blob: 78cb0f5fe98520b6ba9f580be71dfd80c7154be3 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/utility/simulcast_test_fixture_impl.h"
#include <algorithm>
#include <map>
#include <memory>
#include <vector>
#include "absl/memory/memory.h"
#include "api/video/encoded_image.h"
#include "api/video_codecs/sdp_video_format.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "rtc_base/checks.h"
#include "test/gtest.h"
using ::testing::_;
using ::testing::AllOf;
using ::testing::Field;
using ::testing::Return;
namespace webrtc {
namespace test {
namespace {
const int kDefaultWidth = 1280;
const int kDefaultHeight = 720;
const int kNumberOfSimulcastStreams = 3;
const int kColorY = 66;
const int kColorU = 22;
const int kColorV = 33;
const int kMaxBitrates[kNumberOfSimulcastStreams] = {150, 600, 1200};
const int kMinBitrates[kNumberOfSimulcastStreams] = {50, 150, 600};
const int kTargetBitrates[kNumberOfSimulcastStreams] = {100, 450, 1000};
const int kDefaultTemporalLayerProfile[3] = {3, 3, 3};
const int kNoTemporalLayerProfile[3] = {0, 0, 0};
template <typename T>
void SetExpectedValues3(T value0, T value1, T value2, T* expected_values) {
expected_values[0] = value0;
expected_values[1] = value1;
expected_values[2] = value2;
}
enum PlaneType {
kYPlane = 0,
kUPlane = 1,
kVPlane = 2,
kNumOfPlanes = 3,
};
} // namespace
class SimulcastTestFixtureImpl::TestEncodedImageCallback
: public EncodedImageCallback {
public:
TestEncodedImageCallback() {
memset(temporal_layer_, -1, sizeof(temporal_layer_));
memset(layer_sync_, false, sizeof(layer_sync_));
}
Result OnEncodedImage(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) override {
bool is_vp8 = (codec_specific_info->codecType == kVideoCodecVP8);
// Only store the base layer.
if (encoded_image.SpatialIndex().value_or(0) == 0) {
if (encoded_image._frameType == kVideoFrameKey) {
// TODO(nisse): Why not size() ?
encoded_key_frame_.Allocate(encoded_image.capacity());
encoded_key_frame_.set_size(encoded_image.size());
encoded_key_frame_._frameType = kVideoFrameKey;
encoded_key_frame_._completeFrame = encoded_image._completeFrame;
memcpy(encoded_key_frame_.data(), encoded_image.data(),
encoded_image.size());
} else {
encoded_frame_.Allocate(encoded_image.capacity());
encoded_frame_.set_size(encoded_image.size());
memcpy(encoded_frame_.data(), encoded_image.data(),
encoded_image.size());
}
}
if (is_vp8) {
layer_sync_[encoded_image.SpatialIndex().value_or(0)] =
codec_specific_info->codecSpecific.VP8.layerSync;
temporal_layer_[encoded_image.SpatialIndex().value_or(0)] =
codec_specific_info->codecSpecific.VP8.temporalIdx;
}
return Result(Result::OK, encoded_image.Timestamp());
}
// This method only makes sense for VP8.
void GetLastEncodedFrameInfo(int* temporal_layer,
bool* layer_sync,
int stream) {
*temporal_layer = temporal_layer_[stream];
*layer_sync = layer_sync_[stream];
}
void GetLastEncodedKeyFrame(EncodedImage* encoded_key_frame) {
*encoded_key_frame = encoded_key_frame_;
}
void GetLastEncodedFrame(EncodedImage* encoded_frame) {
*encoded_frame = encoded_frame_;
}
private:
EncodedImage encoded_key_frame_;
EncodedImage encoded_frame_;
int temporal_layer_[kNumberOfSimulcastStreams];
bool layer_sync_[kNumberOfSimulcastStreams];
};
class SimulcastTestFixtureImpl::TestDecodedImageCallback
: public DecodedImageCallback {
public:
TestDecodedImageCallback() : decoded_frames_(0) {}
int32_t Decoded(VideoFrame& decoded_image) override {
rtc::scoped_refptr<I420BufferInterface> i420_buffer =
decoded_image.video_frame_buffer()->ToI420();
for (int i = 0; i < decoded_image.width(); ++i) {
EXPECT_NEAR(kColorY, i420_buffer->DataY()[i], 1);
}
// TODO(mikhal): Verify the difference between U,V and the original.
