| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| /* |
| * This file includes unit tests the QmResolution class |
| * In particular, for the selection of spatial and/or temporal down-sampling. |
| */ |
| |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| #include "webrtc/modules/include/module_common_types.h" |
| #include "webrtc/modules/video_coding/qm_select.h" |
| |
| namespace webrtc { |
| |
| // Representative values of content metrics for: low/high/medium(default) state, |
| // based on parameters settings in qm_select_data.h. |
| const float kSpatialLow = 0.01f; |
| const float kSpatialMedium = 0.03f; |
| const float kSpatialHigh = 0.1f; |
| const float kTemporalLow = 0.01f; |
| const float kTemporalMedium = 0.06f; |
| const float kTemporalHigh = 0.1f; |
| |
| class QmSelectTest : public ::testing::Test { |
| protected: |
| QmSelectTest() |
| : qm_resolution_(new VCMQmResolution()), |
| content_metrics_(new VideoContentMetrics()), |
| qm_scale_(NULL) { |
| } |
| VCMQmResolution* qm_resolution_; |
| VideoContentMetrics* content_metrics_; |
| VCMResolutionScale* qm_scale_; |
| |
| void InitQmNativeData(float initial_bit_rate, |
| int user_frame_rate, |
| int native_width, |
| int native_height, |
| int num_layers); |
| |
| void UpdateQmEncodedFrame(size_t* encoded_size, size_t num_updates); |
| |
| void UpdateQmRateData(int* target_rate, |
| int* encoder_sent_rate, |
| int* incoming_frame_rate, |
| uint8_t* fraction_lost, |
| int num_updates); |
| |
| void UpdateQmContentData(float motion_metric, |
| float spatial_metric, |
| float spatial_metric_horiz, |
| float spatial_metric_vert); |
| |
| bool IsSelectedActionCorrect(VCMResolutionScale* qm_scale, |
| float fac_width, |
| float fac_height, |
| float fac_temp, |
| uint16_t new_width, |
| uint16_t new_height, |
| float new_frame_rate); |
| |
| void TearDown() { |
| delete qm_resolution_; |
| delete content_metrics_; |
| } |
| }; |
| |
| TEST_F(QmSelectTest, HandleInputs) { |
| // Expect parameter error. Initialize with invalid inputs. |
| EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 0, 640, 480, 1)); |
| EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 30, 640, 0, 1)); |
| EXPECT_EQ(-4, qm_resolution_->Initialize(1000, 30, 0, 480, 1)); |
| |
| // Expect uninitialized error.: No valid initialization before selection. |
| EXPECT_EQ(-7, qm_resolution_->SelectResolution(&qm_scale_)); |
| |
| VideoContentMetrics* content_metrics = NULL; |
| EXPECT_EQ(0, qm_resolution_->Initialize(1000, 30, 640, 480, 1)); |
| qm_resolution_->UpdateContent(content_metrics); |
| // Content metrics are NULL: Expect success and no down-sampling action. |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0, 1.0, 1.0, 640, 480, |
| 30.0f)); |
| } |
| |
| // TODO(marpan): Add a test for number of temporal layers > 1. |
| |
| // No down-sampling action at high rates. |
| TEST_F(QmSelectTest, NoActionHighRate) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(800, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {800, 800, 800}; |
| int encoder_sent_rate[] = {800, 800, 800}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| UpdateQmContentData(kTemporalLow, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(0, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, |
| 30.0f)); |
| } |
| |
| // Rate is well below transition, down-sampling action is taken, |
| // depending on the content state. |
| TEST_F(QmSelectTest, DownActionLowRate) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(50, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {50, 50, 50}; |
| int encoder_sent_rate[] = {50, 50, 50}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial: 2x2 spatial expected. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, |
| 30.0f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // Low motion, low spatial: 2/3 temporal is expected. |
| UpdateQmContentData(kTemporalLow, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(0, qm_resolution_->ComputeContentClass()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, |
| 20.5f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // Medium motion, low spatial: 2x2 spatial expected. |
| UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, |
| 30.0f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // High motion, high spatial: 2/3 temporal expected. |
| UpdateQmContentData(kTemporalHigh, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(4, qm_resolution_->ComputeContentClass()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, |
| 20.5f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // Low motion, high spatial: 1/2 temporal expected. |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, |
