blob: 7188ea33f4d36787004cfcb8741f6c192c114e31 [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/pcc/bitrate_controller.h"
#include <memory>
#include <utility>
#include "modules/congestion_controller/pcc/monitor_interval.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace pcc {
namespace test {
namespace {
constexpr double kInitialConversionFactor = 1;
constexpr double kInitialDynamicBoundary = 0.05;
constexpr double kDynamicBoundaryIncrement = 0.1;
constexpr double kDelayGradientCoefficient = 900;
constexpr double kLossCoefficient = 11.35;
constexpr double kThroughputCoefficient = 500 * 1000;
constexpr double kThroughputPower = 0.99;
constexpr double kDelayGradientThreshold = 0.01;
constexpr double kDelayGradientNegativeBound = 10;
const DataRate kTargetSendingRate = DataRate::kbps(300);
const double kEpsilon = 0.05;
const Timestamp kStartTime = Timestamp::us(0);
const TimeDelta kPacketsDelta = TimeDelta::ms(1);
const TimeDelta kIntervalDuration = TimeDelta::ms(1000);
const TimeDelta kDefaultRtt = TimeDelta::ms(1000);
const DataSize kDefaultDataSize = DataSize::bytes(100);
std::vector<PacketResult> CreatePacketResults(
const std::vector<Timestamp>& packets_send_times,
const std::vector<Timestamp>& packets_received_times = {},
const std::vector<DataSize>& packets_sizes = {}) {
std::vector<PacketResult> packet_results;
PacketResult packet_result;
SentPacket sent_packet;
for (size_t i = 0; i < packets_send_times.size(); ++i) {
sent_packet.send_time = packets_send_times[i];
if (packets_sizes.empty()) {
sent_packet.size = kDefaultDataSize;
} else {
sent_packet.size = packets_sizes[i];
}
packet_result.sent_packet = sent_packet;
if (packets_received_times.empty()) {
packet_result.receive_time = packets_send_times[i] + kDefaultRtt;
} else {
packet_result.receive_time = packets_received_times[i];
}
packet_results.push_back(packet_result);
}
return packet_results;
}
class MockUtilityFunction : public PccUtilityFunctionInterface {
public:
MOCK_CONST_METHOD1(Compute,
double(const PccMonitorInterval& monitor_interval));
};
} // namespace
TEST(PccBitrateControllerTest, IncreaseRateWhenNoChangesForTestBitrates) {
PccBitrateController bitrate_controller(
kInitialConversionFactor, kInitialDynamicBoundary,
kDynamicBoundaryIncrement, kDelayGradientCoefficient, kLossCoefficient,
kThroughputCoefficient, kThroughputPower, kDelayGradientThreshold,
kDelayGradientNegativeBound);
VivaceUtilityFunction utility_function(
kDelayGradientCoefficient, kLossCoefficient, kThroughputCoefficient,
kThroughputPower, kDelayGradientThreshold, kDelayGradientNegativeBound);
std::vector<PccMonitorInterval> monitor_block{
PccMonitorInterval(kTargetSendingRate * (1 + kEpsilon), kStartTime,
kIntervalDuration),
PccMonitorInterval(kTargetSendingRate * (1 - kEpsilon),
kStartTime + kIntervalDuration, kIntervalDuration)};
monitor_block[0].OnPacketsFeedback(
CreatePacketResults({kStartTime + kPacketsDelta,
kStartTime + kIntervalDuration + kPacketsDelta,
kStartTime + 3 * kIntervalDuration},
{}, {}));
monitor_block[1].OnPacketsFeedback(
CreatePacketResults({kStartTime + kPacketsDelta,
kStartTime + kIntervalDuration + kPacketsDelta,
kStartTime + 3 * kIntervalDuration},
{}, {}));
// For both of the monitor intervals there were no change in rtt gradient
// and in packet loss. Since the only difference is in the sending rate,
// the higher sending rate should be chosen by congestion controller.
