63 << 32); |
| uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) + |
| (bits0_63 < bits0_31); |
| uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95); |
| if (bits128_up == 0) return {bits64_127, bits0_63}; |
| |
| int shift = 64 - strings_internal::CountLeadingZeros64(bits128_up); |
| uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift)); |
| uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift)); |
| return {hi, lo}; |
| } |
| |
| // Compute num * 5 ^ expfive, and return the first 128 bits of the result, |
| // where the first bit is always a one. So PowFive(1, 0) starts 0b100000, |
| // PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc. |
| static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) { |
| std::pair<uint64_t, uint64_t> result = {num, 0}; |
| while (expfive >= 13) { |
| // 5^13 is the highest power of five that will fit in a 32-bit integer. |
| result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5); |
| expfive -= 13; |
| } |
| constexpr int powers_of_five[13] = { |
| 1, |
| 5, |
| 5 * 5, |
| 5 * 5 * 5, |
| 5 * 5 * 5 * 5, |
| 5 * 5 * 5 * 5 * 5, |
| 5 * 5 * 5 * 5 * 5 * 5, |
| 5 * 5 * 5 * 5 * 5 * 5 * 5, |
| 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
| 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
| 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
| 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
| 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5}; |
| result = Mul32(result, powers_of_five[expfive & 15]); |
| int shift = strings_internal::CountLeadingZeros64(result.first); |
| if (shift != 0) { |
| result.first = (result.first << shift) + (result.second >> (64 - shift)); |
| result.second = (result.second << shift); |
| } |
| return result; |
| } |
| |
| struct ExpDigits { |
| int32_t exponent; |
| char digits[6]; |
| }; |
| |
| // SplitToSix converts value, a positive double-precision floating-point number, |
| // into a base-10 exponent and 6 ASCII digits, where the first digit is never |
| // zero. For example, SplitToSix(1) returns an exponent of zero and a digits |
| // array of {'1', '0', '0', '0', '0', '0'}. If value is exactly halfway between |
| // two possible representations, e.g. value = 100000.5, then "round to even" is |
| // performed. |
| static ExpDigits SplitToSix(const double value) { |
| ExpDigits exp_dig; |
| int exp = 5; |
| double d = value; |
| // First step: calculate a close approximation of the output, where the |
| // value d will be between 100,000 and 999,999, representing the digits |
| // in the output ASCII array, and exp is the base-10 exponent. It would be |
| // faster to use a table here, and to look up the base-2 exponent of value, |
| // however value is an IEEE-754 64-bit number, so the table would have 2,000 |
| // entries, which is not cache-friendly. |
| if (d >= 999999.5) { |
| if (d >= 1e+261) exp += 256, d *= 1e-256; |
| if (d >= 1e+133) exp += 128, d *= 1e-128; |
| if (d >= 1e+69) exp += 64, d *= 1e-64; |
| if (d >= 1e+37) exp += 32, d *= 1e-32; |
| if (d >= 1e+21) exp += 16, d *= 1e-16; |
| if (d >= 1e+13) exp += 8, d *= 1e-8; |
| if (d >= 1e+9) exp += 4, d *= 1e-4; |
| if (d >= 1e+7) exp += 2, d *= 1e-2; |
| if (d >= 1e+6) exp += 1, d *= 1e-1; |
| } else { |
| if (d < 1e-250) exp -= 256, d *= 1e256; |
| if (d < 1e-122) exp -= 128, d *= 1e128; |
| if (d < 1e-58) exp -= 64, d *= 1e64; |
| if (d < 1e-26) exp -= 32, d *= 1e32; |
| if (d < 1e-10) exp -= 16, d *= 1e16; |
| if (d < 1e-2) exp -= 8, d *= 1e8; |
| if (d < 1e+2) exp -= 4, d *= 1e4; |
| if (d < 1e+4) exp -= 2, d *= 1e2; |
| if (d < 1e+5) exp -= 1, d *= 1e1; |
| } |
| // At this point, d is in the range [99999.5..999999.5) and exp is in the |
