blob: 2c269b43bc1d9908f7270792ae097a323bc9ea55 [file] [log] [blame]
/*
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/task_utils/repeating_task.h"
#include <atomic>
#include <memory>
#include "absl/functional/any_invocable.h"
#include "api/task_queue/task_queue_base.h"
#include "api/task_queue/test/mock_task_queue_base.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "rtc_base/event.h"
#include "rtc_base/task_queue_for_test.h"
#include "system_wrappers/include/clock.h"
#include "test/gmock.h"
#include "test/gtest.h"
// NOTE: Since these tests rely on real time behavior, they will be flaky
// if run on heavily loaded systems.
namespace webrtc {
namespace {
using ::testing::AtLeast;
using ::testing::Invoke;
using ::testing::MockFunction;
using ::testing::NiceMock;
using ::testing::Return;
using ::testing::WithArg;
constexpr TimeDelta kTimeout = TimeDelta::Millis(1000);
class MockClosure {
public:
MOCK_METHOD(TimeDelta, Call, ());
MOCK_METHOD(void, Delete, ());
};
class MockTaskQueue : public MockTaskQueueBase {
public:
MockTaskQueue() : task_queue_setter_(this) {}
private:
CurrentTaskQueueSetter task_queue_setter_;
};
class FakeTaskQueue : public TaskQueueBase {
public:
explicit FakeTaskQueue(SimulatedClock* clock)
: task_queue_setter_(this), clock_(clock) {}
void Delete() override {}
void PostTaskImpl(absl::AnyInvocable<void() &&> task,
const PostTaskTraits& /*traits*/,
const Location& /*location*/) override {
last_task_ = std::move(task);
last_precision_ = absl::nullopt;
last_delay_ = TimeDelta::Zero();
}
void PostDelayedTaskImpl(absl::AnyInvocable<void() &&> task,
TimeDelta delay,
const PostDelayedTaskTraits& traits,
const Location& /*location*/) override {
last_task_ = std::move(task);
last_precision_ = traits.high_precision
? TaskQueueBase::DelayPrecision::kHigh
: TaskQueueBase::DelayPrecision::kLow;
last_delay_ = delay;
}
bool AdvanceTimeAndRunLastTask() {
EXPECT_TRUE(last_task_);
EXPECT_TRUE(last_delay_.IsFinite());
clock_->AdvanceTime(last_delay_);
last_delay_ = TimeDelta::MinusInfinity();
auto task = std::move(last_task_);
std::move(task)();
return last_task_ == nullptr;
}
bool IsTaskQueued() { return !!last_task_; }
TimeDelta last_delay() const {
EXPECT_TRUE(last_delay_.IsFinite());
return last_delay_;
}
absl::optional<TaskQueueBase::DelayPrecision> last_precision() const {
return last_precision_;
}
private:
CurrentTaskQueueSetter task_queue_setter_;
SimulatedClock* clock_;
absl::AnyInvocable<void() &&> last_task_;
TimeDelta last_delay_ = TimeDelta::MinusInfinity();
absl::optional<TaskQueueBase::DelayPrecision> last_precision_;
};
// NOTE: Since this utility class holds a raw pointer to a variable that likely
// lives on the stack, it's important that any repeating tasks that use this
// class be explicitly stopped when the test criteria have been met. If the
// task is not stopped, an instance of this class can be deleted when the
// pointed-to MockClosure has been deleted and we end up trying to call a
// virtual method on a deleted object in the dtor.
class MoveOnlyClosure {
public:
explicit MoveOnlyClosure(MockClosure* mock) : mock_(mock) {}
MoveOnlyClosure(const MoveOnlyClosure&) = delete;
MoveOnlyClosure(MoveOnlyClosure&& other) : mock_(other.mock_) {
other.mock_ = nullptr;
}
~MoveOnlyClosure() {
if (mock_)
mock_->Delete();
}
TimeDelta operator()() { return mock_->Call(); }
private:
MockClosure* mock_;
};
} // namespace
TEST(RepeatingTaskTest, TaskIsStoppedOnStop) {
const TimeDelta kShortInterval = TimeDelta::Millis(50);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
std::atomic_int counter(0);
auto handle = RepeatingTaskHandle::Start(
&task_queue,
[&] {
counter++;
return kShortInterval;
},
TaskQueueBase::DelayPrecision::kLow, &clock);
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
// The handle reposted at the short interval.