| 15.5f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // Medium motion, high spatial: 1/2 temporal expected. |
| UpdateQmContentData(kTemporalMedium, kSpatialHigh, kSpatialHigh, |
| kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(7, qm_resolution_->ComputeContentClass()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, |
| 15.5f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // High motion, medium spatial: 2x2 spatial expected. |
| UpdateQmContentData(kTemporalHigh, kSpatialMedium, kSpatialMedium, |
| kSpatialMedium); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(5, qm_resolution_->ComputeContentClass()); |
| // Target frame rate for frame dropper should be the same as previous == 15. |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, |
| 30.0f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // Low motion, medium spatial: high frame rate, so 1/2 temporal expected. |
| UpdateQmContentData(kTemporalLow, kSpatialMedium, kSpatialMedium, |
| kSpatialMedium); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(2, qm_resolution_->ComputeContentClass()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, |
| 15.5f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // Medium motion, medium spatial: high frame rate, so 2/3 temporal expected. |
| UpdateQmContentData(kTemporalMedium, kSpatialMedium, kSpatialMedium, |
| kSpatialMedium); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(8, qm_resolution_->ComputeContentClass()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, |
| 20.5f)); |
| } |
| |
| // Rate mis-match is high, and we have over-shooting. |
| // since target rate is below max for down-sampling, down-sampling is selected. |
| TEST_F(QmSelectTest, DownActionHighRateMMOvershoot) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(300, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {300, 300, 300}; |
| int encoder_sent_rate[] = {900, 900, 900}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, |
| 1.0f, 480, 360, 30.0f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // Low motion, high spatial |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, |
| 20.5f)); |
| } |
| |
| // Rate mis-match is high, target rate is below max for down-sampling, |
| // but since we have consistent under-shooting, no down-sampling action. |
| TEST_F(QmSelectTest, NoActionHighRateMMUndershoot) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(300, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {300, 300, 300}; |
| int encoder_sent_rate[] = {100, 100, 100}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, |
| 30.0f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // Low motion, high spatial |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, |
| 30.0f)); |
| } |
| |
| // Buffer is underflowing, and target rate is below max for down-sampling, |
| // so action is taken. |
| TEST_F(QmSelectTest, DownActionBufferUnderflow) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(300, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update with encoded size over a number of frames. |
| // per-frame bandwidth = 15 = 450/30: simulate (decoder) buffer underflow: |
| size_t encoded_size[] = {200, 100, 50, 30, 60, 40, 20, 30, 20, 40}; |
| UpdateQmEncodedFrame(encoded_size, GTEST_ARRAY_SIZE_(encoded_size)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {300, 300, 300}; |
| int encoder_sent_rate[] = {450, 450, 450}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, |
| 1.0f, 480, 360, 30.0f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // Low motion, high spatial |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 640, 480, |
| 20.5f)); |
| } |
| |
| // Target rate is below max for down-sampling, but buffer level is stable, |
| // so no action is taken. |
| TEST_F(QmSelectTest, NoActionBufferStable) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(350, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update with encoded size over a number of frames. |
| // per-frame bandwidth = 15 = 450/30: simulate stable (decoder) buffer levels. |
| size_t encoded_size[] = {40, 10, 10, 16, 18, 20, 17, 20, 16, 15}; |
| UpdateQmEncodedFrame(encoded_size, GTEST_ARRAY_SIZE_(encoded_size)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {350, 350, 350}; |
| int encoder_sent_rate[] = {350, 450, 450}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, |
| 30.0f)); |
| |
| qm_resolution_->ResetDownSamplingState(); |
| // Low motion, high spatial |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, |
| 30.0f)); |
| } |
| |
| // Very low rate, but no spatial down-sampling below some size (QCIF). |
| TEST_F(QmSelectTest, LimitDownSpatialAction) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(10, 30, 176, 144, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 176; |
