| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_device/audio_device_buffer.h" |
| |
| #include <string.h> |
| |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| |
| #include "common_audio/signal_processing/include/signal_processing_library.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/time_utils.h" |
| #include "rtc_base/trace_event.h" |
| #include "system_wrappers/include/metrics.h" |
| |
| namespace webrtc { |
| |
| static const char kTimerQueueName[] = "AudioDeviceBufferTimer"; |
| |
| // Time between two sucessive calls to LogStats(). |
| static const size_t kTimerIntervalInSeconds = 10; |
| static const size_t kTimerIntervalInMilliseconds = |
| kTimerIntervalInSeconds * rtc::kNumMillisecsPerSec; |
| // Min time required to qualify an audio session as a "call". If playout or |
| // recording has been active for less than this time we will not store any |
| // logs or UMA stats but instead consider the call as too short. |
| static const size_t kMinValidCallTimeTimeInSeconds = 10; |
| static const size_t kMinValidCallTimeTimeInMilliseconds = |
| kMinValidCallTimeTimeInSeconds * rtc::kNumMillisecsPerSec; |
| #ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE |
| static const double k2Pi = 6.28318530717959; |
| #endif |
| |
| AudioDeviceBuffer::AudioDeviceBuffer(TaskQueueFactory* task_queue_factory) |
| : task_queue_(task_queue_factory->CreateTaskQueue( |
| kTimerQueueName, |
| TaskQueueFactory::Priority::NORMAL)), |
| audio_transport_cb_(nullptr), |
| rec_sample_rate_(0), |
| play_sample_rate_(0), |
| rec_channels_(0), |
| play_channels_(0), |
| playing_(false), |
| recording_(false), |
| typing_status_(false), |
| play_delay_ms_(0), |
| rec_delay_ms_(0), |
| num_stat_reports_(0), |
| last_timer_task_time_(0), |
| rec_stat_count_(0), |
| play_stat_count_(0), |
| play_start_time_(0), |
| only_silence_recorded_(true), |
| log_stats_(false) { |
| RTC_LOG(LS_INFO) << "AudioDeviceBuffer::ctor"; |
| #ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE |
| phase_ = 0.0; |
| RTC_LOG(LS_WARNING) << "AUDIO_DEVICE_PLAYS_SINUS_TONE is defined!"; |
| #endif |
| } |
| |
| AudioDeviceBuffer::~AudioDeviceBuffer() { |
| RTC_DCHECK_RUN_ON(&main_thread_checker_); |
| RTC_DCHECK(!playing_); |
| RTC_DCHECK(!recording_); |
| RTC_LOG(LS_INFO) << "AudioDeviceBuffer::~dtor"; |
| } |
| |
| int32_t AudioDeviceBuffer::RegisterAudioCallback( |
| AudioTransport* audio_callback) { |
| RTC_DCHECK_RUN_ON(&main_thread_checker_); |
| RTC_DLOG(LS_INFO) << __FUNCTION__; |
| if (playing_ || recording_) { |
| RTC_LOG(LS_ERROR) << "Failed to set audio transport since media was active"; |
| return -1; |
| } |
| audio_transport_cb_ = audio_callback; |
| return 0; |
| } |
| |
| void AudioDeviceBuffer::StartPlayout() { |
| RTC_DCHECK_RUN_ON(&main_thread_checker_); |
| // TODO(henrika): allow for usage of DCHECK(!playing_) here instead. Today the |
| // ADM allows calling Start(), Start() by ignoring the second call but it |
| // makes more sense to only allow one call. |
| if (playing_) { |
| return; |
| } |
| RTC_DLOG(LS_INFO) << __FUNCTION__; |
| // Clear members tracking playout stats and do it on the task queue. |
| task_queue_.PostTask([this] { ResetPlayStats(); }); |
