| /* |
| * Copyright 2016 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/base/task_queue.h" |
| |
| #include <fcntl.h> |
| #include <signal.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #include "base/third_party/libevent/event.h" |
| #include "webrtc/base/checks.h" |
| #include "webrtc/base/logging.h" |
| #include "webrtc/base/task_queue_posix.h" |
| #include "webrtc/base/timeutils.h" |
| |
| namespace rtc { |
| using internal::GetQueuePtrTls; |
| using internal::AutoSetCurrentQueuePtr; |
| |
| namespace { |
| static const char kQuit = 1; |
| static const char kRunTask = 2; |
| static const char kRunReplyTask = 3; |
| |
| using Priority = TaskQueue::Priority; |
| |
| // This ignores the SIGPIPE signal on the calling thread. |
| // This signal can be fired when trying to write() to a pipe that's being |
| // closed or while closing a pipe that's being written to. |
| // We can run into that situation (e.g. reply tasks that don't get a chance to |
| // run because the task queue is being deleted) so we ignore this signal and |
| // continue as normal. |
| // As a side note for this implementation, it would be great if we could safely |
| // restore the sigmask, but unfortunately the operation of restoring it, can |
| // itself actually cause SIGPIPE to be signaled :-| (e.g. on MacOS) |
| // The SIGPIPE signal by default causes the process to be terminated, so we |
| // don't want to risk that. |
| // An alternative to this approach is to ignore the signal for the whole |
| // process: |
| // signal(SIGPIPE, SIG_IGN); |
| void IgnoreSigPipeSignalOnCurrentThread() { |
| sigset_t sigpipe_mask; |
| sigemptyset(&sigpipe_mask); |
| sigaddset(&sigpipe_mask, SIGPIPE); |
| pthread_sigmask(SIG_BLOCK, &sigpipe_mask, nullptr); |
| } |
| |
| struct TimerEvent { |
| explicit TimerEvent(std::unique_ptr<QueuedTask> task) |
| : task(std::move(task)) {} |
| ~TimerEvent() { event_del(&ev); } |
| event ev; |
| std::unique_ptr<QueuedTask> task; |
| }; |
| |
| bool SetNonBlocking(int fd) { |
| const int flags = fcntl(fd, F_GETFL); |
| RTC_CHECK(flags != -1); |
| return (flags & O_NONBLOCK) || fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1; |
| } |
| |
| // TODO(tommi): This is a hack to support two versions of libevent that we're |
| // compatible with. The method we really want to call is event_assign(), |
| // since event_set() has been marked as deprecated (and doesn't accept |
| // passing event_base__ as a parameter). However, the version of libevent |
| // that we have in Chromium, doesn't have event_assign(), so we need to call |
| // event_set() there. |
| void EventAssign(struct event* ev, |
| struct event_base* base, |
| int fd, |
| short events, |
| void (*callback)(int, short, void*), |
| void* arg) { |
| #if defined(_EVENT2_EVENT_H_) |
| RTC_CHECK_EQ(0, event_assign(ev, base, fd, events, callback, arg)); |
| #else |
| event_set(ev, fd, events, callback, arg); |
| RTC_CHECK_EQ(0, event_base_set(base, ev)); |
| #endif |
| } |
| |
| ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) { |
| switch (priority) { |
| case Priority::HIGH: |
| return kRealtimePriority; |
| case Priority::LOW: |
| return kLowPriority; |
| case Priority::NORMAL: |
| return kNormalPriority; |
| default: |
| RTC_NOTREACHED(); |
| break; |
| } |
| return kNormalPriority; |
| } |
| } // namespace |
| |
| struct TaskQueue::QueueContext { |
| explicit QueueContext(TaskQueue* q) : queue(q), is_active(true) {} |