| uint16_t codec_height = 144; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(0, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {10, 10, 10}; |
| int encoder_sent_rate[] = {10, 10, 10}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 176, 144, |
| 30.0f)); |
| } |
| |
| // Very low rate, but no frame reduction below some frame_rate (8fps). |
| TEST_F(QmSelectTest, LimitDownTemporalAction) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(10, 8, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(8.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {10, 10, 10}; |
| int encoder_sent_rate[] = {10, 10, 10}; |
| int incoming_frame_rate[] = {8, 8, 8}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Low motion, medium spatial. |
| UpdateQmContentData(kTemporalLow, kSpatialMedium, kSpatialMedium, |
| kSpatialMedium); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(2, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, |
| 8.0f)); |
| } |
| |
| // Two stages: spatial down-sample and then back up spatially, |
| // as rate as increased. |
| TEST_F(QmSelectTest, 2StageDownSpatialUpSpatial) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(50, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {50, 50, 50}; |
| int encoder_sent_rate[] = {50, 50, 50}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, |
| 30.0f)); |
| |
| // Reset and go up in rate: expected to go back up, in 2 stages of 3/4. |
| qm_resolution_->ResetRates(); |
| qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); |
| EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); |
| // Update rates for a sequence of intervals. |
| int target_rate2[] = {400, 400, 400, 400, 400}; |
| int encoder_sent_rate2[] = {400, 400, 400, 400, 400}; |
| int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| float scale = (4.0f / 3.0f) / 2.0f; |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 1.0f, 480, 360, |
| 30.0f)); |
| |
| qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); |
| EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f, |
| 640, 480, 30.0f)); |
| } |
| |
| // Two stages: spatial down-sample and then back up spatially, since encoder |
| // is under-shooting target even though rate has not increased much. |
| TEST_F(QmSelectTest, 2StageDownSpatialUpSpatialUndershoot) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(50, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {50, 50, 50}; |
| int encoder_sent_rate[] = {50, 50, 50}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, |
| 30.0f)); |
| |
| // Reset rates and simulate under-shooting scenario.: expect to go back up. |
| // Goes up spatially in two stages for 1/2x1/2 down-sampling. |
| qm_resolution_->ResetRates(); |
| qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); |
| EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); |
| // Update rates for a sequence of intervals. |
| int target_rate2[] = {200, 200, 200, 200, 200}; |
| int encoder_sent_rate2[] = {50, 50, 50, 50, 50}; |
| int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState()); |
| float scale = (4.0f / 3.0f) / 2.0f; |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 1.0f, 480, 360, |
| 30.0f)); |
| |
| qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); |
| EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f, |
| 640, 480, 30.0f)); |
| } |
| |
| // Two stages: spatial down-sample and then no action to go up, |
| // as encoding rate mis-match is too high. |
| TEST_F(QmSelectTest, 2StageDownSpatialNoActionUp) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(50, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {50, 50, 50}; |
| int encoder_sent_rate[] = {50, 50, 50}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, |
| 30.0f)); |
| |
| // Reset and simulate large rate mis-match: expect no action to go back up. |
| qm_resolution_->ResetRates(); |
| qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); |
| EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); |
| // Update rates for a sequence of intervals. |
| int target_rate2[] = {400, 400, 400, 400, 400}; |
| int encoder_sent_rate2[] = {1000, 1000, 1000, 1000, 1000}; |
| int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 320, 240, |
| 30.0f)); |
| } |
| |
| // Two stages: temporally down-sample and then back up temporally, |
| // as rate as increased. |
| TEST_F(QmSelectTest, 2StatgeDownTemporalUpTemporal) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(50, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {50, 50, 50}; |
| int encoder_sent_rate[] = {50, 50, 50}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Low motion, high spatial. |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, |
| 15.5f)); |
| |
| // Reset rates and go up in rate: expect to go back up. |