EXPECT_EQ(task_queue.last_delay(), kShortInterval);
// Stop the handle. This prevernts the counter from incrementing.
handle.Stop();
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, CompensatesForLongRunTime) {
const TimeDelta kRepeatInterval = TimeDelta::Millis(2);
// Sleeping inside the task for longer than the repeat interval once, should
// be compensated for by repeating the task faster to catch up.
const TimeDelta kSleepDuration = TimeDelta::Millis(20);
std::atomic_int counter(0);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
RepeatingTaskHandle::Start(
&task_queue,
[&] {
++counter;
// Task takes longer than the repeat duration.
clock.AdvanceTime(kSleepDuration);
return kRepeatInterval;
},
TaskQueueBase::DelayPrecision::kLow, &clock);
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Task is posted right away since it took longer to run then the repeat
// interval.
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, CompensatesForShortRunTime) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
std::atomic_int counter(0);
RepeatingTaskHandle::Start(
&task_queue,
[&] {
// Simulate the task taking 100ms, which should be compensated for.
counter++;
clock.AdvanceTime(TimeDelta::Millis(100));
return TimeDelta::Millis(300);
},
TaskQueueBase::DelayPrecision::kLow, &clock);
// Expect instant post task.
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
// Task should be retained by the handler since it is not cancelled.
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// New delay should be 200ms since repeat delay was 300ms but task took 100ms.
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Millis(200));
}
TEST(RepeatingTaskTest, CancelDelayedTaskBeforeItRuns) {
rtc::Event done;
MockClosure mock;
EXPECT_CALL(mock, Call).Times(0);
EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); }));
TaskQueueForTest task_queue("queue");
auto handle = RepeatingTaskHandle::DelayedStart(
task_queue.Get(), TimeDelta::Millis(100), MoveOnlyClosure(&mock));
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, CancelTaskAfterItRuns) {
rtc::Event done;
MockClosure mock;
EXPECT_CALL(mock, Call).WillOnce(Return(TimeDelta::Millis(100)));
EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); }));
TaskQueueForTest task_queue("queue");
auto handle =
RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&mock));
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, TaskCanStopItself) {
std::atomic_int counter(0);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
RepeatingTaskHandle handle = RepeatingTaskHandle::Start(&task_queue, [&] {
++counter;
handle.Stop();
return TimeDelta::Millis(2);
});
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
// Task cancelled itself so wants to be released.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, TaskCanStopItselfByReturningInfinity) {
std::atomic_int counter(0);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
RepeatingTaskHandle handle = RepeatingTaskHandle::Start(&task_queue, [&] {
++counter;
return TimeDelta::PlusInfinity();
});
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
// Task cancelled itself so wants to be released.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, ZeroReturnValueRepostsTheTask) {
NiceMock<MockClosure> closure;
rtc::Event done;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Zero()))
.WillOnce(Invoke([&] {
done.Set();
return TimeDelta::PlusInfinity();
}));
TaskQueueForTest task_queue("queue");
RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&closure));
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, StartPeriodicTask) {
MockFunction<TimeDelta()> closure;
rtc::Event done;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(20)))
.WillOnce(Return(TimeDelta::Millis(20)))
.WillOnce(Invoke([&] {
done.Set();
return TimeDelta::PlusInfinity();
}));
TaskQueueForTest task_queue("queue");
RepeatingTaskHandle::Start(task_queue.Get(), closure.AsStdFunction());
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, Example) {
class ObjectOnTaskQueue {
public:
void DoPeriodicTask() {}
TimeDelta TimeUntilNextRun() { return TimeDelta::Millis(100); }
void StartPeriodicTask(RepeatingTaskHandle* handle,
TaskQueueBase* task_queue) {
*handle = RepeatingTaskHandle::Start(task_queue, [this] {
DoPeriodicTask();
return TimeUntilNextRun();
});
}
};
TaskQueueForTest task_queue("queue");
auto object = std::make_unique<ObjectOnTaskQueue>();
// Create and start the periodic task.
RepeatingTaskHandle handle;
object->StartPeriodicTask(&handle, task_queue.Get());
// Restart the task
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
object->StartPeriodicTask(&handle, task_queue.Get());
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
struct Destructor {
void operator()() { object.reset(); }
std::unique_ptr<ObjectOnTaskQueue> object;
};
task_queue.PostTask(Destructor{std::move(object)});
// Do not wait for the destructor closure in order to create a race between
// task queue destruction and running the desctructor closure.
