blob: 810785acde8c6dcbd21ed76e194f67dc345315c8 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <list>
#include <memory>
#include <utility>
#include <vector>
#include "webrtc/base/basictypes.h"
#include "webrtc/modules/rtp_rtcp/source/byte_io.h"
#include "webrtc/modules/rtp_rtcp/source/fec_test_helper.h"
#include "webrtc/modules/rtp_rtcp/source/forward_error_correction.h"
#include "webrtc/modules/rtp_rtcp/source/producer_fec.h"
#include "webrtc/test/gtest.h"
namespace webrtc {
namespace {
using test::fec::AugmentedPacket;
using test::fec::AugmentedPacketGenerator;
constexpr int kFecPayloadType = 96;
constexpr int kRedPayloadType = 97;
constexpr uint32_t kMediaSsrc = 835424;
} // namespace
void VerifyHeader(uint16_t seq_num,
uint32_t timestamp,
int red_payload_type,
int fec_payload_type,
RedPacket* packet,
bool marker_bit) {
EXPECT_GT(packet->length(), kRtpHeaderSize);
EXPECT_TRUE(packet->data() != NULL);
uint8_t* data = packet->data();
// Marker bit not set.
EXPECT_EQ(marker_bit ? 0x80 : 0, data[1] & 0x80);
EXPECT_EQ(red_payload_type, data[1] & 0x7F);
EXPECT_EQ(seq_num, (data[2] << 8) + data[3]);
uint32_t parsed_timestamp =
(data[4] << 24) + (data[5] << 16) + (data[6] << 8) + data[7];
EXPECT_EQ(timestamp, parsed_timestamp);
EXPECT_EQ(static_cast<uint8_t>(fec_payload_type), data[kRtpHeaderSize]);
}
class ProducerFecTest : public ::testing::Test {
protected:
ProducerFecTest() : packet_generator_(kMediaSsrc) {}
ProducerFec producer_;
AugmentedPacketGenerator packet_generator_;
};
// Verifies bug found via fuzzing, where a gap in the packet sequence caused us
// to move past the end of the current FEC packet mask byte without moving to
// the next byte. That likely caused us to repeatedly read from the same byte,
// and if that byte didn't protect packets we would generate empty FEC.
TEST_F(ProducerFecTest, NoEmptyFecWithSeqNumGaps) {
struct Packet {
size_t header_size;
size_t payload_size;
uint16_t seq_num;
bool marker_bit;
};
std::vector<Packet> protected_packets;
protected_packets.push_back({15, 3, 41, 0});
protected_packets.push_back({14, 1, 43, 0});
protected_packets.push_back({19, 0, 48, 0});
protected_packets.push_back({19, 0, 50, 0});
protected_packets.push_back({14, 3, 51, 0});
protected_packets.push_back({13, 8, 52, 0});
protected_packets.push_back({19, 2, 53, 0});
protected_packets.push_back({12, 3, 54, 0});
protected_packets.push_back({21, 0, 55, 0});
protected_packets.push_back({13, 3, 57, 1});
FecProtectionParams params = {117, 3, kFecMaskBursty};
producer_.SetFecParameters(&params);
uint8_t packet[28] = {0};
for (Packet p : protected_packets) {
if (p.marker_bit) {
packet[1] |= 0x80;
} else {
packet[1] &= ~0x80;
}
ByteWriter<uint16_t>::WriteBigEndian(&packet[2], p.seq_num);
producer_.AddRtpPacketAndGenerateFec(packet, p.payload_size, p.header_size);
size_t num_fec_packets = producer_.NumAvailableFecPackets();
if (num_fec_packets > 0) {
std::vector<std::unique_ptr<RedPacket>> fec_packets =
producer_.GetUlpfecPacketsAsRed(kRedPayloadType, kFecPayloadType, 100,
p.header_size);
EXPECT_EQ(num_fec_packets, fec_packets.size());
}
}
}
TEST_F(ProducerFecTest, OneFrameFec) {
// The number of media packets (|kNumPackets|), number of frames (one for
// this test), and the protection factor (|params->fec_rate|) are set to make
// sure the conditions for generating FEC are satisfied. This means:
// (1) protection factor is high enough so that actual overhead over 1 frame
// of packets is within |kMaxExcessOverhead|, and (2) the total number of
// media packets for 1 frame is at least |minimum_media_packets_fec_|.
constexpr size_t kNumPackets = 4;
FecProtectionParams params = {15, 3, kFecMaskRandom};
packet_generator_.NewFrame(kNumPackets);
producer_.SetFecParameters(&params); // Expecting one FEC packet.