| qm_resolution_->ResetRates(); |
| // Update rates for a sequence of intervals. |
| int target_rate2[] = {400, 400, 400, 400, 400}; |
| int encoder_sent_rate2[] = {400, 400, 400, 400, 400}; |
| int incoming_frame_rate2[] = {15, 15, 15, 15, 15}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 0.5f, 640, 480, |
| 30.0f)); |
| } |
| |
| // Two stages: temporal down-sample and then back up temporally, since encoder |
| // is under-shooting target even though rate has not increased much. |
| TEST_F(QmSelectTest, 2StatgeDownTemporalUpTemporalUndershoot) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(50, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {50, 50, 50}; |
| int encoder_sent_rate[] = {50, 50, 50}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Low motion, high spatial. |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f, 640, 480, |
| 15.5f)); |
| |
| // Reset rates and simulate under-shooting scenario.: expect to go back up. |
| qm_resolution_->ResetRates(); |
| // Update rates for a sequence of intervals. |
| int target_rate2[] = {150, 150, 150, 150, 150}; |
| int encoder_sent_rate2[] = {50, 50, 50, 50, 50}; |
| int incoming_frame_rate2[] = {15, 15, 15, 15, 15}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(kEasyEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 0.5f, 640, 480, |
| 30.0f)); |
| } |
| |
| // Two stages: temporal down-sample and then no action to go up, |
| // as encoding rate mis-match is too high. |
| TEST_F(QmSelectTest, 2StageDownTemporalNoActionUp) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(50, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {50, 50, 50}; |
| int encoder_sent_rate[] = {50, 50, 50}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Low motion, high spatial. |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1, 1, 2, 640, 480, 15.5f)); |
| |
| // Reset and simulate large rate mis-match: expect no action to go back up. |
| qm_resolution_->UpdateCodecParameters(15.0f, codec_width, codec_height); |
| qm_resolution_->ResetRates(); |
| // Update rates for a sequence of intervals. |
| int target_rate2[] = {600, 600, 600, 600, 600}; |
| int encoder_sent_rate2[] = {1000, 1000, 1000, 1000, 1000}; |
| int incoming_frame_rate2[] = {15, 15, 15, 15, 15}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(kStressedEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 640, 480, |
| 15.0f)); |
| } |
| // 3 stages: spatial down-sample, followed by temporal down-sample, |
| // and then go up to full state, as encoding rate has increased. |
| TEST_F(QmSelectTest, 3StageDownSpatialTemporlaUpSpatialTemporal) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(80, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {80, 80, 80}; |
| int encoder_sent_rate[] = {80, 80, 80}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, |
| 30.0f)); |
| |
| // Change content data: expect temporal down-sample. |
| qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); |
| EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); |
| |
| // Reset rates and go lower in rate. |
| qm_resolution_->ResetRates(); |
| int target_rate2[] = {40, 40, 40, 40, 40}; |
| int encoder_sent_rate2[] = {40, 40, 40, 40, 40}; |
| int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Low motion, high spatial. |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240, |
| 20.5f)); |
| |
| // Reset rates and go high up in rate: expect to go back up both spatial |
| // and temporally. The 1/2x1/2 spatial is undone in two stages. |
| qm_resolution_->ResetRates(); |
| // Update rates for a sequence of intervals. |
| int target_rate3[] = {1000, 1000, 1000, 1000, 1000}; |
| int encoder_sent_rate3[] = {1000, 1000, 1000, 1000, 1000}; |
| int incoming_frame_rate3[] = {20, 20, 20, 20, 20}; |
| uint8_t fraction_lost3[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3, |
| fraction_lost3, 5); |
| |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| float scale = (4.0f / 3.0f) / 2.0f; |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f, |
| 480, 360, 30.0f)); |
| |
| qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); |
| EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f, |
| 640, 480, 30.0f)); |
| } |
| |
| // No down-sampling below some total amount. |
| TEST_F(QmSelectTest, NoActionTooMuchDownSampling) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(150, 30, 1280, 720, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 1280; |
| uint16_t codec_height = 720; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(7, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {150, 150, 150}; |
| int encoder_sent_rate[] = {150, 150, 150}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 640, 360, |
| 30.0f)); |
| |