| // Start a periodic timer based on task queue if not already done by the |
| // recording side. |
| if (!recording_) { |
| StartPeriodicLogging(); |
| } |
| const int64_t now_time = rtc::TimeMillis(); |
| // Clear members that are only touched on the main (creating) thread. |
| play_start_time_ = now_time; |
| playing_ = true; |
| } |
| |
| void AudioDeviceBuffer::StartRecording() { |
| RTC_DCHECK_RUN_ON(&main_thread_checker_); |
| if (recording_) { |
| return; |
| } |
| RTC_DLOG(LS_INFO) << __FUNCTION__; |
| // Clear members tracking recording stats and do it on the task queue. |
| task_queue_.PostTask([this] { ResetRecStats(); }); |
| // Start a periodic timer based on task queue if not already done by the |
| // playout side. |
| if (!playing_) { |
| StartPeriodicLogging(); |
| } |
| // Clear members that will be touched on the main (creating) thread. |
| rec_start_time_ = rtc::TimeMillis(); |
| recording_ = true; |
| // And finally a member which can be modified on the native audio thread. |
| // It is safe to do so since we know by design that the owning ADM has not |
| // yet started the native audio recording. |
| only_silence_recorded_ = true; |
| } |
| |
| void AudioDeviceBuffer::StopPlayout() { |
| RTC_DCHECK_RUN_ON(&main_thread_checker_); |
| if (!playing_) { |
| return; |
| } |
| RTC_DLOG(LS_INFO) << __FUNCTION__; |
| playing_ = false; |
| // Stop periodic logging if no more media is active. |
| if (!recording_) { |
| StopPeriodicLogging(); |
| } |
| RTC_LOG(LS_INFO) << "total playout time: " |
| << rtc::TimeSince(play_start_time_); |
| } |
| |
| void AudioDeviceBuffer::StopRecording() { |
| RTC_DCHECK_RUN_ON(&main_thread_checker_); |
| if (!recording_) { |
| return; |
| } |
| RTC_DLOG(LS_INFO) << __FUNCTION__; |
| recording_ = false; |
| // Stop periodic logging if no more media is active. |
| if (!playing_) { |
| StopPeriodicLogging(); |
| } |
| // Add UMA histogram to keep track of the case when only zeros have been |
| // recorded. Measurements (max of absolute level) are taken twice per second, |
| // which means that if e.g 10 seconds of audio has been recorded, a total of |
| // 20 level estimates must all be identical to zero to trigger the histogram. |
| // `only_silence_recorded_` can only be cleared on the native audio thread |
| // that drives audio capture but we know by design that the audio has stopped |
| // when this method is called, hence there should not be aby conflicts. Also, |
| // the fact that `only_silence_recorded_` can be affected during the complete |
| // call makes chances of conflicts with potentially one last callback very |
| // small. |
| const size_t time_since_start = rtc::TimeSince(rec_start_time_); |
| if (time_since_start > kMinValidCallTimeTimeInMilliseconds) { |
| const int only_zeros = static_cast<int>(only_silence_recorded_); |
| RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.RecordedOnlyZeros", only_zeros); |
| RTC_LOG(LS_INFO) << "HISTOGRAM(WebRTC.Audio.RecordedOnlyZeros): " |
| << only_zeros; |
| } |
| RTC_LOG(LS_INFO) << "total recording time: " << time_since_start; |
| } |
| |
| int32_t AudioDeviceBuffer::SetRecordingSampleRate(uint32_t fsHz) { |
| RTC_LOG(LS_INFO) << "SetRecordingSampleRate(" << fsHz << ")"; |