| // range [-324..308]. Since we need to round d up, we want to add a half |
| // and truncate. |
| // However, the technique above may have lost some precision, due to its |
| // repeated multiplication by constants that each may be off by half a bit |
| // of precision. This only matters if we're close to the edge though. |
| // Since we'd like to know if the fractional part of d is close to a half, |
| // we multiply it by 65536 and see if the fractional part is close to 32768. |
| // (The number doesn't have to be a power of two,but powers of two are faster) |
| uint64_t d64k = d * 65536; |
| int dddddd; // A 6-digit decimal integer. |
| if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) { |
| // OK, it's fairly likely that precision was lost above, which is |
| // not a surprise given only 52 mantissa bits are available. Therefore |
| // redo the calculation using 128-bit numbers. (64 bits are not enough). |
| |
| // Start out with digits rounded down; maybe add one below. |
| dddddd = static_cast<int>(d64k / 65536); |
| |
| // mantissa is a 64-bit integer representing M.mmm... * 2^63. The actual |
| // value we're representing, of course, is M.mmm... * 2^exp2. |
| int exp2; |
| double m = std::frexp(value, &exp2); |
| uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0); |
| // std::frexp returns an m value in the range [0.5, 1.0), however we |
| // can't multiply it by 2^64 and convert to an integer because some FPUs |
| // throw an exception when converting an number higher than 2^63 into an |
| // integer - even an unsigned 64-bit integer! Fortunately it doesn't matter |
| // since m only has 52 significant bits anyway. |
| mantissa <<= 1; |
| exp2 -= 64; // not needed, but nice for debugging |
| |
| // OK, we are here to compare: |
| // (dddddd + 0.5) * 10^(exp-5) vs. mantissa * 2^exp2 |
| // so we can round up dddddd if appropriate. Those values span the full |
| // range of 600 orders of magnitude of IEE 64-bit floating-point. |
| // Fortunately, we already know they are very close, so we don't need to |
| // track the base-2 exponent of both sides. This greatly simplifies the |
| // the math since the 2^exp2 calculation is unnecessary and the power-of-10 |
| // calculation can become a power-of-5 instead. |
| |
| std::pair<uint64_t, uint64_t> edge, val; |
| if (exp >= 6) { |
| // Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa |
| // Since we're tossing powers of two, 2 * dddddd + 1 is the |
| // same as dddddd + 0.5 |
| edge = PowFive(2 * dddddd + 1, exp - 5); |
| |
| val.first = mantissa; |
| val.second = 0; |
| } else { |
| // We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did |
| // above because (exp - 5) is negative. So we compare (dddddd + 0.5) to |
| // mantissa * 5 ^ (5 - exp) |
| edge = PowFive(2 * dddddd + 1, 0); |
| |
| val = PowFive(mantissa, 5 - exp); |
| } |
| // printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first, |
| // val.second, edge.first, edge.second); |
| if (val > edge) { |
| dddddd++; |
| } else if (val == edge) { |
| dddddd += (dddddd & 1); |
| } |
| } else { |
| // Here, we are not close to the edge. |
| dddddd = static_cast<int>((d64k + 32768) / 65536); |
| } |
| if (dddddd == 1000000) { |
| dddddd = 100000; |
| exp += 1; |
| } |
| exp_dig.exponent = exp; |
| |
| int two_digits = dddddd / 10000; |
| dddddd -= two_digits * 10000; |
| PutTwoDigits(two_digits, &exp_dig.digits[0]); |
| |
| two_digits = dddddd / 100; |
| dddddd -= two_digits * 100; |
| PutTwoDigits(two_digits, &exp_dig.digits[2]); |
| |
| PutTwoDigits(dddddd, &exp_dig.digits[4]); |
| return exp_dig; |
| } |
| |