for (int i = 0; i < i420_buffer->ChromaWidth(); ++i) {
EXPECT_NEAR(kColorU, i420_buffer->DataU()[i], 4);
EXPECT_NEAR(kColorV, i420_buffer->DataV()[i], 4);
}
decoded_frames_++;
return 0;
}
int32_t Decoded(VideoFrame& decoded_image, int64_t decode_time_ms) override {
RTC_NOTREACHED();
return -1;
}
void Decoded(VideoFrame& decoded_image,
absl::optional<int32_t> decode_time_ms,
absl::optional<uint8_t> qp) override {
Decoded(decoded_image);
}
int DecodedFrames() { return decoded_frames_; }
private:
int decoded_frames_;
};
namespace {
void SetPlane(uint8_t* data, uint8_t value, int width, int height, int stride) {
for (int i = 0; i < height; i++, data += stride) {
// Setting allocated area to zero - setting only image size to
// requested values - will make it easier to distinguish between image
// size and frame size (accounting for stride).
memset(data, value, width);
memset(data + width, 0, stride - width);
}
}
// Fills in an I420Buffer from |plane_colors|.
void CreateImage(const rtc::scoped_refptr<I420Buffer>& buffer,
int plane_colors[kNumOfPlanes]) {
SetPlane(buffer->MutableDataY(), plane_colors[0], buffer->width(),
buffer->height(), buffer->StrideY());
SetPlane(buffer->MutableDataU(), plane_colors[1], buffer->ChromaWidth(),
buffer->ChromaHeight(), buffer->StrideU());
SetPlane(buffer->MutableDataV(), plane_colors[2], buffer->ChromaWidth(),
buffer->ChromaHeight(), buffer->StrideV());
}
void ConfigureStream(int width,
int height,
int max_bitrate,
int min_bitrate,
int target_bitrate,
SimulcastStream* stream,
int num_temporal_layers) {
assert(stream);
stream->width = width;
stream->height = height;
stream->maxBitrate = max_bitrate;
stream->minBitrate = min_bitrate;
stream->targetBitrate = target_bitrate;
if (num_temporal_layers >= 0) {
stream->numberOfTemporalLayers = num_temporal_layers;
}
stream->qpMax = 45;
stream->active = true;
}
} // namespace
void SimulcastTestFixtureImpl::DefaultSettings(
VideoCodec* settings,
const int* temporal_layer_profile,
VideoCodecType codec_type,
bool reverse_layer_order) {
RTC_CHECK(settings);
memset(settings, 0, sizeof(VideoCodec));
settings->codecType = codec_type;
// 96 to 127 dynamic payload types for video codecs
settings->plType = 120;
settings->startBitrate = 300;
settings->minBitrate = 30;
settings->maxBitrate = 0;
settings->maxFramerate = 30;
settings->width = kDefaultWidth;
settings->height = kDefaultHeight;
settings->numberOfSimulcastStreams = kNumberOfSimulcastStreams;
settings->active = true;
ASSERT_EQ(3, kNumberOfSimulcastStreams);
int layer_order[3] = {0, 1, 2};
if (reverse_layer_order) {
layer_order[0] = 2;
layer_order[2] = 0;
}
settings->timing_frame_thresholds = {kDefaultTimingFramesDelayMs,
kDefaultOutlierFrameSizePercent};
ConfigureStream(kDefaultWidth / 4, kDefaultHeight / 4, kMaxBitrates[0],
kMinBitrates[0], kTargetBitrates[0],
&settings->simulcastStream[layer_order[0]],
temporal_layer_profile[0]);
ConfigureStream(kDefaultWidth / 2, kDefaultHeight / 2, kMaxBitrates[1],
kMinBitrates[1], kTargetBitrates[1],
&settings->simulcastStream[layer_order[1]],
temporal_layer_profile[1]);