| // Reset and lower rates to get another spatial action (3/4x3/4). |
| // Lower the frame rate for spatial to be selected again. |
| qm_resolution_->ResetRates(); |
| qm_resolution_->UpdateCodecParameters(10.0f, 640, 360); |
| EXPECT_EQ(4, qm_resolution_->GetImageType(640, 360)); |
| // Update rates for a sequence of intervals. |
| int target_rate2[] = {70, 70, 70, 70, 70}; |
| int encoder_sent_rate2[] = {70, 70, 70, 70, 70}; |
| int incoming_frame_rate2[] = {10, 10, 10, 10, 10}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, medium spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialMedium, kSpatialMedium, |
| kSpatialMedium); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(5, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, |
| 1.0f, 480, 270, 10.0f)); |
| |
| // Reset and go to very low rate: no action should be taken, |
| // we went down too much already. |
| qm_resolution_->ResetRates(); |
| qm_resolution_->UpdateCodecParameters(10.0f, 480, 270); |
| EXPECT_EQ(3, qm_resolution_->GetImageType(480, 270)); |
| // Update rates for a sequence of intervals. |
| int target_rate3[] = {10, 10, 10, 10, 10}; |
| int encoder_sent_rate3[] = {10, 10, 10, 10, 10}; |
| int incoming_frame_rate3[] = {10, 10, 10, 10, 10}; |
| uint8_t fraction_lost3[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3, |
| fraction_lost3, 5); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(5, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.0f, 480, 270, |
| 10.0f)); |
| } |
| |
| // Multiple down-sampling stages and then undo all of them. |
| // Spatial down-sample 3/4x3/4, followed by temporal down-sample 2/3, |
| // followed by spatial 3/4x3/4. Then go up to full state, |
| // as encoding rate has increased. |
| TEST_F(QmSelectTest, MultipleStagesCheckActionHistory1) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(150, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Go down spatial 3/4x3/4. |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {150, 150, 150}; |
| int encoder_sent_rate[] = {150, 150, 150}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Medium motion, low spatial. |
| UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, |
| 1.0f, 480, 360, 30.0f)); |
| // Go down 2/3 temporal. |
| qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); |
| EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); |
| qm_resolution_->ResetRates(); |
| int target_rate2[] = {100, 100, 100, 100, 100}; |
| int encoder_sent_rate2[] = {100, 100, 100, 100, 100}; |
| int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Low motion, high spatial. |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 480, 360, |
| 20.5f)); |
| |
| // Go down 3/4x3/4 spatial: |
| qm_resolution_->UpdateCodecParameters(20.0f, 480, 360); |
| qm_resolution_->ResetRates(); |
| int target_rate3[] = {80, 80, 80, 80, 80}; |
| int encoder_sent_rate3[] = {80, 80, 80, 80, 80}; |
| int incoming_frame_rate3[] = {20, 20, 20, 20, 20}; |
| uint8_t fraction_lost3[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3, |
| fraction_lost3, 5); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // High motion, low spatial. |
| UpdateQmContentData(kTemporalHigh, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| // The two spatial actions of 3/4x3/4 are converted to 1/2x1/2, |
| // so scale factor is 2.0. |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, |
| 20.0f)); |
| |
| // Reset rates and go high up in rate: expect to go up: |
| // 1/2x1x2 spatial and 1/2 temporally. |
| |
| // Go up 1/2x1/2 spatially and 1/2 temporally. Spatial is done in 2 stages. |
| qm_resolution_->UpdateCodecParameters(15.0f, 320, 240); |
| EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); |
| qm_resolution_->ResetRates(); |
| // Update rates for a sequence of intervals. |
| int target_rate4[] = {1000, 1000, 1000, 1000, 1000}; |
| int encoder_sent_rate4[] = {1000, 1000, 1000, 1000, 1000}; |
| int incoming_frame_rate4[] = {15, 15, 15, 15, 15}; |
| uint8_t fraction_lost4[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4, |
| fraction_lost4, 5); |
| |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(3, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| float scale = (4.0f / 3.0f) / 2.0f; |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f, 480, |
| 360, 30.0f)); |
| |
| qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); |
| EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f, |
| 640, 480, 30.0f)); |
| } |
| |
| // Multiple down-sampling and up-sample stages, with partial undoing. |
| // Spatial down-sample 1/2x1/2, followed by temporal down-sample 2/3, undo the |
| // temporal, then another temporal, and then undo both spatial and temporal. |
