| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| /* |
| * This file includes unit tests for NetEQ. |
| */ |
| |
| #include "webrtc/modules/audio_coding/neteq/interface/neteq.h" |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> // memset |
| |
| #include <algorithm> |
| #include <set> |
| #include <string> |
| #include <vector> |
| |
| #include "gflags/gflags.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "webrtc/base/scoped_ptr.h" |
| #include "webrtc/modules/audio_coding/neteq/tools/audio_loop.h" |
| #include "webrtc/modules/audio_coding/neteq/tools/rtp_file_source.h" |
| #include "webrtc/modules/audio_coding/codecs/pcm16b/include/pcm16b.h" |
| #include "webrtc/test/testsupport/fileutils.h" |
| #include "webrtc/test/testsupport/gtest_disable.h" |
| #include "webrtc/typedefs.h" |
| |
| DEFINE_bool(gen_ref, false, "Generate reference files."); |
| |
| namespace webrtc { |
| |
| static bool IsAllZero(const int16_t* buf, int buf_length) { |
| bool all_zero = true; |
| for (int n = 0; n < buf_length && all_zero; ++n) |
| all_zero = buf[n] == 0; |
| return all_zero; |
| } |
| |
| static bool IsAllNonZero(const int16_t* buf, int buf_length) { |
| bool all_non_zero = true; |
| for (int n = 0; n < buf_length && all_non_zero; ++n) |
| all_non_zero = buf[n] != 0; |
| return all_non_zero; |
| } |
| |
| class RefFiles { |
| public: |
| RefFiles(const std::string& input_file, const std::string& output_file); |
| ~RefFiles(); |
| template<class T> void ProcessReference(const T& test_results); |
| template<typename T, size_t n> void ProcessReference( |
| const T (&test_results)[n], |
| size_t length); |
| template<typename T, size_t n> void WriteToFile( |
| const T (&test_results)[n], |
| size_t length); |
| template<typename T, size_t n> void ReadFromFileAndCompare( |
| const T (&test_results)[n], |
| size_t length); |
| void WriteToFile(const NetEqNetworkStatistics& stats); |
| void ReadFromFileAndCompare(const NetEqNetworkStatistics& stats); |
| void WriteToFile(const RtcpStatistics& stats); |
| void ReadFromFileAndCompare(const RtcpStatistics& stats); |
| |
| FILE* input_fp_; |
| FILE* output_fp_; |
| }; |
| |
| RefFiles::RefFiles(const std::string &input_file, |
| const std::string &output_file) |
| : input_fp_(NULL), |
| output_fp_(NULL) { |
| if (!input_file.empty()) { |
| input_fp_ = fopen(input_file.c_str(), "rb"); |
| EXPECT_TRUE(input_fp_ != NULL); |
| } |
| if (!output_file.empty()) { |
| output_fp_ = fopen(output_file.c_str(), "wb"); |
| EXPECT_TRUE(output_fp_ != NULL); |
| } |
| } |
| |
| RefFiles::~RefFiles() { |
| if (input_fp_) { |
| EXPECT_EQ(EOF, fgetc(input_fp_)); // Make sure that we reached the end. |
| fclose(input_fp_); |
| } |
| if (output_fp_) fclose(output_fp_); |
| } |
| |
| template<class T> |
| void RefFiles::ProcessReference(const T& test_results) { |
| WriteToFile(test_results); |
| ReadFromFileAndCompare(test_results); |
| } |
| |
| template<typename T, size_t n> |
| void RefFiles::ProcessReference(const T (&test_results)[n], size_t length) { |
| WriteToFile(test_results, length); |
| ReadFromFileAndCompare(test_results, length); |
| } |
| |
| template<typename T, size_t n> |
| void RefFiles::WriteToFile(const T (&test_results)[n], size_t length) { |
| if (output_fp_) { |
| ASSERT_EQ(length, fwrite(&test_results, sizeof(T), length, output_fp_)); |
| } |
| } |
| |
| template<typename T, size_t n> |
| void RefFiles::ReadFromFileAndCompare(const T (&test_results)[n], |
| size_t length) { |
| if (input_fp_) { |
| // Read from ref file. |
| T* ref = new T[length]; |
| ASSERT_EQ(length, fread(ref, sizeof(T), length, input_fp_)); |
| // Compare |
| ASSERT_EQ(0, memcmp(&test_results, ref, sizeof(T) * length)); |
| delete [] ref; |
| } |
| } |
| |
| void RefFiles::WriteToFile(const NetEqNetworkStatistics& stats) { |
| if (output_fp_) { |
| ASSERT_EQ(1u, fwrite(&stats, sizeof(NetEqNetworkStatistics), 1, |
| output_fp_)); |
| } |
| } |
| |
| void RefFiles::ReadFromFileAndCompare( |
| const NetEqNetworkStatistics& stats) { |
| // TODO(minyue): Update resource/audio_coding/neteq_network_stats.dat and |
| // resource/audio_coding/neteq_network_stats_win32.dat. |
| struct NetEqNetworkStatisticsOld { |
| uint16_t current_buffer_size_ms; // Current jitter buffer size in ms. |
| uint16_t preferred_buffer_size_ms; // Target buffer size in ms. |
| uint16_t jitter_peaks_found; // 1 if adding extra delay due to peaky |
| // jitter; 0 otherwise. |
| uint16_t packet_loss_rate; // Loss rate (network + late) in Q14. |
| uint16_t packet_discard_rate; // Late loss rate in Q14. |
| uint16_t expand_rate; // Fraction (of original stream) of synthesized |
| // audio inserted through expansion (in Q14). |
| uint16_t preemptive_rate; // Fraction of data inserted through pre-emptive |
| // expansion (in Q14). |
| uint16_t accelerate_rate; // Fraction of data removed through acceleration |
| // (in Q14). |
| int32_t clockdrift_ppm; // Average clock-drift in parts-per-million |
| // (positive or negative). |
| int added_zero_samples; // Number of zero samples added in "off" mode. |
| }; |
| if (input_fp_) { |
| // Read from ref file. |
| size_t stat_size = sizeof(NetEqNetworkStatisticsOld); |
| NetEqNetworkStatisticsOld ref_stats; |
| ASSERT_EQ(1u, fread(&ref_stats, stat_size, 1, input_fp_)); |
| // Compare |
| ASSERT_EQ(stats.current_buffer_size_ms, ref_stats.current_buffer_size_ms); |
| ASSERT_EQ(stats.preferred_buffer_size_ms, |
| ref_stats.preferred_buffer_size_ms); |
| ASSERT_EQ(stats.jitter_peaks_found, ref_stats.jitter_peaks_found); |
| ASSERT_EQ(stats.packet_loss_rate, ref_stats.packet_loss_rate); |
| ASSERT_EQ(stats.packet_discard_rate, ref_stats.packet_discard_rate); |
| ASSERT_EQ(stats.expand_rate, ref_stats.expand_rate); |
| ASSERT_EQ(stats.preemptive_rate, ref_stats.preemptive_rate); |
| ASSERT_EQ(stats.accelerate_rate, ref_stats.accelerate_rate); |
| ASSERT_EQ(stats.clockdrift_ppm, ref_stats.clockdrift_ppm); |
| ASSERT_EQ(stats.added_zero_samples, ref_stats.added_zero_samples); |
| ASSERT_EQ(stats.secondary_decoded_rate, 0); |
| ASSERT_LE(stats.speech_expand_rate, ref_stats.expand_rate); |
| } |
| } |
| |
| void RefFiles::WriteToFile(const RtcpStatistics& stats) { |
| if (output_fp_) { |
| ASSERT_EQ(1u, fwrite(&(stats.fraction_lost), sizeof(stats.fraction_lost), 1, |
| output_fp_)); |
| ASSERT_EQ(1u, fwrite(&(stats.cumulative_lost), |
| sizeof(stats.cumulative_lost), 1, output_fp_)); |
| ASSERT_EQ(1u, fwrite(&(stats.extended_max_sequence_number), |
| sizeof(stats.extended_max_sequence_number), 1, |
| output_fp_)); |
| ASSERT_EQ(1u, fwrite(&(stats.jitter), sizeof(stats.jitter), 1, |
| output_fp_)); |
| } |
| } |
| |
| void RefFiles::ReadFromFileAndCompare( |
| const RtcpStatistics& stats) { |
| if (input_fp_) { |
| // Read from ref file. |
| RtcpStatistics ref_stats; |