ConfigureStream(kDefaultWidth, kDefaultHeight, kMaxBitrates[2],
kMinBitrates[2], kTargetBitrates[2],
&settings->simulcastStream[layer_order[2]],
temporal_layer_profile[2]);
if (codec_type == kVideoCodecVP8) {
settings->VP8()->denoisingOn = true;
settings->VP8()->automaticResizeOn = false;
settings->VP8()->frameDroppingOn = true;
settings->VP8()->keyFrameInterval = 3000;
} else {
settings->H264()->frameDroppingOn = true;
settings->H264()->keyFrameInterval = 3000;
}
}
SimulcastTestFixtureImpl::SimulcastTestFixtureImpl(
std::unique_ptr<VideoEncoderFactory> encoder_factory,
std::unique_ptr<VideoDecoderFactory> decoder_factory,
SdpVideoFormat video_format)
: codec_type_(PayloadStringToCodecType(video_format.name)) {
encoder_ = encoder_factory->CreateVideoEncoder(video_format);
decoder_ = decoder_factory->CreateVideoDecoder(video_format);
SetUpCodec(codec_type_ == kVideoCodecVP8 ? kDefaultTemporalLayerProfile
: kNoTemporalLayerProfile);
}
SimulcastTestFixtureImpl::~SimulcastTestFixtureImpl() {
encoder_->Release();
decoder_->Release();
}
void SimulcastTestFixtureImpl::SetUpCodec(const int* temporal_layer_profile) {
encoder_->RegisterEncodeCompleteCallback(&encoder_callback_);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback_);
DefaultSettings(&settings_, temporal_layer_profile, codec_type_);
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
EXPECT_EQ(0, decoder_->InitDecode(&settings_, 1));
input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight);
input_buffer_->InitializeData();
input_frame_ = absl::make_unique<webrtc::VideoFrame>(
webrtc::VideoFrame::Builder()
.set_video_frame_buffer(input_buffer_)
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build());
}
void SimulcastTestFixtureImpl::SetUpRateAllocator() {
rate_allocator_.reset(new SimulcastRateAllocator(settings_));
}
void SimulcastTestFixtureImpl::SetRates(uint32_t bitrate_kbps, uint32_t fps) {
encoder_->SetRateAllocation(
rate_allocator_->GetAllocation(bitrate_kbps * 1000, fps), fps);
}
void SimulcastTestFixtureImpl::RunActiveStreamsTest(
const std::vector<bool> active_streams) {
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
UpdateActiveStreams(active_streams);
// Set sufficient bitrate for all streams so we can test active without
// bitrate being an issue.
SetRates(kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2], 30);
ExpectStreams(kVideoFrameKey, active_streams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, active_streams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::UpdateActiveStreams(
const std::vector<bool> active_streams) {
ASSERT_EQ(static_cast<int>(active_streams.size()), kNumberOfSimulcastStreams);
for (size_t i = 0; i < active_streams.size(); ++i) {
settings_.simulcastStream[i].active = active_streams[i];
}
// Re initialize the allocator and encoder with the new settings.
// TODO(bugs.webrtc.org/8807): Currently, we do a full "hard"
// reconfiguration of the allocator and encoder. When the video bitrate
// allocator has support for updating active streams without a
// reinitialization, we can just call that here instead.