| // Helper function for fast formatting of floating-point. |
| // The result is the same as "%g", a.k.a. "%.6g". |
| size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) { |
| static_assert(std::numeric_limits<float>::is_iec559, |
| "IEEE-754/IEC-559 support only"); |
| |
| char* out = buffer; // we write data to out, incrementing as we go, but |
| // FloatToBuffer always returns the address of the buffer |
| // passed in. |
| |
| if (std::isnan(d)) { |
| strcpy(out, "nan"); // NOLINT(runtime/printf) |
| return 3; |
| } |
| if (d == 0) { // +0 and -0 are handled here |
| if (std::signbit(d)) *out++ = '-'; |
| *out++ = '0'; |
| *out = 0; |
| return out - buffer; |
| } |
| if (d < 0) { |
| *out++ = '-'; |
| d = -d; |
| } |
| if (std::isinf(d)) { |
| strcpy(out, "inf"); // NOLINT(runtime/printf) |
| return out + 3 - buffer; |
| } |
| |
| auto exp_dig = SplitToSix(d); |
| int exp = exp_dig.exponent; |
| const char* digits = exp_dig.digits; |
| out[0] = '0'; |
| out[1] = '.'; |
| switch (exp) { |
| case 5: |
| memcpy(out, &digits[0], 6), out += 6; |
| *out = 0; |
| return out - buffer; |
| case 4: |
| memcpy(out, &digits[0], 5), out += 5; |
| if (digits[5] != '0') { |
| *out++ = '.'; |
| *out++ = digits[5]; |
| } |
| *out = 0; |
| return out - buffer; |
| case 3: |
| memcpy(out, &digits[0], 4), out += 4; |
| if ((digits[5] | digits[4]) != '0') { |
| *out++ = '.'; |
| *out++ = digits[4]; |
| if (digits[5] != '0') *out++ = digits[5]; |
| } |
| *out = 0; |
| return out - buffer; |
| case 2: |
| memcpy(out, &digits[0], 3), out += 3; |
| *out++ = '.'; |
| memcpy(out, &digits[3], 3); |
| out += 3; |
| while (out[-1] == '0') --out; |
| if (out[-1] == '.') --out; |
| *out = 0; |
| return out - buffer; |
| case 1: |
| memcpy(out, &digits[0], 2), out += 2; |
| *out++ = '.'; |
| memcpy(out, &digits[2], 4); |
| out += 4; |
| while (out[-1] == '0') --out; |
| if (out[-1] == '.') --out; |
| *out = 0; |
| return out - buffer; |
| case 0: |
| memcpy(out, &digits[0], 1), out += 1; |
| *out++ = '.'; |
| memcpy(out, &digits[1], 5); |
| out += 5; |
| while (out[-1] == '0') --out; |
| if (out[-1] == '.') --out; |
| *out = 0; |
| return out - buffer; |
| case -4: |
| out[2] = '0'; |
| ++out; |
| ABSL_FALLTHROUGH_INTENDED; |
| case -3: |
| out[2] = '0'; |
| ++out; |
| ABSL_FALLTHROUGH_INTENDED; |
| case -2: |
| out[2] = '0'; |
| ++out; |
| ABSL_FALLTHROUGH_INTENDED; |
| case -1: |
| out += 2; |
| memcpy(out, &digits[0], 6); |
| out += 6; |
| while (out[-1] == '0') --out; |
| *out = 0; |
| return out - buffer; |
| } |
| assert(exp < -4 || exp >= 6); |
| out[0] = digits[0]; |
| assert(out[1] == '.'); |
| out += 2; |
| memcpy(out, &digits[1], 5), out += 5; |
| while (out[-1] == '0') --out; |
| if (out[-1] == '.') --out; |
| *out++ = 'e'; |
| if (exp > 0) { |
| *out++ = '+'; |
| } else { |
| *out++ = '-'; |
| exp = -exp; |
| } |
| if (exp > 99) { |
| int dig1 = exp / 100; |
| exp -= dig1 * 100; |
| *out++ = '0' + dig1; |
| } |
| PutTwoDigits(exp, out); |
| out += 2; |
| *out = 0; |
| return out - buffer; |
| } |
| |
| namespace { |
| // Represents integer values of digits. |
| // Uses 36 to indicate an invalid character since we support |
| // bases up to 36. |
| static const int8_t kAsciiToInt[256] = { |
| 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s. |
| 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5, |
| 6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, |
| 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, |
| 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, |
| 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, |
| 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36}; |
| |
| // Parse the sign and optional hex or oct prefix in text. |
| inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/, |
| int* base_ptr /*inout*/, |
| bool* negative_ptr /*output*/) { |
| if (text->data() == nullptr) { |
| return false; |
| } |
| |
| const char* start = text->data(); |
| const char* end = start + text->size(); |
| int base = *base_ptr; |
| |
| // Consume whitespace. |
| while (start < end && absl::ascii_isspace(start[0])) { |
| ++start; |
| } |
| while (start < end && absl::ascii_isspace(end[-1])) { |
| --end; |
| } |
| if (start >= end) { |
| return false; |
| } |
| |
| // Consume sign. |
| *negative_ptr = (start[0] == '-'); |
| if (*negative_ptr || start[0] == '+') { |
| ++start; |
| if (start >= end) { |
| return false; |
| } |
| } |
| |
| // Consume base-dependent prefix. |
| // base 0: "0x" -> base 16, "0" -> base 8, default -> base 10 |
| // base 16: "0x" -> base 16 |
| // Also validate the base. |
| if (base == 0) { |
| if (end - start >= 2 && start[0] == '0' && |
| (start[1] == 'x' || start[1] == 'X')) { |
| base = 16; |
| start += 2; |
| if (start >= end) { |
| // "0x" with no digits after is invalid. |
| return false; |
| } |
| } else if (end - start >= 1 && start[0] == '0') { |
| base = 8; |
| start += 1; |
| } else { |
| base = 10; |
| } |
| } else if (base == 16) { |
| if (end - start >= 2 && start[0] == '0' && |
| (start[1] == 'x' || start[1] == 'X')) { |
| start += 2; |
| if (start >= end) { |
| // "0x" with no digits after is invalid. |
| return false; |
| } |
| } |
| } else if (base >= 2 && base <= 36) { |
| // okay |
| } else { |
| return false; |
| } |
| *text = absl::string_view(start, end - start); |
| *base_ptr = base; |
| return true; |
| } |
| |
| // Consume digits. |
| // |
| // The classic loop: |
| // |
| // for each digit |
| // value = value * base + digit |
| // value *= sign |
| // |
| // The classic loop needs overflow checking. It also fails on the most |
| // negative integer, -2147483648 in 32-bit two's complement representation. |
| // |
| // My improved loop: |
| // |
| // if (!negative) |
| // for each digit |
| // value = value * base |
| // value = value + digit |
| // else |
| // for each digit |
| // value = value * base |
| // value = value - digit |
| // |
| // Overflow checking becomes simple. |
| |
| // Lookup tables per IntType: |
| // vmax/base and vmin/base are precomputed because division costs at least 8ns. |
| // TODO(junyer): Doing this per base instead (i.e. an array of structs, not a |
| // struct of arrays) would probably be better in terms of d-cache for the most |
| // commonly used bases. |
| template <typename IntType> |
| struct LookupTables { |
| static const IntType kVmaxOverBase[]; |
| static const IntType kVminOverBase[]; |
| }; |
| |
| // An array initializer macro for X/base where base in [0, 36]. |
| // However, note that lookups for base in [0, 1] should never happen because |
| // base has been validated to be in [2, 36] by safe_parse_sign_and_base(). |
| #define X_OVER_BASE_INITIALIZER(X) \ |
| { \ |
| 0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \ |
| X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18, \ |
| X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26, \ |
| X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34, \ |
| X / 35, X / 36, \ |
| } |
| |
| template <typename IntType> |
| const IntType LookupTables<IntType>::kVmaxOverBase[] = |
| X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max()); |
| |
| template <typename IntType> |
| const IntType LookupTables<IntType>::kVminOverBase[] = |
| X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min()); |
| |
| #undef X_OVER_BASE_INITIALIZER |
| |
| template <typename IntType> |