| ASSERT_EQ(1u, fread(&(ref_stats.fraction_lost), |
| sizeof(ref_stats.fraction_lost), 1, input_fp_)); |
| ASSERT_EQ(1u, fread(&(ref_stats.cumulative_lost), |
| sizeof(ref_stats.cumulative_lost), 1, input_fp_)); |
| ASSERT_EQ(1u, fread(&(ref_stats.extended_max_sequence_number), |
| sizeof(ref_stats.extended_max_sequence_number), 1, |
| input_fp_)); |
| ASSERT_EQ(1u, fread(&(ref_stats.jitter), sizeof(ref_stats.jitter), 1, |
| input_fp_)); |
| // Compare |
| ASSERT_EQ(ref_stats.fraction_lost, stats.fraction_lost); |
| ASSERT_EQ(ref_stats.cumulative_lost, stats.cumulative_lost); |
| ASSERT_EQ(ref_stats.extended_max_sequence_number, |
| stats.extended_max_sequence_number); |
| ASSERT_EQ(ref_stats.jitter, stats.jitter); |
| } |
| } |
| |
| class NetEqDecodingTest : public ::testing::Test { |
| protected: |
| // NetEQ must be polled for data once every 10 ms. Thus, neither of the |
| // constants below can be changed. |
| static const int kTimeStepMs = 10; |
| static const int kBlockSize8kHz = kTimeStepMs * 8; |
| static const int kBlockSize16kHz = kTimeStepMs * 16; |
| static const int kBlockSize32kHz = kTimeStepMs * 32; |
| static const size_t kMaxBlockSize = kBlockSize32kHz; |
| static const int kInitSampleRateHz = 8000; |
| |
| NetEqDecodingTest(); |
| virtual void SetUp(); |
| virtual void TearDown(); |
| void SelectDecoders(NetEqDecoder* used_codec); |
| void LoadDecoders(); |
| void OpenInputFile(const std::string &rtp_file); |
| void Process(int* out_len); |
| void DecodeAndCompare(const std::string& rtp_file, |
| const std::string& ref_file, |
| const std::string& stat_ref_file, |
| const std::string& rtcp_ref_file); |
| static void PopulateRtpInfo(int frame_index, |
| int timestamp, |
| WebRtcRTPHeader* rtp_info); |
| static void PopulateCng(int frame_index, |
| int timestamp, |
| WebRtcRTPHeader* rtp_info, |
| uint8_t* payload, |
| size_t* payload_len); |
| |
| void WrapTest(uint16_t start_seq_no, uint32_t start_timestamp, |
| const std::set<uint16_t>& drop_seq_numbers, |
| bool expect_seq_no_wrap, bool expect_timestamp_wrap); |
| |
| void LongCngWithClockDrift(double drift_factor, |
| double network_freeze_ms, |
| bool pull_audio_during_freeze, |
| int delay_tolerance_ms, |
| int max_time_to_speech_ms); |
| |
| void DuplicateCng(); |
| |
| uint32_t PlayoutTimestamp(); |
| |
| NetEq* neteq_; |
| NetEq::Config config_; |
| rtc::scoped_ptr<test::RtpFileSource> rtp_source_; |
| rtc::scoped_ptr<test::Packet> packet_; |
| unsigned int sim_clock_; |
| int16_t out_data_[kMaxBlockSize]; |
| int output_sample_rate_; |
| int algorithmic_delay_ms_; |
| }; |
| |
| // Allocating the static const so that it can be passed by reference. |
| const int NetEqDecodingTest::kTimeStepMs; |
| const int NetEqDecodingTest::kBlockSize8kHz; |
| const int NetEqDecodingTest::kBlockSize16kHz; |
| const int NetEqDecodingTest::kBlockSize32kHz; |
| const size_t NetEqDecodingTest::kMaxBlockSize; |
| const int NetEqDecodingTest::kInitSampleRateHz; |
| |
| NetEqDecodingTest::NetEqDecodingTest() |
| : neteq_(NULL), |
| config_(), |
| sim_clock_(0), |
| output_sample_rate_(kInitSampleRateHz), |
| algorithmic_delay_ms_(0) { |
| config_.sample_rate_hz = kInitSampleRateHz; |
| memset(out_data_, 0, sizeof(out_data_)); |
| } |
| |
| void NetEqDecodingTest::SetUp() { |
| neteq_ = NetEq::Create(config_); |
| NetEqNetworkStatistics stat; |
| ASSERT_EQ(0, neteq_->NetworkStatistics(&stat)); |
| algorithmic_delay_ms_ = stat.current_buffer_size_ms; |
| ASSERT_TRUE(neteq_); |
| LoadDecoders(); |
| } |
| |
| void NetEqDecodingTest::TearDown() { |
| delete neteq_; |
| } |
| |
| void NetEqDecodingTest::LoadDecoders() { |
| // Load PCMu. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMu, 0)); |
| // Load PCMa. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMa, 8)); |
| #ifndef WEBRTC_ANDROID |
| // Load iLBC. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderILBC, 102)); |
| #endif // WEBRTC_ANDROID |
| // Load iSAC. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISAC, 103)); |
| #ifndef WEBRTC_ANDROID |
| // Load iSAC SWB. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISACswb, 104)); |
| // Load iSAC FB. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISACfb, 105)); |
| #endif // WEBRTC_ANDROID |
| // Load PCM16B nb. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16B, 93)); |
| // Load PCM16B wb. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bwb, 94)); |
| // Load PCM16B swb32. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bswb32kHz, 95)); |
| // Load CNG 8 kHz. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGnb, 13)); |
| // Load CNG 16 kHz. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGwb, 98)); |
| } |
| |
| void NetEqDecodingTest::OpenInputFile(const std::string &rtp_file) { |
| rtp_source_.reset(test::RtpFileSource::Create(rtp_file)); |
| } |
| |
| void NetEqDecodingTest::Process(int* out_len) { |
| // Check if time to receive. |
| while (packet_ && sim_clock_ >= packet_->time_ms()) { |
| if (packet_->payload_length_bytes() > 0) { |
| WebRtcRTPHeader rtp_header; |
| packet_->ConvertHeader(&rtp_header); |
| ASSERT_EQ(0, neteq_->InsertPacket( |
| rtp_header, packet_->payload(), |
| packet_->payload_length_bytes(), |
| packet_->time_ms() * (output_sample_rate_ / 1000))); |
| } |
| // Get next packet. |
| packet_.reset(rtp_source_->NextPacket()); |
| } |
| |
| // Get audio from NetEq. |
| NetEqOutputType type; |
| int num_channels; |
| ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, out_len, |
| &num_channels, &type)); |
| ASSERT_TRUE((*out_len == kBlockSize8kHz) || |
| (*out_len == kBlockSize16kHz) || |
| (*out_len == kBlockSize32kHz)); |
| output_sample_rate_ = *out_len / 10 * 1000; |
| |
| // Increase time. |
| sim_clock_ += kTimeStepMs; |
| } |
| |
| void NetEqDecodingTest::DecodeAndCompare(const std::string& rtp_file, |
| const std::string& ref_file, |
| const std::string& stat_ref_file, |
| const std::string& rtcp_ref_file) { |
| OpenInputFile(rtp_file); |
| |
| std::string ref_out_file = ""; |
| if (ref_file.empty()) { |
| ref_out_file = webrtc::test::OutputPath() + "neteq_universal_ref.pcm"; |
| } |
| RefFiles ref_files(ref_file, ref_out_file); |
| |
| std::string stat_out_file = ""; |
| if (stat_ref_file.empty()) { |
| stat_out_file = webrtc::test::OutputPath() + "neteq_network_stats.dat"; |
| } |
| RefFiles network_stat_files(stat_ref_file, stat_out_file); |
| |
| std::string rtcp_out_file = ""; |
| if (rtcp_ref_file.empty()) { |
| rtcp_out_file = webrtc::test::OutputPath() + "neteq_rtcp_stats.dat"; |
| } |
| RefFiles rtcp_stat_files(rtcp_ref_file, rtcp_out_file); |
| |
| packet_.reset(rtp_source_->NextPacket()); |
| int i = 0; |
| while (packet_) { |
| std::ostringstream ss; |
| ss << "Lap number " << i++ << " in DecodeAndCompare while loop"; |
| SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. |