| TaskQueue* queue; |
| bool is_active; |
| // Holds a list of events pending timers for cleanup when the loop exits. |
| std::list<TimerEvent*> pending_timers_; |
| }; |
| |
| // Posting a reply task is tricky business. This class owns the reply task |
| // and a reference to it is held by both the reply queue and the first task. |
| // Here's an outline of what happens when dealing with a reply task. |
| // * The ReplyTaskOwner owns the |reply_| task. |
| // * One ref owned by PostAndReplyTask |
| // * One ref owned by the reply TaskQueue |
| // * ReplyTaskOwner has a flag |run_task_| initially set to false. |
| // * ReplyTaskOwner has a method: HasOneRef() (provided by RefCountedObject). |
| // * After successfully running the original |task_|, PostAndReplyTask() calls |
| // set_should_run_task(). This sets |run_task_| to true. |
| // * In PostAndReplyTask's dtor: |
| // * It releases its reference to ReplyTaskOwner (important to do this first). |
| // * Sends (write()) a kRunReplyTask message to the reply queue's pipe. |
| // * PostAndReplyTask doesn't care if write() fails, but when it does: |
| // * The reply queue is gone. |
| // * ReplyTaskOwner has already been deleted and the reply task too. |
| // * If write() succeeds: |
| // * ReplyQueue receives the kRunReplyTask message |
| // * Goes through all pending tasks, finding the first that HasOneRef() |
| // * Calls ReplyTaskOwner::Run() |
| // * if set_should_run_task() was called, the reply task will be run |
| // * Release the reference to ReplyTaskOwner |
| // * ReplyTaskOwner and associated |reply_| are deleted. |
| class TaskQueue::ReplyTaskOwner { |
| public: |
| ReplyTaskOwner(std::unique_ptr<QueuedTask> reply) |
| : reply_(std::move(reply)) {} |
| |
| void Run() { |
| RTC_DCHECK(reply_); |
| if (run_task_) { |
| if (!reply_->Run()) |
| reply_.release(); |
| } |
| reply_.reset(); |
| } |
| |
| void set_should_run_task() { |
| RTC_DCHECK(!run_task_); |
| run_task_ = true; |
| } |
| |
| private: |
| std::unique_ptr<QueuedTask> reply_; |
| bool run_task_ = false; |
| }; |
| |
| class TaskQueue::PostAndReplyTask : public QueuedTask { |
| public: |
| PostAndReplyTask(std::unique_ptr<QueuedTask> task, |
| std::unique_ptr<QueuedTask> reply, |
| TaskQueue* reply_queue, |
| int reply_pipe) |
| : task_(std::move(task)), |
| reply_pipe_(reply_pipe), |
| reply_task_owner_( |
| new RefCountedObject<ReplyTaskOwner>(std::move(reply))) { |
| reply_queue->PrepareReplyTask(reply_task_owner_); |
| } |
| |
| ~PostAndReplyTask() override { |
| reply_task_owner_ = nullptr; |
| IgnoreSigPipeSignalOnCurrentThread(); |
| // Send a signal to the reply queue that the reply task can run now. |
| // Depending on whether |set_should_run_task()| was called by the |
| // PostAndReplyTask(), the reply task may or may not actually run. |
| // In either case, it will be deleted. |
| char message = kRunReplyTask; |
| write(reply_pipe_, &message, sizeof(message)); |
| } |
| |
| private: |
| bool Run() override { |
| if (!task_->Run()) |
| task_.release(); |
| reply_task_owner_->set_should_run_task(); |
| return true; |
| } |
| |
| std::unique_ptr<QueuedTask> task_; |
| int reply_pipe_; |
| scoped_refptr<RefCountedObject<ReplyTaskOwner>> reply_task_owner_; |
| }; |
| |
| class TaskQueue::SetTimerTask : public QueuedTask { |
| public: |
| SetTimerTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds) |
| : task_(std::move(task)), |