EXPECT_GT(bitrate_controller
.ComputeRateUpdateForOnlineLearningMode(monitor_block,
kTargetSendingRate)
.bps(),
kTargetSendingRate.bps());
}
TEST(PccBitrateControllerTest, NoChangesWhenUtilityFunctionDoesntChange) {
std::unique_ptr<MockUtilityFunction> mock_utility_function =
std::make_unique<MockUtilityFunction>();
EXPECT_CALL(*mock_utility_function, Compute(::testing::_))
.Times(2)
.WillOnce(::testing::Return(100))
.WillOnce(::testing::Return(100));
PccBitrateController bitrate_controller(
kInitialConversionFactor, kInitialDynamicBoundary,
kDynamicBoundaryIncrement, std::move(mock_utility_function));
std::vector<PccMonitorInterval> monitor_block{
PccMonitorInterval(kTargetSendingRate * (1 + kEpsilon), kStartTime,
kIntervalDuration),
PccMonitorInterval(kTargetSendingRate * (1 - kEpsilon),
kStartTime + kIntervalDuration, kIntervalDuration)};
// To complete collecting feedback within monitor intervals.
monitor_block[0].OnPacketsFeedback(
CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
monitor_block[1].OnPacketsFeedback(
CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
// Because we don't have any packets inside of monitor intervals, utility
// function should be zero for both of them and the sending rate should not
// change.
EXPECT_EQ(bitrate_controller
.ComputeRateUpdateForOnlineLearningMode(monitor_block,
kTargetSendingRate)
.bps(),
kTargetSendingRate.bps());
}
TEST(PccBitrateControllerTest, NoBoundaryWhenSmallGradient) {
std::unique_ptr<MockUtilityFunction> mock_utility_function =
std::make_unique<MockUtilityFunction>();
constexpr double kFirstMonitorIntervalUtility = 0;
const double kSecondMonitorIntervalUtility =
2 * kTargetSendingRate.bps() * kEpsilon;
EXPECT_CALL(*mock_utility_function, Compute(::testing::_))
.Times(2)
.WillOnce(::testing::Return(kFirstMonitorIntervalUtility))
.WillOnce(::testing::Return(kSecondMonitorIntervalUtility));
PccBitrateController bitrate_controller(
kInitialConversionFactor, kInitialDynamicBoundary,
kDynamicBoundaryIncrement, std::move(mock_utility_function));
std::vector<PccMonitorInterval> monitor_block{
PccMonitorInterval(kTargetSendingRate * (1 + kEpsilon), kStartTime,
kIntervalDuration),
PccMonitorInterval(kTargetSendingRate * (1 - kEpsilon),
kStartTime + kIntervalDuration, kIntervalDuration)};
// To complete collecting feedback within monitor intervals.
monitor_block[0].OnPacketsFeedback(
CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
monitor_block[1].OnPacketsFeedback(
CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
double gradient =
(kFirstMonitorIntervalUtility - kSecondMonitorIntervalUtility) /
(kTargetSendingRate.bps() * 2 * kEpsilon);
// When the gradient is small we don't hit the dynamic boundary.
EXPECT_EQ(bitrate_controller
.ComputeRateUpdateForOnlineLearningMode(monitor_block,
kTargetSendingRate)
.bps(),
kTargetSendingRate.bps() + kInitialConversionFactor * gradient);
}
TEST(PccBitrateControllerTest, FaceBoundaryWhenLargeGradient) {
std::unique_ptr<MockUtilityFunction> mock_utility_function =
std::make_unique<MockUtilityFunction>();
constexpr double kFirstMonitorIntervalUtility = 0;
const double kSecondMonitorIntervalUtility =
10 * kInitialDynamicBoundary * kTargetSendingRate.bps() * 2 *
kTargetSendingRate.bps() * kEpsilon;
EXPECT_CALL(*mock_utility_function, Compute(::testing::_))
.Times(4)
.WillOnce(::testing::Return(kFirstMonitorIntervalUtility))
.WillOnce(::testing::Return(kSecondMonitorIntervalUtility))
.WillOnce(::testing::Return(kFirstMonitorIntervalUtility))
.WillOnce(::testing::Return(kSecondMonitorIntervalUtility));
PccBitrateController bitrate_controller(
kInitialConversionFactor, kInitialDynamicBoundary,
kDynamicBoundaryIncrement, std::move(mock_utility_function));
std::vector<PccMonitorInterval> monitor_block{
PccMonitorInterval(kTargetSendingRate * (1 + kEpsilon), kStartTime,
kIntervalDuration),
PccMonitorInterval(kTargetSendingRate * (1 - kEpsilon),
kStartTime + kIntervalDuration, kIntervalDuration)};
// To complete collecting feedback within monitor intervals.
monitor_block[0].OnPacketsFeedback(
CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
monitor_block[1].OnPacketsFeedback(
CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
// The utility function gradient is too big and we hit the dynamic boundary.
EXPECT_EQ(bitrate_controller.ComputeRateUpdateForOnlineLearningMode(
monitor_block, kTargetSendingRate),
kTargetSendingRate * (1 - kInitialDynamicBoundary));
// For the second time we hit the dynamic boundary in the same direction, the
// boundary should increase.