| int out_len = 0; |
| ASSERT_NO_FATAL_FAILURE(Process(&out_len)); |
| ASSERT_NO_FATAL_FAILURE(ref_files.ProcessReference(out_data_, out_len)); |
| |
| // Query the network statistics API once per second |
| if (sim_clock_ % 1000 == 0) { |
| // Process NetworkStatistics. |
| NetEqNetworkStatistics network_stats; |
| ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); |
| ASSERT_NO_FATAL_FAILURE( |
| network_stat_files.ProcessReference(network_stats)); |
| |
| // Process RTCPstat. |
| RtcpStatistics rtcp_stats; |
| neteq_->GetRtcpStatistics(&rtcp_stats); |
| ASSERT_NO_FATAL_FAILURE(rtcp_stat_files.ProcessReference(rtcp_stats)); |
| } |
| } |
| } |
| |
| void NetEqDecodingTest::PopulateRtpInfo(int frame_index, |
| int timestamp, |
| WebRtcRTPHeader* rtp_info) { |
| rtp_info->header.sequenceNumber = frame_index; |
| rtp_info->header.timestamp = timestamp; |
| rtp_info->header.ssrc = 0x1234; // Just an arbitrary SSRC. |
| rtp_info->header.payloadType = 94; // PCM16b WB codec. |
| rtp_info->header.markerBit = 0; |
| } |
| |
| void NetEqDecodingTest::PopulateCng(int frame_index, |
| int timestamp, |
| WebRtcRTPHeader* rtp_info, |
| uint8_t* payload, |
| size_t* payload_len) { |
| rtp_info->header.sequenceNumber = frame_index; |
| rtp_info->header.timestamp = timestamp; |
| rtp_info->header.ssrc = 0x1234; // Just an arbitrary SSRC. |
| rtp_info->header.payloadType = 98; // WB CNG. |
| rtp_info->header.markerBit = 0; |
| payload[0] = 64; // Noise level -64 dBov, quite arbitrarily chosen. |
| *payload_len = 1; // Only noise level, no spectral parameters. |
| } |
| |
| TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(TestBitExactness)) { |
| const std::string input_rtp_file = webrtc::test::ProjectRootPath() + |
| "resources/audio_coding/neteq_universal_new.rtp"; |
| // Note that neteq4_universal_ref.pcm and neteq4_universal_ref_win_32.pcm |
| // are identical. The latter could have been removed, but if clients still |
| // have a copy of the file, the test will fail. |
| const std::string input_ref_file = |
| webrtc::test::ResourcePath("audio_coding/neteq4_universal_ref", "pcm"); |
| #if defined(_MSC_VER) && (_MSC_VER >= 1700) |
| // For Visual Studio 2012 and later, we will have to use the generic reference |
| // file, rather than the windows-specific one. |
| const std::string network_stat_ref_file = webrtc::test::ProjectRootPath() + |
| "resources/audio_coding/neteq4_network_stats.dat"; |
| #else |
| const std::string network_stat_ref_file = |
| webrtc::test::ResourcePath("audio_coding/neteq4_network_stats", "dat"); |
| #endif |
| const std::string rtcp_stat_ref_file = |
| webrtc::test::ResourcePath("audio_coding/neteq4_rtcp_stats", "dat"); |
| |
| if (FLAGS_gen_ref) { |
| DecodeAndCompare(input_rtp_file, "", "", ""); |
| } else { |
| DecodeAndCompare(input_rtp_file, |
| input_ref_file, |
| network_stat_ref_file, |
| rtcp_stat_ref_file); |
| } |
| } |
| |
| // Use fax mode to avoid time-scaling. This is to simplify the testing of |
| // packet waiting times in the packet buffer. |
| class NetEqDecodingTestFaxMode : public NetEqDecodingTest { |
| protected: |
| NetEqDecodingTestFaxMode() : NetEqDecodingTest() { |
| config_.playout_mode = kPlayoutFax; |
| } |
| }; |
| |
| TEST_F(NetEqDecodingTestFaxMode, TestFrameWaitingTimeStatistics) { |
| // Insert 30 dummy packets at once. Each packet contains 10 ms 16 kHz audio. |
| size_t num_frames = 30; |
| const size_t kSamples = 10 * 16; |
| const size_t kPayloadBytes = kSamples * 2; |
| for (size_t i = 0; i < num_frames; ++i) { |
| uint16_t payload[kSamples] = {0}; |
| WebRtcRTPHeader rtp_info; |
| rtp_info.header.sequenceNumber = i; |
| rtp_info.header.timestamp = i * kSamples; |
| rtp_info.header.ssrc = 0x1234; // Just an arbitrary SSRC. |
| rtp_info.header.payloadType = 94; // PCM16b WB codec. |
| rtp_info.header.markerBit = 0; |
| ASSERT_EQ(0, neteq_->InsertPacket( |
| rtp_info, |
| reinterpret_cast<uint8_t*>(payload), |
| kPayloadBytes, 0)); |
| } |
| // Pull out all data. |
| for (size_t i = 0; i < num_frames; ++i) { |
| int out_len; |
| int num_channels; |
| NetEqOutputType type; |
| ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| } |
| |
| std::vector<int> waiting_times; |
| neteq_->WaitingTimes(&waiting_times); |
| EXPECT_EQ(num_frames, waiting_times.size()); |
| // Since all frames are dumped into NetEQ at once, but pulled out with 10 ms |
| // spacing (per definition), we expect the delay to increase with 10 ms for |
| // each packet. |
| for (size_t i = 0; i < waiting_times.size(); ++i) { |
| EXPECT_EQ(static_cast<int>(i + 1) * 10, waiting_times[i]); |
| } |
| |
| // Check statistics again and make sure it's been reset. |
| neteq_->WaitingTimes(&waiting_times); |
| int len = waiting_times.size(); |
| EXPECT_EQ(0, len); |
| |
| // Process > 100 frames, and make sure that that we get statistics |
| // only for 100 frames. Note the new SSRC, causing NetEQ to reset. |
| num_frames = 110; |
| for (size_t i = 0; i < num_frames; ++i) { |
| uint16_t payload[kSamples] = {0}; |
| WebRtcRTPHeader rtp_info; |
| rtp_info.header.sequenceNumber = i; |
| rtp_info.header.timestamp = i * kSamples; |
| rtp_info.header.ssrc = 0x1235; // Just an arbitrary SSRC. |
| rtp_info.header.payloadType = 94; // PCM16b WB codec. |
| rtp_info.header.markerBit = 0; |
| ASSERT_EQ(0, neteq_->InsertPacket( |
| rtp_info, |
| reinterpret_cast<uint8_t*>(payload), |
| kPayloadBytes, 0)); |
| int out_len; |
| int num_channels; |
| NetEqOutputType type; |
| ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| } |
| |
| neteq_->WaitingTimes(&waiting_times); |
| EXPECT_EQ(100u, waiting_times.size()); |
| } |
| |
| TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimeNegative) { |
| const int kNumFrames = 3000; // Needed for convergence. |
| int frame_index = 0; |
| const size_t kSamples = 10 * 16; |
| const size_t kPayloadBytes = kSamples * 2; |
| while (frame_index < kNumFrames) { |
| // Insert one packet each time, except every 10th time where we insert two |
| // packets at once. This will create a negative clock-drift of approx. 10%. |
| int num_packets = (frame_index % 10 == 0 ? 2 : 1); |
| for (int n = 0; n < num_packets; ++n) { |
| uint8_t payload[kPayloadBytes] = {0}; |
| WebRtcRTPHeader rtp_info; |
| PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| ++frame_index; |
| } |
| |
| // Pull out data once. |
| int out_len; |
| int num_channels; |
| NetEqOutputType type; |
| ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| } |
| |
| NetEqNetworkStatistics network_stats; |
| ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); |
| EXPECT_EQ(-103196, network_stats.clockdrift_ppm); |
| } |
| |
| TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimePositive) { |
| const int kNumFrames = 5000; // Needed for convergence. |
| int frame_index = 0; |