| milliseconds_(milliseconds), |
| posted_(Time32()) {} |
| |
| private: |
| bool Run() override { |
| // Compensate for the time that has passed since construction |
| // and until we got here. |
| uint32_t post_time = Time32() - posted_; |
| TaskQueue::Current()->PostDelayedTask( |
| std::move(task_), |
| post_time > milliseconds_ ? 0 : milliseconds_ - post_time); |
| return true; |
| } |
| |
| std::unique_ptr<QueuedTask> task_; |
| const uint32_t milliseconds_; |
| const uint32_t posted_; |
| }; |
| |
| TaskQueue::TaskQueue(const char* queue_name, Priority priority /*= NORMAL*/) |
| : event_base_(event_base_new()), |
| wakeup_event_(new event()), |
| thread_(&TaskQueue::ThreadMain, |
| this, |
| queue_name, |
| TaskQueuePriorityToThreadPriority(priority)) { |
| RTC_DCHECK(queue_name); |
| int fds[2]; |
| RTC_CHECK(pipe(fds) == 0); |
| SetNonBlocking(fds[0]); |
| SetNonBlocking(fds[1]); |
| wakeup_pipe_out_ = fds[0]; |
| wakeup_pipe_in_ = fds[1]; |
| |
| EventAssign(wakeup_event_.get(), event_base_, wakeup_pipe_out_, |
| EV_READ | EV_PERSIST, OnWakeup, this); |
| event_add(wakeup_event_.get(), 0); |
| thread_.Start(); |
| } |
| |
| TaskQueue::~TaskQueue() { |
| RTC_DCHECK(!IsCurrent()); |
| struct timespec ts; |
| char message = kQuit; |
| while (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) { |
| // The queue is full, so we have no choice but to wait and retry. |
| RTC_CHECK_EQ(EAGAIN, errno); |
| ts.tv_sec = 0; |
| ts.tv_nsec = 1000000; |
| nanosleep(&ts, nullptr); |
| } |
| |
| thread_.Stop(); |
| |
| event_del(wakeup_event_.get()); |
| |
| IgnoreSigPipeSignalOnCurrentThread(); |
| |
| close(wakeup_pipe_in_); |
| close(wakeup_pipe_out_); |
| wakeup_pipe_in_ = -1; |
| wakeup_pipe_out_ = -1; |
| |
| event_base_free(event_base_); |
| } |
| |
| // static |
| TaskQueue* TaskQueue::Current() { |
| QueueContext* ctx = |
| static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls())); |
| return ctx ? ctx->queue : nullptr; |
| } |
| |
| // static |
| bool TaskQueue::IsCurrent(const char* queue_name) { |
| TaskQueue* current = Current(); |
| return current && current->thread_.name().compare(queue_name) == 0; |
| } |
| |
| bool TaskQueue::IsCurrent() const { |
| return IsThreadRefEqual(thread_.GetThreadRef(), CurrentThreadRef()); |
| } |
| |
| void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) { |
| RTC_DCHECK(task.get()); |
| // libevent isn't thread safe. This means that we can't use methods such |
| // as event_base_once to post tasks to the worker thread from a different |
| // thread. However, we can use it when posting from the worker thread itself. |
| if (IsCurrent()) { |
| if (event_base_once(event_base_, -1, EV_TIMEOUT, &TaskQueue::RunTask, |
| task.get(), nullptr) == 0) { |
| task.release(); |
| } |
| } else { |
| QueuedTask* task_id = task.get(); // Only used for comparison. |
| { |
| CritScope lock(&pending_lock_); |
| pending_.push_back(std::move(task)); |
| } |
| char message = kRunTask; |
| if (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) { |
| LOG(WARNING) << "Failed to queue task."; |
| CritScope lock(&pending_lock_); |
| pending_.remove_if([task_id](std::unique_ptr<QueuedTask>& t) { |
| return t.get() == task_id; |
| }); |
| } |
| } |
| } |
| |
| void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task, |
| uint32_t milliseconds) { |
| if (IsCurrent()) { |
| TimerEvent* timer = new TimerEvent(std::move(task)); |