| rec_sample_rate_ = fsHz; |
| return 0; |
| } |
| |
| int32_t AudioDeviceBuffer::SetPlayoutSampleRate(uint32_t fsHz) { |
| RTC_LOG(LS_INFO) << "SetPlayoutSampleRate(" << fsHz << ")"; |
| play_sample_rate_ = fsHz; |
| return 0; |
| } |
| |
| uint32_t AudioDeviceBuffer::RecordingSampleRate() const { |
| return rec_sample_rate_; |
| } |
| |
| uint32_t AudioDeviceBuffer::PlayoutSampleRate() const { |
| return play_sample_rate_; |
| } |
| |
| int32_t AudioDeviceBuffer::SetRecordingChannels(size_t channels) { |
| RTC_LOG(LS_INFO) << "SetRecordingChannels(" << channels << ")"; |
| rec_channels_ = channels; |
| return 0; |
| } |
| |
| int32_t AudioDeviceBuffer::SetPlayoutChannels(size_t channels) { |
| RTC_LOG(LS_INFO) << "SetPlayoutChannels(" << channels << ")"; |
| play_channels_ = channels; |
| return 0; |
| } |
| |
| size_t AudioDeviceBuffer::RecordingChannels() const { |
| return rec_channels_; |
| } |
| |
| size_t AudioDeviceBuffer::PlayoutChannels() const { |
| return play_channels_; |
| } |
| |
| int32_t AudioDeviceBuffer::SetTypingStatus(bool typing_status) { |
| typing_status_ = typing_status; |
| return 0; |
| } |
| |
| void AudioDeviceBuffer::SetVQEData(int play_delay_ms, int rec_delay_ms) { |
| play_delay_ms_ = play_delay_ms; |
| rec_delay_ms_ = rec_delay_ms; |
| } |
| |
| int32_t AudioDeviceBuffer::SetRecordedBuffer(const void* audio_buffer, |
| size_t samples_per_channel) { |
| return SetRecordedBuffer(audio_buffer, samples_per_channel, absl::nullopt); |
| } |
| |
| int32_t AudioDeviceBuffer::SetRecordedBuffer( |
| const void* audio_buffer, |
| size_t samples_per_channel, |
| absl::optional<int64_t> capture_timestamp_ns) { |
| // Copy the complete input buffer to the local buffer. |
| const size_t old_size = rec_buffer_.size(); |
| rec_buffer_.SetData(static_cast<const int16_t*>(audio_buffer), |
| rec_channels_ * samples_per_channel); |
| // Keep track of the size of the recording buffer. Only updated when the |
| // size changes, which is a rare event. |
| if (old_size != rec_buffer_.size()) { |
| RTC_LOG(LS_INFO) << "Size of recording buffer: " << rec_buffer_.size(); |
| } |
| |
| if (capture_timestamp_ns) { |
| int64_t align_offsync_estimation_time = rtc::TimeMicros(); |
| if (align_offsync_estimation_time - |
| rtc::TimestampAligner::kMinFrameIntervalUs > |
| align_offsync_estimation_time_) { |
| align_offsync_estimation_time_ = align_offsync_estimation_time; |
| capture_timestamp_ns_ = |
| rtc::kNumNanosecsPerMicrosec * |
| timestamp_aligner_.TranslateTimestamp( |
| *capture_timestamp_ns / rtc::kNumNanosecsPerMicrosec, |
| align_offsync_estimation_time); |
| } else { |
| // The Timestamp aligner is designed to prevent timestamps that are too |
| // similar, and produces warnings if it is called to often. We do not care |
| // about that here, so we do this workaround. If we where to call the |
| // aligner within a millisecond, we instead call this, that do not update |
| // the clock offset estimation. This get us timestamps without generating |
| // warnings, but could generate two timestamps within a millisecond. |
| capture_timestamp_ns_ = |
| rtc::kNumNanosecsPerMicrosec * |
| timestamp_aligner_.TranslateTimestamp(*capture_timestamp_ns / |