| const size_t kSamples = 10 * 16; |
| const size_t kPayloadBytes = kSamples * 2; |
| for (int i = 0; i < kNumFrames; ++i) { |
| // Insert one packet each time, except every 10th time where we don't insert |
| // any packet. This will create a positive clock-drift of approx. 11%. |
| int num_packets = (i % 10 == 9 ? 0 : 1); |
| for (int n = 0; n < num_packets; ++n) { |
| uint8_t payload[kPayloadBytes] = {0}; |
| WebRtcRTPHeader rtp_info; |
| PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| ++frame_index; |
| } |
| |
| // Pull out data once. |
| int out_len; |
| int num_channels; |
| NetEqOutputType type; |
| ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| } |
| |
| NetEqNetworkStatistics network_stats; |
| ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); |
| EXPECT_EQ(110946, network_stats.clockdrift_ppm); |
| } |
| |
| void NetEqDecodingTest::LongCngWithClockDrift(double drift_factor, |
| double network_freeze_ms, |
| bool pull_audio_during_freeze, |
| int delay_tolerance_ms, |
| int max_time_to_speech_ms) { |
| uint16_t seq_no = 0; |
| uint32_t timestamp = 0; |
| const int kFrameSizeMs = 30; |
| const size_t kSamples = kFrameSizeMs * 16; |
| const size_t kPayloadBytes = kSamples * 2; |
| double next_input_time_ms = 0.0; |
| double t_ms; |
| int out_len; |
| int num_channels; |
| NetEqOutputType type; |
| |
| // Insert speech for 5 seconds. |
| const int kSpeechDurationMs = 5000; |
| for (t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { |
| // Each turn in this for loop is 10 ms. |
| while (next_input_time_ms <= t_ms) { |
| // Insert one 30 ms speech frame. |
| uint8_t payload[kPayloadBytes] = {0}; |
| WebRtcRTPHeader rtp_info; |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| ++seq_no; |
| timestamp += kSamples; |
| next_input_time_ms += static_cast<double>(kFrameSizeMs) * drift_factor; |
| } |
| // Pull out data once. |
| ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| } |
| |
| EXPECT_EQ(kOutputNormal, type); |
| int32_t delay_before = timestamp - PlayoutTimestamp(); |
| |
| // Insert CNG for 1 minute (= 60000 ms). |
| const int kCngPeriodMs = 100; |
| const int kCngPeriodSamples = kCngPeriodMs * 16; // Period in 16 kHz samples. |
| const int kCngDurationMs = 60000; |
| for (; t_ms < kSpeechDurationMs + kCngDurationMs; t_ms += 10) { |
| // Each turn in this for loop is 10 ms. |
| while (next_input_time_ms <= t_ms) { |
| // Insert one CNG frame each 100 ms. |
| uint8_t payload[kPayloadBytes]; |
| size_t payload_len; |
| WebRtcRTPHeader rtp_info; |
| PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); |
| ++seq_no; |
| timestamp += kCngPeriodSamples; |
| next_input_time_ms += static_cast<double>(kCngPeriodMs) * drift_factor; |
| } |
| // Pull out data once. |
| ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| } |
| |
| EXPECT_EQ(kOutputCNG, type); |
| |
| if (network_freeze_ms > 0) { |
| // First keep pulling audio for |network_freeze_ms| without inserting |
| // any data, then insert CNG data corresponding to |network_freeze_ms| |
| // without pulling any output audio. |
| const double loop_end_time = t_ms + network_freeze_ms; |
| for (; t_ms < loop_end_time; t_ms += 10) { |
| // Pull out data once. |
| ASSERT_EQ(0, |
| neteq_->GetAudio( |
| kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| EXPECT_EQ(kOutputCNG, type); |
| } |
| bool pull_once = pull_audio_during_freeze; |
| // If |pull_once| is true, GetAudio will be called once half-way through |
| // the network recovery period. |
| double pull_time_ms = (t_ms + next_input_time_ms) / 2; |
| while (next_input_time_ms <= t_ms) { |
| if (pull_once && next_input_time_ms >= pull_time_ms) { |
| pull_once = false; |
| // Pull out data once. |
| ASSERT_EQ( |
| 0, |
| neteq_->GetAudio( |
| kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| EXPECT_EQ(kOutputCNG, type); |
| t_ms += 10; |
| } |
| // Insert one CNG frame each 100 ms. |
| uint8_t payload[kPayloadBytes]; |
| size_t payload_len; |
| WebRtcRTPHeader rtp_info; |
| PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); |
| ++seq_no; |
| timestamp += kCngPeriodSamples; |
| next_input_time_ms += kCngPeriodMs * drift_factor; |
| } |
| } |
| |
| // Insert speech again until output type is speech. |
| double speech_restart_time_ms = t_ms; |
| while (type != kOutputNormal) { |
| // Each turn in this for loop is 10 ms. |
| while (next_input_time_ms <= t_ms) { |
| // Insert one 30 ms speech frame. |
| uint8_t payload[kPayloadBytes] = {0}; |
| WebRtcRTPHeader rtp_info; |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| ++seq_no; |
| timestamp += kSamples; |
| next_input_time_ms += kFrameSizeMs * drift_factor; |
| } |
| // Pull out data once. |
| ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| // Increase clock. |
| t_ms += 10; |
| } |
| |
| // Check that the speech starts again within reasonable time. |
| double time_until_speech_returns_ms = t_ms - speech_restart_time_ms; |
| EXPECT_LT(time_until_speech_returns_ms, max_time_to_speech_ms); |
| int32_t delay_after = timestamp - PlayoutTimestamp(); |
| // Compare delay before and after, and make sure it differs less than 20 ms. |
| EXPECT_LE(delay_after, delay_before + delay_tolerance_ms * 16); |
| EXPECT_GE(delay_after, delay_before - delay_tolerance_ms * 16); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDrift) { |
| // Apply a clock drift of -25 ms / s (sender faster than receiver). |
| const double kDriftFactor = 1000.0 / (1000.0 + 25.0); |
| const double kNetworkFreezeTimeMs = 0.0; |
| const bool kGetAudioDuringFreezeRecovery = false; |
| const int kDelayToleranceMs = 20; |
| const int kMaxTimeToSpeechMs = 100; |
| LongCngWithClockDrift(kDriftFactor, |
| kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, |
| kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDrift) { |
| // Apply a clock drift of +25 ms / s (sender slower than receiver). |
| const double kDriftFactor = 1000.0 / (1000.0 - 25.0); |
| const double kNetworkFreezeTimeMs = 0.0; |
| const bool kGetAudioDuringFreezeRecovery = false; |
| const int kDelayToleranceMs = 20; |
| const int kMaxTimeToSpeechMs = 100; |
| LongCngWithClockDrift(kDriftFactor, |
| kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, |
| kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithNegativeClockDriftNetworkFreeze) { |
| // Apply a clock drift of -25 ms / s (sender faster than receiver). |
| const double kDriftFactor = 1000.0 / (1000.0 + 25.0); |
| const double kNetworkFreezeTimeMs = 5000.0; |
| const bool kGetAudioDuringFreezeRecovery = false; |
| const int kDelayToleranceMs = 50; |
| const int kMaxTimeToSpeechMs = 200; |
| LongCngWithClockDrift(kDriftFactor, |
| kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, |
| kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreeze) { |