| EventAssign(&timer->ev, event_base_, -1, 0, &TaskQueue::RunTimer, timer); |
| QueueContext* ctx = |
| static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls())); |
| ctx->pending_timers_.push_back(timer); |
| timeval tv = {milliseconds / 1000, (milliseconds % 1000) * 1000}; |
| event_add(&timer->ev, &tv); |
| } else { |
| PostTask(std::unique_ptr<QueuedTask>( |
| new SetTimerTask(std::move(task), milliseconds))); |
| } |
| } |
| |
| void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, |
| std::unique_ptr<QueuedTask> reply, |
| TaskQueue* reply_queue) { |
| std::unique_ptr<QueuedTask> wrapper_task( |
| new PostAndReplyTask(std::move(task), std::move(reply), reply_queue, |
| reply_queue->wakeup_pipe_in_)); |
| PostTask(std::move(wrapper_task)); |
| } |
| |
| void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task, |
| std::unique_ptr<QueuedTask> reply) { |
| return PostTaskAndReply(std::move(task), std::move(reply), Current()); |
| } |
| |
| // static |
| void TaskQueue::ThreadMain(void* context) { |
| TaskQueue* me = static_cast<TaskQueue*>(context); |
| |
| QueueContext queue_context(me); |
| pthread_setspecific(GetQueuePtrTls(), &queue_context); |
| |
| while (queue_context.is_active) |
| event_base_loop(me->event_base_, 0); |
| |
| pthread_setspecific(GetQueuePtrTls(), nullptr); |
| |
| for (TimerEvent* timer : queue_context.pending_timers_) |
| delete timer; |
| } |
| |
| // static |
| void TaskQueue::OnWakeup(int socket, short flags, void* context) { // NOLINT |
| QueueContext* ctx = |
| static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls())); |
| RTC_DCHECK(ctx->queue->wakeup_pipe_out_ == socket); |
| char buf; |
| RTC_CHECK(sizeof(buf) == read(socket, &buf, sizeof(buf))); |
| switch (buf) { |
| case kQuit: |
| ctx->is_active = false; |
| event_base_loopbreak(ctx->queue->event_base_); |
| break; |
| case kRunTask: { |
| std::unique_ptr<QueuedTask> task; |
| { |
| CritScope lock(&ctx->queue->pending_lock_); |
| RTC_DCHECK(!ctx->queue->pending_.empty()); |
| task = std::move(ctx->queue->pending_.front()); |
| ctx->queue->pending_.pop_front(); |
| RTC_DCHECK(task.get()); |
| } |
| if (!task->Run()) |
| task.release(); |
| break; |
| } |
| case kRunReplyTask: { |
| scoped_refptr<ReplyTaskOwnerRef> reply_task; |
| { |
| CritScope lock(&ctx->queue->pending_lock_); |
| for (auto it = ctx->queue->pending_replies_.begin(); |
| it != ctx->queue->pending_replies_.end(); ++it) { |
| if ((*it)->HasOneRef()) { |
| reply_task = std::move(*it); |
| ctx->queue->pending_replies_.erase(it); |
| break; |
| } |
| } |
| } |
| reply_task->Run(); |
| break; |
| } |
| default: |
| RTC_NOTREACHED(); |
| break; |
| } |
| } |
| |
| // static |
| void TaskQueue::RunTask(int fd, short flags, void* context) { // NOLINT |
| auto* task = static_cast<QueuedTask*>(context); |
| if (task->Run()) |
| delete task; |
| } |
| |
| // static |
| void TaskQueue::RunTimer(int fd, short flags, void* context) { // NOLINT |
| TimerEvent* timer = static_cast<TimerEvent*>(context); |
| if (!timer->task->Run()) |
| timer->task.release(); |
| QueueContext* ctx = |
| static_cast<QueueContext*>(pthread_getspecific(GetQueuePtrTls())); |
| ctx->pending_timers_.remove(timer); |
| delete timer; |
| } |
| |
| void TaskQueue::PrepareReplyTask(scoped_refptr<ReplyTaskOwnerRef> reply_task) { |
| RTC_DCHECK(reply_task); |
| CritScope lock(&pending_lock_); |
| pending_replies_.push_back(std::move(reply_task)); |
| } |
| |
| } // namespace rtc |