| rtc::kNumNanosecsPerMicrosec); |
| } |
| } |
| // Derive a new level value twice per second and check if it is non-zero. |
| int16_t max_abs = 0; |
| RTC_DCHECK_LT(rec_stat_count_, 50); |
| if (++rec_stat_count_ >= 50) { |
| // Returns the largest absolute value in a signed 16-bit vector. |
| max_abs = WebRtcSpl_MaxAbsValueW16(rec_buffer_.data(), rec_buffer_.size()); |
| rec_stat_count_ = 0; |
| // Set `only_silence_recorded_` to false as soon as at least one detection |
| // of a non-zero audio packet is found. It can only be restored to true |
| // again by restarting the call. |
| if (max_abs > 0) { |
| only_silence_recorded_ = false; |
| } |
| } |
| // Update recording stats which is used as base for periodic logging of the |
| // audio input state. |
| UpdateRecStats(max_abs, samples_per_channel); |
| return 0; |
| } |
| |
| int32_t AudioDeviceBuffer::DeliverRecordedData() { |
| if (!audio_transport_cb_) { |
| RTC_LOG(LS_WARNING) << "Invalid audio transport"; |
| return 0; |
| } |
| const size_t frames = rec_buffer_.size() / rec_channels_; |
| const size_t bytes_per_frame = rec_channels_ * sizeof(int16_t); |
| uint32_t new_mic_level_dummy = 0; |
| uint32_t total_delay_ms = play_delay_ms_ + rec_delay_ms_; |
| int32_t res = audio_transport_cb_->RecordedDataIsAvailable( |
| rec_buffer_.data(), frames, bytes_per_frame, rec_channels_, |
| rec_sample_rate_, total_delay_ms, 0, 0, typing_status_, |
| new_mic_level_dummy, capture_timestamp_ns_); |
| if (res == -1) { |
| RTC_LOG(LS_ERROR) << "RecordedDataIsAvailable() failed"; |
| } |
| return 0; |
| } |
| |
| int32_t AudioDeviceBuffer::RequestPlayoutData(size_t samples_per_channel) { |
| TRACE_EVENT1("webrtc", "AudioDeviceBuffer::RequestPlayoutData", |
| "samples_per_channel", samples_per_channel); |
| |
| // The consumer can change the requested size on the fly and we therefore |
| // resize the buffer accordingly. Also takes place at the first call to this |
| // method. |
| const size_t total_samples = play_channels_ * samples_per_channel; |
| if (play_buffer_.size() != total_samples) { |
| play_buffer_.SetSize(total_samples); |
| RTC_LOG(LS_INFO) << "Size of playout buffer: " << play_buffer_.size(); |
| } |
| |
| size_t num_samples_out(0); |
| // It is currently supported to start playout without a valid audio |
| // transport object. Leads to warning and silence. |
| if (!audio_transport_cb_) { |
| RTC_LOG(LS_WARNING) << "Invalid audio transport"; |
| return 0; |
| } |
| |
| // Retrieve new 16-bit PCM audio data using the audio transport instance. |
| int64_t elapsed_time_ms = -1; |
| int64_t ntp_time_ms = -1; |
| const size_t bytes_per_frame = play_channels_ * sizeof(int16_t); |
| uint32_t res = audio_transport_cb_->NeedMorePlayData( |
| samples_per_channel, bytes_per_frame, play_channels_, play_sample_rate_, |
| play_buffer_.data(), num_samples_out, &elapsed_time_ms, &ntp_time_ms); |
| if (res != 0) { |
| RTC_LOG(LS_ERROR) << "NeedMorePlayData() failed"; |
| } |
| |
| // Derive a new level value twice per second. |
| int16_t max_abs = 0; |
| RTC_DCHECK_LT(play_stat_count_, 50); |
| if (++play_stat_count_ >= 50) { |
| // Returns the largest absolute value in a signed 16-bit vector. |
| max_abs = |