uint32_t last_timestamp = 0;
for (size_t i = 0; i < kNumPackets; ++i) {
std::unique_ptr<AugmentedPacket> packet =
packet_generator_.NextPacket(i, 10);
EXPECT_EQ(0, producer_.AddRtpPacketAndGenerateFec(
packet->data, packet->length, kRtpHeaderSize));
last_timestamp = packet->header.header.timestamp;
}
EXPECT_TRUE(producer_.FecAvailable());
uint16_t seq_num = packet_generator_.NextPacketSeqNum();
std::vector<std::unique_ptr<RedPacket>> red_packets =
producer_.GetUlpfecPacketsAsRed(kRedPayloadType, kFecPayloadType, seq_num,
kRtpHeaderSize);
EXPECT_FALSE(producer_.FecAvailable());
ASSERT_EQ(1u, red_packets.size());
VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType,
red_packets.front().get(), false);
}
TEST_F(ProducerFecTest, TwoFrameFec) {
// The number of media packets/frame (|kNumPackets|), the number of frames
// (|kNumFrames|), and the protection factor (|params->fec_rate|) are set to
// make sure the conditions for generating FEC are satisfied. This means:
// (1) protection factor is high enough so that actual overhead over
// |kNumFrames| is within |kMaxExcessOverhead|, and (2) the total number of
// media packets for |kNumFrames| frames is at least
// |minimum_media_packets_fec_|.
constexpr size_t kNumPackets = 2;
constexpr size_t kNumFrames = 2;
FecProtectionParams params = {15, 3, kFecMaskRandom};
producer_.SetFecParameters(&params); // Expecting one FEC packet.
uint32_t last_timestamp = 0;
for (size_t i = 0; i < kNumFrames; ++i) {
packet_generator_.NewFrame(kNumPackets);
for (size_t j = 0; j < kNumPackets; ++j) {
std::unique_ptr<AugmentedPacket> packet =
packet_generator_.NextPacket(i * kNumPackets + j, 10);
EXPECT_EQ(0, producer_.AddRtpPacketAndGenerateFec(
packet->data, packet->length, kRtpHeaderSize));
last_timestamp = packet->header.header.timestamp;
}
}
EXPECT_TRUE(producer_.FecAvailable());
uint16_t seq_num = packet_generator_.NextPacketSeqNum();
std::vector<std::unique_ptr<RedPacket>> red_packets =
producer_.GetUlpfecPacketsAsRed(kRedPayloadType, kFecPayloadType, seq_num,
kRtpHeaderSize);
EXPECT_FALSE(producer_.FecAvailable());
ASSERT_EQ(1u, red_packets.size());
VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType,
red_packets.front().get(), false);
}
TEST_F(ProducerFecTest, BuildRedPacket) {
packet_generator_.NewFrame(1);
std::unique_ptr<AugmentedPacket> packet = packet_generator_.NextPacket(0, 10);
std::unique_ptr<RedPacket> red_packet =
ProducerFec::BuildRedPacket(packet->data, packet->length - kRtpHeaderSize,
kRtpHeaderSize, kRedPayloadType);
EXPECT_EQ(packet->length + 1, red_packet->length());
VerifyHeader(packet->header.header.sequenceNumber,
packet->header.header.timestamp, kRedPayloadType,
packet->header.header.payloadType, red_packet.get(),
true); // Marker bit set.
for (int i = 0; i < 10; ++i) {
EXPECT_EQ(i, red_packet->data()[kRtpHeaderSize + 1 + i]);
}
}
TEST_F(ProducerFecTest, BuildRedPacketWithEmptyPayload) {
constexpr size_t kNumFrames = 1;
constexpr size_t kPayloadLength = 0;
constexpr size_t kRedForFecHeaderLength = 1;
packet_generator_.NewFrame(kNumFrames);
std::unique_ptr<AugmentedPacket> packet(
packet_generator_.NextPacket(0, kPayloadLength));
std::unique_ptr<RedPacket> red_packet =
ProducerFec::BuildRedPacket(packet->data, packet->length - kRtpHeaderSize,
kRtpHeaderSize, kRedPayloadType);
EXPECT_EQ(packet->length + kRedForFecHeaderLength, red_packet->length());
VerifyHeader(packet->header.header.sequenceNumber,
packet->header.header.timestamp, kRedPayloadType,
packet->header.header.payloadType, red_packet.get(),
true); // Marker bit set.
}
} // namespace webrtc