| // Apply a clock drift of +25 ms / s (sender slower than receiver). |
| const double kDriftFactor = 1000.0 / (1000.0 - 25.0); |
| const double kNetworkFreezeTimeMs = 5000.0; |
| const bool kGetAudioDuringFreezeRecovery = false; |
| const int kDelayToleranceMs = 20; |
| const int kMaxTimeToSpeechMs = 100; |
| LongCngWithClockDrift(kDriftFactor, |
| kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, |
| kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithPositiveClockDriftNetworkFreezeExtraPull) { |
| // Apply a clock drift of +25 ms / s (sender slower than receiver). |
| const double kDriftFactor = 1000.0 / (1000.0 - 25.0); |
| const double kNetworkFreezeTimeMs = 5000.0; |
| const bool kGetAudioDuringFreezeRecovery = true; |
| const int kDelayToleranceMs = 20; |
| const int kMaxTimeToSpeechMs = 100; |
| LongCngWithClockDrift(kDriftFactor, |
| kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, |
| kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, LongCngWithoutClockDrift) { |
| const double kDriftFactor = 1.0; // No drift. |
| const double kNetworkFreezeTimeMs = 0.0; |
| const bool kGetAudioDuringFreezeRecovery = false; |
| const int kDelayToleranceMs = 10; |
| const int kMaxTimeToSpeechMs = 50; |
| LongCngWithClockDrift(kDriftFactor, |
| kNetworkFreezeTimeMs, |
| kGetAudioDuringFreezeRecovery, |
| kDelayToleranceMs, |
| kMaxTimeToSpeechMs); |
| } |
| |
| TEST_F(NetEqDecodingTest, UnknownPayloadType) { |
| const size_t kPayloadBytes = 100; |
| uint8_t payload[kPayloadBytes] = {0}; |
| WebRtcRTPHeader rtp_info; |
| PopulateRtpInfo(0, 0, &rtp_info); |
| rtp_info.header.payloadType = 1; // Not registered as a decoder. |
| EXPECT_EQ(NetEq::kFail, |
| neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| EXPECT_EQ(NetEq::kUnknownRtpPayloadType, neteq_->LastError()); |
| } |
| |
| TEST_F(NetEqDecodingTest, DISABLED_ON_ANDROID(DecoderError)) { |
| const size_t kPayloadBytes = 100; |
| uint8_t payload[kPayloadBytes] = {0}; |
| WebRtcRTPHeader rtp_info; |
| PopulateRtpInfo(0, 0, &rtp_info); |
| rtp_info.header.payloadType = 103; // iSAC, but the payload is invalid. |
| EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| NetEqOutputType type; |
| // Set all of |out_data_| to 1, and verify that it was set to 0 by the call |
| // to GetAudio. |
| for (size_t i = 0; i < kMaxBlockSize; ++i) { |
| out_data_[i] = 1; |
| } |
| int num_channels; |
| int samples_per_channel; |
| EXPECT_EQ(NetEq::kFail, |
| neteq_->GetAudio(kMaxBlockSize, out_data_, |
| &samples_per_channel, &num_channels, &type)); |
| // Verify that there is a decoder error to check. |
| EXPECT_EQ(NetEq::kDecoderErrorCode, neteq_->LastError()); |
| // Code 6730 is an iSAC error code. |
| EXPECT_EQ(6730, neteq_->LastDecoderError()); |
| // Verify that the first 160 samples are set to 0, and that the remaining |
| // samples are left unmodified. |
| static const int kExpectedOutputLength = 160; // 10 ms at 16 kHz sample rate. |
| for (int i = 0; i < kExpectedOutputLength; ++i) { |
| std::ostringstream ss; |
| ss << "i = " << i; |
| SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. |
| EXPECT_EQ(0, out_data_[i]); |
| } |
| for (size_t i = kExpectedOutputLength; i < kMaxBlockSize; ++i) { |
| std::ostringstream ss; |
| ss << "i = " << i; |
| SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. |
| EXPECT_EQ(1, out_data_[i]); |
| } |
| } |
| |
| TEST_F(NetEqDecodingTest, GetAudioBeforeInsertPacket) { |
| NetEqOutputType type; |
| // Set all of |out_data_| to 1, and verify that it was set to 0 by the call |
| // to GetAudio. |
| for (size_t i = 0; i < kMaxBlockSize; ++i) { |
| out_data_[i] = 1; |
| } |
| int num_channels; |
| int samples_per_channel; |
| EXPECT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, |
| &samples_per_channel, |
| &num_channels, &type)); |
| // Verify that the first block of samples is set to 0. |
| static const int kExpectedOutputLength = |
| kInitSampleRateHz / 100; // 10 ms at initial sample rate. |
| for (int i = 0; i < kExpectedOutputLength; ++i) { |
| std::ostringstream ss; |
| ss << "i = " << i; |
| SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. |
| EXPECT_EQ(0, out_data_[i]); |
| } |
| } |
| |
| class NetEqBgnTest : public NetEqDecodingTest { |
| protected: |
| virtual void TestCondition(double sum_squared_noise, |
| bool should_be_faded) = 0; |
| |
| void CheckBgn(int sampling_rate_hz) { |
| int16_t expected_samples_per_channel = 0; |
| uint8_t payload_type = 0xFF; // Invalid. |
| if (sampling_rate_hz == 8000) { |
| expected_samples_per_channel = kBlockSize8kHz; |
| payload_type = 93; // PCM 16, 8 kHz. |
| } else if (sampling_rate_hz == 16000) { |
| expected_samples_per_channel = kBlockSize16kHz; |
| payload_type = 94; // PCM 16, 16 kHZ. |
| } else if (sampling_rate_hz == 32000) { |
| expected_samples_per_channel = kBlockSize32kHz; |
| payload_type = 95; // PCM 16, 32 kHz. |
| } else { |
| ASSERT_TRUE(false); // Unsupported test case. |
| } |
| |
| NetEqOutputType type; |
| int16_t output[kBlockSize32kHz]; // Maximum size is chosen. |
| test::AudioLoop input; |
| // We are using the same 32 kHz input file for all tests, regardless of |
| // |sampling_rate_hz|. The output may sound weird, but the test is still |
| // valid. |
| ASSERT_TRUE(input.Init( |
| webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"), |
| 10 * sampling_rate_hz, // Max 10 seconds loop length. |
| static_cast<size_t>(expected_samples_per_channel))); |
| |
| // Payload of 10 ms of PCM16 32 kHz. |
| uint8_t payload[kBlockSize32kHz * sizeof(int16_t)]; |
| WebRtcRTPHeader rtp_info; |
| PopulateRtpInfo(0, 0, &rtp_info); |
| rtp_info.header.payloadType = payload_type; |
| |
| int number_channels = 0; |
| int samples_per_channel = 0; |
| |
| uint32_t receive_timestamp = 0; |
| for (int n = 0; n < 10; ++n) { // Insert few packets and get audio. |
| int16_t enc_len_bytes = WebRtcPcm16b_Encode( |
| input.GetNextBlock(), expected_samples_per_channel, payload); |
| ASSERT_EQ(enc_len_bytes, expected_samples_per_channel * 2); |
| |
| number_channels = 0; |
| samples_per_channel = 0; |
| ASSERT_EQ(0, |
| neteq_->InsertPacket(rtp_info, payload, |
| static_cast<size_t>(enc_len_bytes), |
| receive_timestamp)); |
| ASSERT_EQ(0, |
| neteq_->GetAudio(kBlockSize32kHz, |
| output, |
| &samples_per_channel, |
| &number_channels, |
| &type)); |
| ASSERT_EQ(1, number_channels); |
| ASSERT_EQ(expected_samples_per_channel, samples_per_channel); |
| ASSERT_EQ(kOutputNormal, type); |
| |
| // Next packet. |
| rtp_info.header.timestamp += expected_samples_per_channel; |
| rtp_info.header.sequenceNumber++; |
| receive_timestamp += expected_samples_per_channel; |
| } |
| |
| number_channels = 0; |
| samples_per_channel = 0; |
| |
| // Get audio without inserting packets, expecting PLC and PLC-to-CNG. Pull |
| // one frame without checking speech-type. This is the first frame pulled |