| WebRtcSpl_MaxAbsValueW16(play_buffer_.data(), play_buffer_.size()); |
| play_stat_count_ = 0; |
| } |
| // Update playout stats which is used as base for periodic logging of the |
| // audio output state. |
| UpdatePlayStats(max_abs, num_samples_out / play_channels_); |
| return static_cast<int32_t>(num_samples_out / play_channels_); |
| } |
| |
| int32_t AudioDeviceBuffer::GetPlayoutData(void* audio_buffer) { |
| RTC_DCHECK_GT(play_buffer_.size(), 0); |
| #ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE |
| const double phase_increment = |
| k2Pi * 440.0 / static_cast<double>(play_sample_rate_); |
| int16_t* destination_r = reinterpret_cast<int16_t*>(audio_buffer); |
| if (play_channels_ == 1) { |
| for (size_t i = 0; i < play_buffer_.size(); ++i) { |
| destination_r[i] = static_cast<int16_t>((sin(phase_) * (1 << 14))); |
| phase_ += phase_increment; |
| } |
| } else if (play_channels_ == 2) { |
| for (size_t i = 0; i < play_buffer_.size() / 2; ++i) { |
| destination_r[2 * i] = destination_r[2 * i + 1] = |
| static_cast<int16_t>((sin(phase_) * (1 << 14))); |
| phase_ += phase_increment; |
| } |
| } |
| #else |
| memcpy(audio_buffer, play_buffer_.data(), |
| play_buffer_.size() * sizeof(int16_t)); |
| #endif |
| // Return samples per channel or number of frames. |
| return static_cast<int32_t>(play_buffer_.size() / play_channels_); |
| } |
| |
| void AudioDeviceBuffer::StartPeriodicLogging() { |
| task_queue_.PostTask([this] { LogStats(AudioDeviceBuffer::LOG_START); }); |
| } |
| |
| void AudioDeviceBuffer::StopPeriodicLogging() { |
| task_queue_.PostTask([this] { LogStats(AudioDeviceBuffer::LOG_STOP); }); |
| } |
| |
| void AudioDeviceBuffer::LogStats(LogState state) { |
| RTC_DCHECK_RUN_ON(&task_queue_); |
| int64_t now_time = rtc::TimeMillis(); |
| |
| if (state == AudioDeviceBuffer::LOG_START) { |
| // Reset counters at start. We will not add any logging in this state but |
| // the timer will started by posting a new (delayed) task. |
| num_stat_reports_ = 0; |
| last_timer_task_time_ = now_time; |
| log_stats_ = true; |
| } else if (state == AudioDeviceBuffer::LOG_STOP) { |
| // Stop logging and posting new tasks. |
| log_stats_ = false; |
| } else if (state == AudioDeviceBuffer::LOG_ACTIVE) { |
| // Keep logging unless logging was disabled while task was posted. |
| } |
| |
| // Avoid adding more logs since we are in STOP mode. |
| if (!log_stats_) { |
| return; |
| } |
| |
| int64_t next_callback_time = now_time + kTimerIntervalInMilliseconds; |
| int64_t time_since_last = rtc::TimeDiff(now_time, last_timer_task_time_); |
| last_timer_task_time_ = now_time; |
| |
| Stats stats; |
| { |
| MutexLock lock(&lock_); |
| stats = stats_; |
| stats_.max_rec_level = 0; |
| stats_.max_play_level = 0; |
| } |
| |
| // Cache current sample rate from atomic members. |
| const uint32_t rec_sample_rate = rec_sample_rate_; |
| const uint32_t play_sample_rate = play_sample_rate_; |
| |
| // Log the latest statistics but skip the first two rounds just after state |
| // was set to LOG_START to ensure that we have at least one full stable |
| // 10-second interval for sample-rate estimation. Hence, first printed log |
| // will be after ~20 seconds. |
| if (++num_stat_reports_ > 2 && |