}
TEST(RepeatingTaskTest, ClockIntegration) {
absl::AnyInvocable<void() &&> delayed_task;
TimeDelta expected_delay = TimeDelta::Zero();
SimulatedClock clock(Timestamp::Zero());
NiceMock<MockTaskQueue> task_queue;
ON_CALL(task_queue, PostDelayedTaskImpl)
.WillByDefault([&](absl::AnyInvocable<void() &&> task, TimeDelta delay,
const MockTaskQueue::PostDelayedTaskTraits&,
const Location&) {
EXPECT_EQ(delay, expected_delay);
delayed_task = std::move(task);
});
expected_delay = TimeDelta::Millis(100);
RepeatingTaskHandle handle = RepeatingTaskHandle::DelayedStart(
&task_queue, TimeDelta::Millis(100),
[&clock]() {
EXPECT_EQ(Timestamp::Millis(100), clock.CurrentTime());
// Simulate work happening for 10ms.
clock.AdvanceTimeMilliseconds(10);
return TimeDelta::Millis(100);
},
TaskQueueBase::DelayPrecision::kLow, &clock);
clock.AdvanceTimeMilliseconds(100);
absl::AnyInvocable<void()&&> task_to_run = std::move(delayed_task);
expected_delay = TimeDelta::Millis(90);
std::move(task_to_run)();
EXPECT_NE(delayed_task, nullptr);
handle.Stop();
}
TEST(RepeatingTaskTest, CanBeStoppedAfterTaskQueueDeletedTheRepeatingTask) {
absl::AnyInvocable<void() &&> repeating_task;
MockTaskQueue task_queue;
EXPECT_CALL(task_queue, PostDelayedTaskImpl)
.WillOnce(WithArg<0>([&](absl::AnyInvocable<void() &&> task) {
repeating_task = std::move(task);
}));
RepeatingTaskHandle handle =
RepeatingTaskHandle::DelayedStart(&task_queue, TimeDelta::Millis(100),
[] { return TimeDelta::Millis(100); });
// shutdown task queue: delete all pending tasks and run 'regular' task.
repeating_task = nullptr;
handle.Stop();
}
TEST(RepeatingTaskTest, DefaultPrecisionIsLow) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
// Closure that repeats twice.
MockFunction<TimeDelta()> closure;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(1)))
.WillOnce(Return(TimeDelta::PlusInfinity()));
RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction());
// Initial task is a PostTask().
EXPECT_FALSE(task_queue.last_precision().has_value());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Repeated task is a delayed task with the default precision: low.
EXPECT_TRUE(task_queue.last_precision().has_value());
EXPECT_EQ(task_queue.last_precision().value(),
TaskQueueBase::DelayPrecision::kLow);
// No more tasks.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
}
TEST(RepeatingTaskTest, CanSpecifyToPostTasksWithLowPrecision) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
// Closure that repeats twice.
MockFunction<TimeDelta()> closure;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(1)))
.WillOnce(Return(TimeDelta::PlusInfinity()));
RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction(),
TaskQueueBase::DelayPrecision::kLow);
// Initial task is a PostTask().
EXPECT_FALSE(task_queue.last_precision().has_value());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Repeated task is a delayed task with the specified precision.
EXPECT_TRUE(task_queue.last_precision().has_value());
EXPECT_EQ(task_queue.last_precision().value(),
TaskQueueBase::DelayPrecision::kLow);
// No more tasks.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
}
TEST(RepeatingTaskTest, CanSpecifyToPostTasksWithHighPrecision) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
// Closure that repeats twice.
MockFunction<TimeDelta()> closure;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(1)))
.WillOnce(Return(TimeDelta::PlusInfinity()));
RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction(),
TaskQueueBase::DelayPrecision::kHigh);
// Initial task is a PostTask().
EXPECT_FALSE(task_queue.last_precision().has_value());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Repeated task is a delayed task with the specified precision.
EXPECT_TRUE(task_queue.last_precision().has_value());
EXPECT_EQ(task_queue.last_precision().value(),
TaskQueueBase::DelayPrecision::kHigh);
// No more tasks.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
}
} // namespace webrtc