| // without inserting any packet, and might not be labeled as PLC. |
| ASSERT_EQ(0, |
| neteq_->GetAudio(kBlockSize32kHz, |
| output, |
| &samples_per_channel, |
| &number_channels, |
| &type)); |
| ASSERT_EQ(1, number_channels); |
| ASSERT_EQ(expected_samples_per_channel, samples_per_channel); |
| |
| // To be able to test the fading of background noise we need at lease to |
| // pull 611 frames. |
| const int kFadingThreshold = 611; |
| |
| // Test several CNG-to-PLC packet for the expected behavior. The number 20 |
| // is arbitrary, but sufficiently large to test enough number of frames. |
| const int kNumPlcToCngTestFrames = 20; |
| bool plc_to_cng = false; |
| for (int n = 0; n < kFadingThreshold + kNumPlcToCngTestFrames; ++n) { |
| number_channels = 0; |
| samples_per_channel = 0; |
| memset(output, 1, sizeof(output)); // Set to non-zero. |
| ASSERT_EQ(0, |
| neteq_->GetAudio(kBlockSize32kHz, |
| output, |
| &samples_per_channel, |
| &number_channels, |
| &type)); |
| ASSERT_EQ(1, number_channels); |
| ASSERT_EQ(expected_samples_per_channel, samples_per_channel); |
| if (type == kOutputPLCtoCNG) { |
| plc_to_cng = true; |
| double sum_squared = 0; |
| for (int k = 0; k < number_channels * samples_per_channel; ++k) |
| sum_squared += output[k] * output[k]; |
| TestCondition(sum_squared, n > kFadingThreshold); |
| } else { |
| EXPECT_EQ(kOutputPLC, type); |
| } |
| } |
| EXPECT_TRUE(plc_to_cng); // Just to be sure that PLC-to-CNG has occurred. |
| } |
| }; |
| |
| class NetEqBgnTestOn : public NetEqBgnTest { |
| protected: |
| NetEqBgnTestOn() : NetEqBgnTest() { |
| config_.background_noise_mode = NetEq::kBgnOn; |
| } |
| |
| void TestCondition(double sum_squared_noise, bool /*should_be_faded*/) { |
| EXPECT_NE(0, sum_squared_noise); |
| } |
| }; |
| |
| class NetEqBgnTestOff : public NetEqBgnTest { |
| protected: |
| NetEqBgnTestOff() : NetEqBgnTest() { |
| config_.background_noise_mode = NetEq::kBgnOff; |
| } |
| |
| void TestCondition(double sum_squared_noise, bool /*should_be_faded*/) { |
| EXPECT_EQ(0, sum_squared_noise); |
| } |
| }; |
| |
| class NetEqBgnTestFade : public NetEqBgnTest { |
| protected: |
| NetEqBgnTestFade() : NetEqBgnTest() { |
| config_.background_noise_mode = NetEq::kBgnFade; |
| } |
| |
| void TestCondition(double sum_squared_noise, bool should_be_faded) { |
| if (should_be_faded) |
| EXPECT_EQ(0, sum_squared_noise); |
| } |
| }; |
| |
| TEST_F(NetEqBgnTestOn, RunTest) { |
| CheckBgn(8000); |
| CheckBgn(16000); |
| CheckBgn(32000); |
| } |
| |
| TEST_F(NetEqBgnTestOff, RunTest) { |
| CheckBgn(8000); |
| CheckBgn(16000); |
| CheckBgn(32000); |
| } |
| |
| TEST_F(NetEqBgnTestFade, RunTest) { |
| CheckBgn(8000); |
| CheckBgn(16000); |
| CheckBgn(32000); |
| } |
| |
| TEST_F(NetEqDecodingTest, SyncPacketInsert) { |
| WebRtcRTPHeader rtp_info; |
| uint32_t receive_timestamp = 0; |
| // For the readability use the following payloads instead of the defaults of |
| // this test. |
| uint8_t kPcm16WbPayloadType = 1; |
| uint8_t kCngNbPayloadType = 2; |
| uint8_t kCngWbPayloadType = 3; |
| uint8_t kCngSwb32PayloadType = 4; |
| uint8_t kCngSwb48PayloadType = 5; |
| uint8_t kAvtPayloadType = 6; |
| uint8_t kRedPayloadType = 7; |
| uint8_t kIsacPayloadType = 9; // Payload type 8 is already registered. |
| |
| // Register decoders. |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bwb, |
| kPcm16WbPayloadType)); |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGnb, kCngNbPayloadType)); |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGwb, kCngWbPayloadType)); |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGswb32kHz, |
| kCngSwb32PayloadType)); |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGswb48kHz, |
| kCngSwb48PayloadType)); |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderAVT, kAvtPayloadType)); |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderRED, kRedPayloadType)); |
| ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISAC, kIsacPayloadType)); |
| |
| PopulateRtpInfo(0, 0, &rtp_info); |
| rtp_info.header.payloadType = kPcm16WbPayloadType; |
| |
| // The first packet injected cannot be sync-packet. |
| EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| |
| // Payload length of 10 ms PCM16 16 kHz. |
| const size_t kPayloadBytes = kBlockSize16kHz * sizeof(int16_t); |
| uint8_t payload[kPayloadBytes] = {0}; |
| ASSERT_EQ(0, neteq_->InsertPacket( |
| rtp_info, payload, kPayloadBytes, receive_timestamp)); |
| |
| // Next packet. Last packet contained 10 ms audio. |
| rtp_info.header.sequenceNumber++; |
| rtp_info.header.timestamp += kBlockSize16kHz; |
| receive_timestamp += kBlockSize16kHz; |
| |
| // Unacceptable payload types CNG, AVT (DTMF), RED. |
| rtp_info.header.payloadType = kCngNbPayloadType; |
| EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| |
| rtp_info.header.payloadType = kCngWbPayloadType; |
| EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| |
| rtp_info.header.payloadType = kCngSwb32PayloadType; |
| EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| |
| rtp_info.header.payloadType = kCngSwb48PayloadType; |
| EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| |
| rtp_info.header.payloadType = kAvtPayloadType; |
| EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| |
| rtp_info.header.payloadType = kRedPayloadType; |
| EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| |
| // Change of codec cannot be initiated with a sync packet. |
| rtp_info.header.payloadType = kIsacPayloadType; |
| EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| |
| // Change of SSRC is not allowed with a sync packet. |
| rtp_info.header.payloadType = kPcm16WbPayloadType; |
| ++rtp_info.header.ssrc; |
| EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| |
| --rtp_info.header.ssrc; |
| EXPECT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| } |
| |
| // First insert several noise like packets, then sync-packets. Decoding all |
| // packets should not produce error, statistics should not show any packet loss |
| // and sync-packets should decode to zero. |
| // TODO(turajs) we will have a better test if we have a referece NetEq, and |
| // when Sync packets are inserted in "test" NetEq we insert all-zero payload |
| // in reference NetEq and compare the output of those two. |
| TEST_F(NetEqDecodingTest, SyncPacketDecode) { |
| WebRtcRTPHeader rtp_info; |
| PopulateRtpInfo(0, 0, &rtp_info); |
| const size_t kPayloadBytes = kBlockSize16kHz * sizeof(int16_t); |
| uint8_t payload[kPayloadBytes]; |
| int16_t decoded[kBlockSize16kHz]; |
| int algorithmic_frame_delay = algorithmic_delay_ms_ / 10 + 1; |
| for (size_t n = 0; n < kPayloadBytes; ++n) { |
| payload[n] = (rand() & 0xF0) + 1; // Non-zero random sequence. |
| } |
| // Insert some packets which decode to noise. We are not interested in |