| static_cast<size_t>(time_since_last) > kTimerIntervalInMilliseconds / 2) { |
| uint32_t diff_samples = stats.rec_samples - last_stats_.rec_samples; |
| float rate = diff_samples / (static_cast<float>(time_since_last) / 1000.0); |
| uint32_t abs_diff_rate_in_percent = 0; |
| if (rec_sample_rate > 0 && rate > 0) { |
| abs_diff_rate_in_percent = static_cast<uint32_t>( |
| 0.5f + |
| ((100.0f * std::abs(rate - rec_sample_rate)) / rec_sample_rate)); |
| RTC_HISTOGRAM_PERCENTAGE("WebRTC.Audio.RecordSampleRateOffsetInPercent", |
| abs_diff_rate_in_percent); |
| RTC_LOG(LS_INFO) << "[REC : " << time_since_last << "msec, " |
| << rec_sample_rate / 1000 << "kHz] callbacks: " |
| << stats.rec_callbacks - last_stats_.rec_callbacks |
| << ", " |
| "samples: " |
| << diff_samples |
| << ", " |
| "rate: " |
| << static_cast<int>(rate + 0.5) |
| << ", " |
| "rate diff: " |
| << abs_diff_rate_in_percent |
| << "%, " |
| "level: " |
| << stats.max_rec_level; |
| } |
| |
| diff_samples = stats.play_samples - last_stats_.play_samples; |
| rate = diff_samples / (static_cast<float>(time_since_last) / 1000.0); |
| abs_diff_rate_in_percent = 0; |
| if (play_sample_rate > 0 && rate > 0) { |
| abs_diff_rate_in_percent = static_cast<uint32_t>( |
| 0.5f + |
| ((100.0f * std::abs(rate - play_sample_rate)) / play_sample_rate)); |
| RTC_HISTOGRAM_PERCENTAGE("WebRTC.Audio.PlayoutSampleRateOffsetInPercent", |
| abs_diff_rate_in_percent); |
| RTC_LOG(LS_INFO) << "[PLAY: " << time_since_last << "msec, " |
| << play_sample_rate / 1000 << "kHz] callbacks: " |
| << stats.play_callbacks - last_stats_.play_callbacks |
| << ", " |
| "samples: " |
| << diff_samples |
| << ", " |
| "rate: " |
| << static_cast<int>(rate + 0.5) |
| << ", " |
| "rate diff: " |
| << abs_diff_rate_in_percent |
| << "%, " |
| "level: " |
| << stats.max_play_level; |
| } |
| } |
| last_stats_ = stats; |
| |
| int64_t time_to_wait_ms = next_callback_time - rtc::TimeMillis(); |
| RTC_DCHECK_GT(time_to_wait_ms, 0) << "Invalid timer interval"; |
| |
| // Keep posting new (delayed) tasks until state is changed to kLogStop. |
| task_queue_.PostDelayedTask( |
| [this] { AudioDeviceBuffer::LogStats(AudioDeviceBuffer::LOG_ACTIVE); }, |
| TimeDelta::Millis(time_to_wait_ms)); |
| } |
| |
| void AudioDeviceBuffer::ResetRecStats() { |
| RTC_DCHECK_RUN_ON(&task_queue_); |
| last_stats_.ResetRecStats(); |
| MutexLock lock(&lock_); |
| stats_.ResetRecStats(); |
| } |
| |
| void AudioDeviceBuffer::ResetPlayStats() { |
| RTC_DCHECK_RUN_ON(&task_queue_); |
| last_stats_.ResetPlayStats(); |
| MutexLock lock(&lock_); |
| stats_.ResetPlayStats(); |
| } |
| |
| void AudioDeviceBuffer::UpdateRecStats(int16_t max_abs, |
| size_t samples_per_channel) { |
| MutexLock lock(&lock_); |
| ++stats_.rec_callbacks; |
| stats_.rec_samples += samples_per_channel; |
| if (max_abs > stats_.max_rec_level) { |
| stats_.max_rec_level = max_abs; |
| } |
| } |
| |
| void AudioDeviceBuffer::UpdatePlayStats(int16_t max_abs, |
| size_t samples_per_channel) { |
| MutexLock lock(&lock_); |
| ++stats_.play_callbacks; |
| stats_.play_samples += samples_per_channel; |
| if (max_abs > stats_.max_play_level) { |
| stats_.max_play_level = max_abs; |
| } |
| } |
| |
| } // namespace webrtc |