| inline bool safe_parse_positive_int(absl::string_view text, int base, |
| IntType* value_p) { |
| IntType value = 0; |
| const IntType vmax = std::numeric_limits<IntType>::max(); |
| assert(vmax > 0); |
| assert(base >= 0); |
| assert(vmax >= static_cast<IntType>(base)); |
| const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base]; |
| const char* start = text.data(); |
| const char* end = start + text.size(); |
| // loop over digits |
| for (; start < end; ++start) { |
| unsigned char c = static_cast<unsigned char>(start[0]); |
| int digit = kAsciiToInt[c]; |
| if (digit >= base) { |
| *value_p = value; |
| return false; |
| } |
| if (value > vmax_over_base) { |
| *value_p = vmax; |
| return false; |
| } |
| value *= base; |
| if (value > vmax - digit) { |
| *value_p = vmax; |
| return false; |
| } |
| value += digit; |
| } |
| *value_p = value; |
| return true; |
| } |
| |
| template <typename IntType> |
| inline bool safe_parse_negative_int(absl::string_view text, int base, |
| IntType* value_p) { |
| IntType value = 0; |
| const IntType vmin = std::numeric_limits<IntType>::min(); |
| assert(vmin < 0); |
| assert(vmin <= 0 - base); |
| IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base]; |
| // 2003 c++ standard [expr.mul] |
| // "... the sign of the remainder is implementation-defined." |
| // Although (vmin/base)*base + vmin%base is always vmin. |
| // 2011 c++ standard tightens the spec but we cannot rely on it. |
| // TODO(junyer): Handle this in the lookup table generation. |
| if (vmin % base > 0) { |
| vmin_over_base += 1; |
| } |
| const char* start = text.data(); |
| const char* end = start + text.size(); |
| // loop over digits |
| for (; start < end; ++start) { |
| unsigned char c = static_cast<unsigned char>(start[0]); |
| int digit = kAsciiToInt[c]; |
| if (digit >= base) { |
| *value_p = value; |
| return false; |
| } |
| if (value < vmin_over_base) { |
| *value_p = vmin; |
| return false; |
| } |
| value *= base; |
| if (value < vmin + digit) { |
| *value_p = vmin; |
| return false; |
| } |
| value -= digit; |
| } |
| *value_p = value; |
| return true; |
| } |
| |
| // Input format based on POSIX.1-2008 strtol |
| // http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html |
| template <typename IntType> |
| inline bool safe_int_internal(absl::string_view text, IntType* value_p, |
| int base) { |
| *value_p = 0; |
| bool negative; |
| if (!safe_parse_sign_and_base(&text, &base, &negative)) { |
| return false; |
| } |
| if (!negative) { |
| return safe_parse_positive_int(text, base, value_p); |
| } else { |
| return safe_parse_negative_int(text, base, value_p); |
| } |
| } |
| |
| template <typename IntType> |
| inline bool safe_uint_internal(absl::string_view text, IntType* value_p, |
| int base) { |
| *value_p = 0; |
| bool negative; |
| if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) { |
| return false; |
| } |
| return safe_parse_positive_int(text, base, value_p); |
| } |
| } // anonymous namespace |
| |
| namespace numbers_internal { |
| bool safe_strto32_base(absl::string_view text, int32_t* value, int base) { |
| return safe_int_internal<int32_t>(text, value, base); |
| } |
| |
| bool safe_strto64_base(absl::string_view text, int64_t* value, int base) { |
| return safe_int_internal<int64_t>(text, value, base); |
| } |
| |
| bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) { |
| return safe_uint_internal<uint32_t>(text, value, base); |
| } |
| |
| bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) { |
| return safe_uint_internal<uint64_t>(text, value, base); |
| } |
| } // namespace numbers_internal |
| |
| } // namespace absl |