| // actual decoded values. |
| NetEqOutputType output_type; |
| int num_channels; |
| int samples_per_channel; |
| uint32_t receive_timestamp = 0; |
| for (int n = 0; n < 100; ++n) { |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, |
| receive_timestamp)); |
| ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, |
| &samples_per_channel, &num_channels, |
| &output_type)); |
| ASSERT_EQ(kBlockSize16kHz, samples_per_channel); |
| ASSERT_EQ(1, num_channels); |
| |
| rtp_info.header.sequenceNumber++; |
| rtp_info.header.timestamp += kBlockSize16kHz; |
| receive_timestamp += kBlockSize16kHz; |
| } |
| const int kNumSyncPackets = 10; |
| |
| // Make sure sufficient number of sync packets are inserted that we can |
| // conduct a test. |
| ASSERT_GT(kNumSyncPackets, algorithmic_frame_delay); |
| // Insert sync-packets, the decoded sequence should be all-zero. |
| for (int n = 0; n < kNumSyncPackets; ++n) { |
| ASSERT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, |
| &samples_per_channel, &num_channels, |
| &output_type)); |
| ASSERT_EQ(kBlockSize16kHz, samples_per_channel); |
| ASSERT_EQ(1, num_channels); |
| if (n > algorithmic_frame_delay) { |
| EXPECT_TRUE(IsAllZero(decoded, samples_per_channel * num_channels)); |
| } |
| rtp_info.header.sequenceNumber++; |
| rtp_info.header.timestamp += kBlockSize16kHz; |
| receive_timestamp += kBlockSize16kHz; |
| } |
| |
| // We insert regular packets, if sync packet are not correctly buffered then |
| // network statistics would show some packet loss. |
| for (int n = 0; n <= algorithmic_frame_delay + 10; ++n) { |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, |
| receive_timestamp)); |
| ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, |
| &samples_per_channel, &num_channels, |
| &output_type)); |
| if (n >= algorithmic_frame_delay + 1) { |
| // Expect that this frame contain samples from regular RTP. |
| EXPECT_TRUE(IsAllNonZero(decoded, samples_per_channel * num_channels)); |
| } |
| rtp_info.header.sequenceNumber++; |
| rtp_info.header.timestamp += kBlockSize16kHz; |
| receive_timestamp += kBlockSize16kHz; |
| } |
| NetEqNetworkStatistics network_stats; |
| ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); |
| // Expecting a "clean" network. |
| EXPECT_EQ(0, network_stats.packet_loss_rate); |
| EXPECT_EQ(0, network_stats.expand_rate); |
| EXPECT_EQ(0, network_stats.accelerate_rate); |
| EXPECT_LE(network_stats.preemptive_rate, 150); |
| } |
| |
| // Test if the size of the packet buffer reported correctly when containing |
| // sync packets. Also, test if network packets override sync packets. That is to |
| // prefer decoding a network packet to a sync packet, if both have same sequence |
| // number and timestamp. |
| TEST_F(NetEqDecodingTest, SyncPacketBufferSizeAndOverridenByNetworkPackets) { |
| WebRtcRTPHeader rtp_info; |
| PopulateRtpInfo(0, 0, &rtp_info); |
| const size_t kPayloadBytes = kBlockSize16kHz * sizeof(int16_t); |
| uint8_t payload[kPayloadBytes]; |
| int16_t decoded[kBlockSize16kHz]; |
| for (size_t n = 0; n < kPayloadBytes; ++n) { |
| payload[n] = (rand() & 0xF0) + 1; // Non-zero random sequence. |
| } |
| // Insert some packets which decode to noise. We are not interested in |
| // actual decoded values. |
| NetEqOutputType output_type; |
| int num_channels; |
| int samples_per_channel; |
| uint32_t receive_timestamp = 0; |
| int algorithmic_frame_delay = algorithmic_delay_ms_ / 10 + 1; |
| for (int n = 0; n < algorithmic_frame_delay; ++n) { |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, |
| receive_timestamp)); |
| ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, |
| &samples_per_channel, &num_channels, |
| &output_type)); |
| ASSERT_EQ(kBlockSize16kHz, samples_per_channel); |
| ASSERT_EQ(1, num_channels); |
| rtp_info.header.sequenceNumber++; |
| rtp_info.header.timestamp += kBlockSize16kHz; |
| receive_timestamp += kBlockSize16kHz; |
| } |
| const int kNumSyncPackets = 10; |
| |
| WebRtcRTPHeader first_sync_packet_rtp_info; |
| memcpy(&first_sync_packet_rtp_info, &rtp_info, sizeof(rtp_info)); |
| |
| // Insert sync-packets, but no decoding. |
| for (int n = 0; n < kNumSyncPackets; ++n) { |
| ASSERT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp)); |
| rtp_info.header.sequenceNumber++; |
| rtp_info.header.timestamp += kBlockSize16kHz; |
| receive_timestamp += kBlockSize16kHz; |
| } |
| NetEqNetworkStatistics network_stats; |
| ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); |
| EXPECT_EQ(kNumSyncPackets * 10 + algorithmic_delay_ms_, |
| network_stats.current_buffer_size_ms); |
| |
| // Rewind |rtp_info| to that of the first sync packet. |
| memcpy(&rtp_info, &first_sync_packet_rtp_info, sizeof(rtp_info)); |
| |
| // Insert. |
| for (int n = 0; n < kNumSyncPackets; ++n) { |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, |
| receive_timestamp)); |
| rtp_info.header.sequenceNumber++; |
| rtp_info.header.timestamp += kBlockSize16kHz; |
| receive_timestamp += kBlockSize16kHz; |
| } |
| |
| // Decode. |
| for (int n = 0; n < kNumSyncPackets; ++n) { |
| ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, |
| &samples_per_channel, &num_channels, |
| &output_type)); |
| ASSERT_EQ(kBlockSize16kHz, samples_per_channel); |
| ASSERT_EQ(1, num_channels); |
| EXPECT_TRUE(IsAllNonZero(decoded, samples_per_channel * num_channels)); |
| } |
| } |
| |
| void NetEqDecodingTest::WrapTest(uint16_t start_seq_no, |
| uint32_t start_timestamp, |
| const std::set<uint16_t>& drop_seq_numbers, |
| bool expect_seq_no_wrap, |
| bool expect_timestamp_wrap) { |
| uint16_t seq_no = start_seq_no; |
| uint32_t timestamp = start_timestamp; |
| const int kBlocksPerFrame = 3; // Number of 10 ms blocks per frame. |
| const int kFrameSizeMs = kBlocksPerFrame * kTimeStepMs; |
| const int kSamples = kBlockSize16kHz * kBlocksPerFrame; |
| const size_t kPayloadBytes = kSamples * sizeof(int16_t); |
| double next_input_time_ms = 0.0; |
| int16_t decoded[kBlockSize16kHz]; |
| int num_channels; |
| int samples_per_channel; |
| NetEqOutputType output_type; |
| uint32_t receive_timestamp = 0; |
| |
| // Insert speech for 2 seconds. |
| const int kSpeechDurationMs = 2000; |
| int packets_inserted = 0; |
| uint16_t last_seq_no; |
| uint32_t last_timestamp; |
| bool timestamp_wrapped = false; |
| bool seq_no_wrapped = false; |
| for (double t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { |
| // Each turn in this for loop is 10 ms. |
| while (next_input_time_ms <= t_ms) { |
| // Insert one 30 ms speech frame. |
| uint8_t payload[kPayloadBytes] = {0}; |
| WebRtcRTPHeader rtp_info; |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| if (drop_seq_numbers.find(seq_no) == drop_seq_numbers.end()) { |
| // This sequence number was not in the set to drop. Insert it. |
| ASSERT_EQ(0, |
| neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, |
| receive_timestamp)); |
| ++packets_inserted; |
| } |
| NetEqNetworkStatistics network_stats; |
| ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); |
| |
| // Due to internal NetEq logic, preferred buffer-size is about 4 times the |
| // packet size for first few packets. Therefore we refrain from checking |
| // the criteria. |
| if (packets_inserted > 4) { |
| // Expect preferred and actual buffer size to be no more than 2 frames. |
| EXPECT_LE(network_stats.preferred_buffer_size_ms, kFrameSizeMs * 2); |
| EXPECT_LE(network_stats.current_buffer_size_ms, kFrameSizeMs * 2 + |
| algorithmic_delay_ms_); |
| } |
| last_seq_no = seq_no; |
| last_timestamp = timestamp; |
| |
| ++seq_no; |
| timestamp += kSamples; |
| receive_timestamp += kSamples; |
| next_input_time_ms += static_cast<double>(kFrameSizeMs); |
| |
| seq_no_wrapped |= seq_no < last_seq_no; |
| timestamp_wrapped |= timestamp < last_timestamp; |
| } |
| // Pull out data once. |
| ASSERT_EQ(0, neteq_->GetAudio(kBlockSize16kHz, decoded, |
| &samples_per_channel, &num_channels, |
| &output_type)); |
| ASSERT_EQ(kBlockSize16kHz, samples_per_channel); |
| ASSERT_EQ(1, num_channels); |
| |
| // Expect delay (in samples) to be less than 2 packets. |
| EXPECT_LE(timestamp - PlayoutTimestamp(), |
| static_cast<uint32_t>(kSamples * 2)); |
| } |
| // Make sure we have actually tested wrap-around. |
| ASSERT_EQ(expect_seq_no_wrap, seq_no_wrapped); |
| ASSERT_EQ(expect_timestamp_wrap, timestamp_wrapped); |
| } |
| |
| TEST_F(NetEqDecodingTest, SequenceNumberWrap) { |
| // Start with a sequence number that will soon wrap. |
| std::set<uint16_t> drop_seq_numbers; // Don't drop any packets. |
| WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false); |
| } |
| |
| TEST_F(NetEqDecodingTest, SequenceNumberWrapAndDrop) { |
| // Start with a sequence number that will soon wrap. |
| std::set<uint16_t> drop_seq_numbers; |
| drop_seq_numbers.insert(0xFFFF); |
| drop_seq_numbers.insert(0x0); |
| WrapTest(0xFFFF - 10, 0, drop_seq_numbers, true, false); |
| } |
| |
| TEST_F(NetEqDecodingTest, TimestampWrap) { |
| // Start with a timestamp that will soon wrap. |
| std::set<uint16_t> drop_seq_numbers; |
| WrapTest(0, 0xFFFFFFFF - 3000, drop_seq_numbers, false, true); |
| } |
| |
| TEST_F(NetEqDecodingTest, TimestampAndSequenceNumberWrap) { |
| // Start with a timestamp and a sequence number that will wrap at the same |
| // time. |
| std::set<uint16_t> drop_seq_numbers; |
| WrapTest(0xFFFF - 10, 0xFFFFFFFF - 5000, drop_seq_numbers, true, true); |
| } |
| |
| void NetEqDecodingTest::DuplicateCng() { |
| uint16_t seq_no = 0; |
| uint32_t timestamp = 0; |
| const int kFrameSizeMs = 10; |
| const int kSampleRateKhz = 16; |
| const int kSamples = kFrameSizeMs * kSampleRateKhz; |
| const size_t kPayloadBytes = kSamples * 2; |
| |
| const int algorithmic_delay_samples = std::max( |
| algorithmic_delay_ms_ * kSampleRateKhz, 5 * kSampleRateKhz / 8); |
| // Insert three speech packets. Three are needed to get the frame length |
| // correct. |
| int out_len; |
| int num_channels; |
| NetEqOutputType type; |
| uint8_t payload[kPayloadBytes] = {0}; |
| WebRtcRTPHeader rtp_info; |
| for (int i = 0; i < 3; ++i) { |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| ++seq_no; |
| timestamp += kSamples; |
| |
| // Pull audio once. |
| ASSERT_EQ(0, |
| neteq_->GetAudio( |
| kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| } |
| // Verify speech output. |
| EXPECT_EQ(kOutputNormal, type); |
| |
| // Insert same CNG packet twice. |
| const int kCngPeriodMs = 100; |
| const int kCngPeriodSamples = kCngPeriodMs * kSampleRateKhz; |
| size_t payload_len; |
| PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); |
| // This is the first time this CNG packet is inserted. |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); |
| |
| // Pull audio once and make sure CNG is played. |
| ASSERT_EQ(0, |
| neteq_->GetAudio( |
| kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| EXPECT_EQ(kOutputCNG, type); |
| EXPECT_EQ(timestamp - algorithmic_delay_samples, PlayoutTimestamp()); |
| |
| // Insert the same CNG packet again. Note that at this point it is old, since |
| // we have already decoded the first copy of it. |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); |
| |
| // Pull audio until we have played |kCngPeriodMs| of CNG. Start at 10 ms since |
| // we have already pulled out CNG once. |
| for (int cng_time_ms = 10; cng_time_ms < kCngPeriodMs; cng_time_ms += 10) { |
| ASSERT_EQ(0, |
| neteq_->GetAudio( |
| kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| EXPECT_EQ(kOutputCNG, type); |
| EXPECT_EQ(timestamp - algorithmic_delay_samples, |
| PlayoutTimestamp()); |
| } |
| |
| // Insert speech again. |
| ++seq_no; |
| timestamp += kCngPeriodSamples; |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| |
| // Pull audio once and verify that the output is speech again. |
| ASSERT_EQ(0, |
| neteq_->GetAudio( |
| kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| EXPECT_EQ(kOutputNormal, type); |
| EXPECT_EQ(timestamp + kSamples - algorithmic_delay_samples, |
| PlayoutTimestamp()); |
| } |
| |
| uint32_t NetEqDecodingTest::PlayoutTimestamp() { |
| uint32_t playout_timestamp = 0; |
| EXPECT_TRUE(neteq_->GetPlayoutTimestamp(&playout_timestamp)); |
| return playout_timestamp; |
| } |
| |
| TEST_F(NetEqDecodingTest, DiscardDuplicateCng) { DuplicateCng(); } |
| |
| TEST_F(NetEqDecodingTest, CngFirst) { |
| uint16_t seq_no = 0; |
| uint32_t timestamp = 0; |
| const int kFrameSizeMs = 10; |
| const int kSampleRateKhz = 16; |
| const int kSamples = kFrameSizeMs * kSampleRateKhz; |
| const int kPayloadBytes = kSamples * 2; |
| const int kCngPeriodMs = 100; |
| const int kCngPeriodSamples = kCngPeriodMs * kSampleRateKhz; |
| size_t payload_len; |
| |
| uint8_t payload[kPayloadBytes] = {0}; |
| WebRtcRTPHeader rtp_info; |
| |
| PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); |
| ASSERT_EQ(NetEq::kOK, |
| neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); |
| ++seq_no; |
| timestamp += kCngPeriodSamples; |
| |
| // Pull audio once and make sure CNG is played. |
| int out_len; |
| int num_channels; |
| NetEqOutputType type; |
| ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| EXPECT_EQ(kOutputCNG, type); |
| |
| // Insert some speech packets. |
| for (int i = 0; i < 3; ++i) { |
| PopulateRtpInfo(seq_no, timestamp, &rtp_info); |
| ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); |
| ++seq_no; |
| timestamp += kSamples; |
| |
| // Pull audio once. |
| ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, |
| &num_channels, &type)); |
| ASSERT_EQ(kBlockSize16kHz, out_len); |
| } |
| // Verify speech output. |
| EXPECT_EQ(kOutputNormal, type); |
| } |
| |
| } // namespace webrtc |