EXPECT_EQ(bitrate_controller
.ComputeRateUpdateForOnlineLearningMode(monitor_block,
kTargetSendingRate)
.bps(),
kTargetSendingRate.bps() *
(1 - kInitialDynamicBoundary - kDynamicBoundaryIncrement));
}
TEST(PccBitrateControllerTest, SlowStartMode) {
std::unique_ptr<MockUtilityFunction> mock_utility_function =
std::make_unique<MockUtilityFunction>();
constexpr double kFirstUtilityFunction = 1000;
EXPECT_CALL(*mock_utility_function, Compute(::testing::_))
.Times(4)
// For first 3 calls we expect to stay in the SLOW_START mode and double
// the sending rate since the utility function increases its value. For
// the last call utility function decreases its value, this means that
// we should not double the sending rate and exit SLOW_START mode.
.WillOnce(::testing::Return(kFirstUtilityFunction))
.WillOnce(::testing::Return(kFirstUtilityFunction + 1))
.WillOnce(::testing::Return(kFirstUtilityFunction + 2))
.WillOnce(::testing::Return(kFirstUtilityFunction + 1));
PccBitrateController bitrate_controller(
kInitialConversionFactor, kInitialDynamicBoundary,
kDynamicBoundaryIncrement, std::move(mock_utility_function));
std::vector<PccMonitorInterval> monitor_block{PccMonitorInterval(
2 * kTargetSendingRate, kStartTime, kIntervalDuration)};
// To complete collecting feedback within monitor intervals.
monitor_block[0].OnPacketsFeedback(
CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
EXPECT_EQ(
bitrate_controller.ComputeRateUpdateForSlowStartMode(monitor_block[0]),
kTargetSendingRate * 2);
EXPECT_EQ(
bitrate_controller.ComputeRateUpdateForSlowStartMode(monitor_block[0]),
kTargetSendingRate * 2);
EXPECT_EQ(
bitrate_controller.ComputeRateUpdateForSlowStartMode(monitor_block[0]),
kTargetSendingRate * 2);
EXPECT_EQ(
bitrate_controller.ComputeRateUpdateForSlowStartMode(monitor_block[0]),
absl::nullopt);
}
TEST(PccBitrateControllerTest, StepSizeIncrease) {
std::unique_ptr<MockUtilityFunction> mock_utility_function =
std::make_unique<MockUtilityFunction>();
constexpr double kFirstMiUtilityFunction = 0;
const double kSecondMiUtilityFunction =
2 * kTargetSendingRate.bps() * kEpsilon;
EXPECT_CALL(*mock_utility_function, Compute(::testing::_))
.Times(4)
.WillOnce(::testing::Return(kFirstMiUtilityFunction))
.WillOnce(::testing::Return(kSecondMiUtilityFunction))
.WillOnce(::testing::Return(kFirstMiUtilityFunction))
.WillOnce(::testing::Return(kSecondMiUtilityFunction));
std::vector<PccMonitorInterval> monitor_block{
PccMonitorInterval(kTargetSendingRate * (1 + kEpsilon), kStartTime,
kIntervalDuration),
PccMonitorInterval(kTargetSendingRate * (1 - kEpsilon),
kStartTime + kIntervalDuration, kIntervalDuration)};
// To complete collecting feedback within monitor intervals.
monitor_block[0].OnPacketsFeedback(
CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
monitor_block[1].OnPacketsFeedback(
CreatePacketResults({kStartTime + 3 * kIntervalDuration}, {}, {}));
double gradient = (kFirstMiUtilityFunction - kSecondMiUtilityFunction) /
(kTargetSendingRate.bps() * 2 * kEpsilon);
PccBitrateController bitrate_controller(
kInitialConversionFactor, kInitialDynamicBoundary,
kDynamicBoundaryIncrement, std::move(mock_utility_function));
// If we are moving in the same direction - the step size should increase.
EXPECT_EQ(bitrate_controller
.ComputeRateUpdateForOnlineLearningMode(monitor_block,
kTargetSendingRate)
.bps(),
kTargetSendingRate.bps() + kInitialConversionFactor * gradient);
EXPECT_EQ(bitrate_controller
.ComputeRateUpdateForOnlineLearningMode(monitor_block,
kTargetSendingRate)
.bps(),
kTargetSendingRate.bps() + 2 * kInitialConversionFactor * gradient);
}
} // namespace test
} // namespace pcc
} // namespace webrtc