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
}
void SimulcastTestFixtureImpl::ExpectStreams(
FrameType frame_type,
const std::vector<bool> expected_streams_active) {
ASSERT_EQ(static_cast<int>(expected_streams_active.size()),
kNumberOfSimulcastStreams);
if (expected_streams_active[0]) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 4),
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 4)),
_, _))
.Times(1)
.WillRepeatedly(Return(
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
}
if (expected_streams_active[1]) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 2),
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 2)),
_, _))
.Times(1)
.WillRepeatedly(Return(
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
}
if (expected_streams_active[2]) {
EXPECT_CALL(encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth),
Field(&EncodedImage::_encodedHeight, kDefaultHeight)),
_, _))
.Times(1)
.WillRepeatedly(Return(
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
}
}
void SimulcastTestFixtureImpl::ExpectStreams(FrameType frame_type,
int expected_video_streams) {
ASSERT_GE(expected_video_streams, 0);
ASSERT_LE(expected_video_streams, kNumberOfSimulcastStreams);
std::vector<bool> expected_streams_active(kNumberOfSimulcastStreams, false);
for (int i = 0; i < expected_video_streams; ++i) {
expected_streams_active[i] = true;
}
ExpectStreams(frame_type, expected_streams_active);
}
void SimulcastTestFixtureImpl::VerifyTemporalIdxAndSyncForAllSpatialLayers(
TestEncodedImageCallback* encoder_callback,
const int* expected_temporal_idx,
const bool* expected_layer_sync,
int num_spatial_layers) {
int temporal_layer = -1;
bool layer_sync = false;
for (int i = 0; i < num_spatial_layers; i++) {
encoder_callback->GetLastEncodedFrameInfo(&temporal_layer, &layer_sync, i);
EXPECT_EQ(expected_temporal_idx[i], temporal_layer);
EXPECT_EQ(expected_layer_sync[i], layer_sync);
}
}
// We currently expect all active streams to generate a key frame even though
// a key frame was only requested for some of them.
void SimulcastTestFixtureImpl::TestKeyFrameRequestsOnAllStreams() {
SetRates(kMaxBitrates[2], 30); // To get all three streams.
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
frame_types[0] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
frame_types[1] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
frame_types[2] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestPaddingAllStreams() {
// We should always encode the base layer.
SetRates(kMinBitrates[0] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestPaddingTwoStreams() {
// We have just enough to get only the first stream and padding for two.
SetRates(kMinBitrates[0], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestPaddingTwoStreamsOneMaxedOut() {
// We are just below limit of sending second stream, so we should get
// the first stream maxed out (at |maxBitrate|), and padding for two.
SetRates(kTargetBitrates[0] + kMinBitrates[1] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestPaddingOneStream() {
// We have just enough to send two streams, so padding for one stream.
SetRates(kTargetBitrates[0] + kMinBitrates[1], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 2);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestPaddingOneStreamTwoMaxedOut() {
// We are just below limit of sending third stream, so we should get
// first stream's rate maxed out at |targetBitrate|, second at |maxBitrate|.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 2);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestSendAllStreams() {
// We have just enough to send all streams.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 3);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestDisablingStreams() {
// We should get three media streams.
SetRates(kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 3);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get two streams and padding for one.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get the first stream and padding for two.
SetRates(kTargetBitrates[0] + kMinBitrates[1] / 2, 30);
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We don't have enough bitrate for the thumbnail stream, but we should get
// it anyway with current configuration.
SetRates(kTargetBitrates[0] - 1, 30);
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get two streams and padding for one.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
// We get a key frame because a new stream is being enabled.
ExpectStreams(kVideoFrameKey, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should get all three streams.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kTargetBitrates[2], 30);
// We get a key frame because a new stream is being enabled.
ExpectStreams(kVideoFrameKey, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestActiveStreams() {
// All streams on.
RunActiveStreamsTest({true, true, true});
// All streams off.
RunActiveStreamsTest({false, false, false});
// Low stream off.
RunActiveStreamsTest({false, true, true});
// Middle stream off.
RunActiveStreamsTest({true, false, true});
// High stream off.
RunActiveStreamsTest({true, true, false});
// Only low stream turned on.
RunActiveStreamsTest({true, false, false});
// Only middle stream turned on.
RunActiveStreamsTest({false, true, false});
// Only high stream turned on.
RunActiveStreamsTest({false, false, true});
}
void SimulcastTestFixtureImpl::SwitchingToOneStream(int width, int height) {
const int* temporal_layer_profile = nullptr;
// Disable all streams except the last and set the bitrate of the last to
// 100 kbps. This verifies the way GTP switches to screenshare mode.
if (codec_type_ == kVideoCodecVP8) {
settings_.VP8()->numberOfTemporalLayers = 1;
temporal_layer_profile = kDefaultTemporalLayerProfile;
} else {
temporal_layer_profile = kNoTemporalLayerProfile;
}
settings_.maxBitrate = 100;
settings_.startBitrate = 100;
settings_.width = width;
settings_.height = height;
for (int i = 0; i < settings_.numberOfSimulcastStreams - 1; ++i) {
settings_.simulcastStream[i].maxBitrate = 0;
settings_.simulcastStream[i].width = settings_.width;
settings_.simulcastStream[i].height = settings_.height;
settings_.simulcastStream[i].numberOfTemporalLayers = 1;
}
// Setting input image to new resolution.
input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
input_buffer_->InitializeData();
input_frame_ = absl::make_unique<webrtc::VideoFrame>(
webrtc::VideoFrame::Builder()
.set_video_frame_buffer(input_buffer_)
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build());
// The for loop above did not set the bitrate of the highest layer.
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].maxBitrate =
0;
// The highest layer has to correspond to the non-simulcast resolution.
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].width =
settings_.width;
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].height =
settings_.height;
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
// Encode one frame and verify.
SetRates(kMaxBitrates[0] + kMaxBitrates[1], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(AllOf(Field(&EncodedImage::_frameType, kVideoFrameKey),
Field(&EncodedImage::_encodedWidth, width),
Field(&EncodedImage::_encodedHeight, height)),
_, _))
.Times(1)
.WillRepeatedly(Return(
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// Switch back.
DefaultSettings(&settings_, temporal_layer_profile, codec_type_);
// Start at the lowest bitrate for enabling base stream.
settings_.startBitrate = kMinBitrates[0];
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
SetRates(settings_.startBitrate, 30);
ExpectStreams(kVideoFrameKey, 1);
// Resize |input_frame_| to the new resolution.
input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
input_buffer_->InitializeData();
input_frame_ = absl::make_unique<webrtc::VideoFrame>(
webrtc::VideoFrame::Builder()
.set_video_frame_buffer(input_buffer_)
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build());
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestSwitchingToOneStream() {
SwitchingToOneStream(1024, 768);
}
void SimulcastTestFixtureImpl::TestSwitchingToOneOddStream() {
SwitchingToOneStream(1023, 769);
}
void SimulcastTestFixtureImpl::TestSwitchingToOneSmallStream() {
SwitchingToOneStream(4, 4);
}
// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-3-3 pattern: 3 temporal layers for all spatial streams, so same
// temporal_layer id and layer_sync is expected for all streams.
void SimulcastTestFixtureImpl::TestSpatioTemporalLayers333PatternEncoder() {
EXPECT_EQ(codec_type_, kVideoCodecVP8);
TestEncodedImageCallback encoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
int expected_temporal_idx[3] = {-1, -1, -1};
bool expected_layer_sync[3] = {false, false, false};
// First frame: #0.
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #1.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #2.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(1, 1, 1, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #3.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #4.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #5.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
}
// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-2-1 pattern: 3 temporal layers for lowest resolution, 2 for middle, and
// 1 temporal layer for highest resolution.
// For this profile, we expect the temporal index pattern to be:
// 1st stream: 0, 2, 1, 2, ....
// 2nd stream: 0, 1, 0, 1, ...
// 3rd stream: -1, -1, -1, -1, ....
// Regarding the 3rd stream, note that a stream/encoder with 1 temporal layer
// should always have temporal layer idx set to kNoTemporalIdx = -1.
// Since CodecSpecificInfoVP8.temporalIdx is uint8_t, this will wrap to 255.
// TODO(marpan): Although this seems safe for now, we should fix this.
void SimulcastTestFixtureImpl::TestSpatioTemporalLayers321PatternEncoder() {
EXPECT_EQ(codec_type_, kVideoCodecVP8);
int temporal_layer_profile[3] = {3, 2, 1};
SetUpCodec(temporal_layer_profile);
TestEncodedImageCallback encoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
int expected_temporal_idx[3] = {-1, -1, -1};
bool expected_layer_sync[3] = {false, false, false};
// First frame: #0.
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #1.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #2.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(1, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #3.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #4.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #5.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, true, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
}
void SimulcastTestFixtureImpl::TestStrideEncodeDecode() {
TestEncodedImageCallback encoder_callback;
TestDecodedImageCallback decoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
// Setting two (possibly) problematic use cases for stride:
// 1. stride > width 2. stride_y != stride_uv/2
int stride_y = kDefaultWidth + 20;
int stride_uv = ((kDefaultWidth + 1) / 2) + 5;
input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight, stride_y,
stride_uv, stride_uv);
input_frame_ = absl::make_unique<webrtc::VideoFrame>(
webrtc::VideoFrame::Builder()
.set_video_frame_buffer(input_buffer_)
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build());
// Set color.
int plane_offset[kNumOfPlanes];
plane_offset[kYPlane] = kColorY;
plane_offset[kUPlane] = kColorU;
plane_offset[kVPlane] = kColorV;
CreateImage(input_buffer_, plane_offset);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
// Change color.
plane_offset[kYPlane] += 1;
plane_offset[kUPlane] += 1;
plane_offset[kVPlane] += 1;
CreateImage(input_buffer_, plane_offset);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
EncodedImage encoded_frame;
// Only encoding one frame - so will be a key frame.
encoder_callback.GetLastEncodedKeyFrame(&encoded_frame);
EXPECT_EQ(0, decoder_->Decode(encoded_frame, false, NULL, 0));
encoder_callback.GetLastEncodedFrame(&encoded_frame);
decoder_->Decode(encoded_frame, false, NULL, 0);
EXPECT_EQ(2, decoder_callback.DecodedFrames());
}
void SimulcastTestFixtureImpl::TestDecodeWidthHeightSet() {
MockEncodedImageCallback encoder_callback;
MockDecodedImageCallback decoder_callback;
EncodedImage encoded_frame[3];
SetRates(kMaxBitrates[2], 30); // To get all three streams.
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback);
EXPECT_CALL(encoder_callback, OnEncodedImage(_, _, _))
.Times(3)
.WillRepeatedly(
testing::Invoke([&](const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) {
EXPECT_EQ(encoded_image._frameType, kVideoFrameKey);
size_t index = encoded_image.SpatialIndex().value_or(0);
// TODO(nisse): Why not size()
encoded_frame[index].Allocate(encoded_image.capacity());
encoded_frame[index].set_size(encoded_image.size());
encoded_frame[index]._frameType = encoded_image._frameType;
encoded_frame[index]._completeFrame = encoded_image._completeFrame;
memcpy(encoded_frame[index].data(), encoded_image.data(),
encoded_image.size());
return EncodedImageCallback::Result(
EncodedImageCallback::Result::OK, 0);
}));
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
EXPECT_CALL(decoder_callback, Decoded(_, _, _))
.WillOnce(testing::Invoke([](VideoFrame& decodedImage,
absl::optional<int32_t> decode_time_ms,
absl::optional<uint8_t> qp) {
EXPECT_EQ(decodedImage.width(), kDefaultWidth / 4);
EXPECT_EQ(decodedImage.height(), kDefaultHeight / 4);
}));
EXPECT_EQ(0, decoder_->Decode(encoded_frame[0], false, NULL, 0));
EXPECT_CALL(decoder_callback, Decoded(_, _, _))
.WillOnce(testing::Invoke([](VideoFrame& decodedImage,
absl::optional<int32_t> decode_time_ms,
absl::optional<uint8_t> qp) {
EXPECT_EQ(decodedImage.width(), kDefaultWidth / 2);
EXPECT_EQ(decodedImage.height(), kDefaultHeight / 2);
}));
EXPECT_EQ(0, decoder_->Decode(encoded_frame[1], false, NULL, 0));
EXPECT_CALL(decoder_callback, Decoded(_, _, _))
.WillOnce(testing::Invoke([](VideoFrame& decodedImage,
absl::optional<int32_t> decode_time_ms,
absl::optional<uint8_t> qp) {
EXPECT_EQ(decodedImage.width(), kDefaultWidth);
EXPECT_EQ(decodedImage.height(), kDefaultHeight);
}));
EXPECT_EQ(0, decoder_->Decode(encoded_frame[2], false, NULL, 0));
}
} // namespace test
} // namespace webrtc