| TEST_F(QmSelectTest, MultipleStagesCheckActionHistory2) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(80, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Go down 1/2x1/2 spatial. |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {80, 80, 80}; |
| int encoder_sent_rate[] = {80, 80, 80}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Medium motion, low spatial. |
| UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, |
| 30.0f)); |
| |
| // Go down 2/3 temporal. |
| qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); |
| EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); |
| qm_resolution_->ResetRates(); |
| int target_rate2[] = {40, 40, 40, 40, 40}; |
| int encoder_sent_rate2[] = {40, 40, 40, 40, 40}; |
| int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Medium motion, high spatial. |
| UpdateQmContentData(kTemporalMedium, kSpatialHigh, kSpatialHigh, |
| kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(7, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240, |
| 20.5f)); |
| |
| // Go up 2/3 temporally. |
| qm_resolution_->UpdateCodecParameters(20.0f, 320, 240); |
| qm_resolution_->ResetRates(); |
| // Update rates for a sequence of intervals. |
| int target_rate3[] = {150, 150, 150, 150, 150}; |
| int encoder_sent_rate3[] = {150, 150, 150, 150, 150}; |
| int incoming_frame_rate3[] = {20, 20, 20, 20, 20}; |
| uint8_t fraction_lost3[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3, |
| fraction_lost3, 5); |
| |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(7, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f / 3.0f, 320, |
| 240, 30.0f)); |
| |
| // Go down 2/3 temporal. |
| qm_resolution_->UpdateCodecParameters(30.0f, 320, 240); |
| EXPECT_EQ(2, qm_resolution_->GetImageType(320, 240)); |
| qm_resolution_->ResetRates(); |
| int target_rate4[] = {40, 40, 40, 40, 40}; |
| int encoder_sent_rate4[] = {40, 40, 40, 40, 40}; |
| int incoming_frame_rate4[] = {30, 30, 30, 30, 30}; |
| uint8_t fraction_lost4[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4, |
| fraction_lost4, 5); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Low motion, high spatial. |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 320, 240, |
| 20.5f)); |
| |
| // Go up spatial and temporal. Spatial undoing is done in 2 stages. |
| qm_resolution_->UpdateCodecParameters(20.5f, 320, 240); |
| qm_resolution_->ResetRates(); |
| // Update rates for a sequence of intervals. |
| int target_rate5[] = {1000, 1000, 1000, 1000, 1000}; |
| int encoder_sent_rate5[] = {1000, 1000, 1000, 1000, 1000}; |
| int incoming_frame_rate5[] = {20, 20, 20, 20, 20}; |
| uint8_t fraction_lost5[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate5, encoder_sent_rate5, incoming_frame_rate5, |
| fraction_lost5, 5); |
| |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| float scale = (4.0f / 3.0f) / 2.0f; |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, scale, scale, 2.0f / 3.0f, |
| 480, 360, 30.0f)); |
| |
| qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); |
| EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, 1.0f, |
| 640, 480, 30.0f)); |
| } |
| |
| // Multiple down-sampling and up-sample stages, with partial undoing. |
| // Spatial down-sample 3/4x3/4, followed by temporal down-sample 2/3, |
| // undo the temporal 2/3, and then undo the spatial. |
| TEST_F(QmSelectTest, MultipleStagesCheckActionHistory3) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(100, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Go down 3/4x3/4 spatial. |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {100, 100, 100}; |
| int encoder_sent_rate[] = {100, 100, 100}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Medium motion, low spatial. |
| UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, |
| 1.0f, 480, 360, 30.0f)); |
| |
| // Go down 2/3 temporal. |
| qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); |
| EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); |
| qm_resolution_->ResetRates(); |
| int target_rate2[] = {100, 100, 100, 100, 100}; |
| int encoder_sent_rate2[] = {100, 100, 100, 100, 100}; |
| int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Low motion, high spatial. |
| UpdateQmContentData(kTemporalLow, kSpatialHigh, kSpatialHigh, kSpatialHigh); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 1.5f, 480, 360, |
| 20.5f)); |
| |
| // Go up 2/3 temporal. |
| qm_resolution_->UpdateCodecParameters(20.5f, 480, 360); |
| qm_resolution_->ResetRates(); |
| // Update rates for a sequence of intervals. |
| int target_rate3[] = {250, 250, 250, 250, 250}; |
| int encoder_sent_rate3[] = {250, 250, 250, 250, 250}; |
| int incoming_frame_rate3[] = {20, 20, 20, 20, 120}; |
| uint8_t fraction_lost3[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate3, encoder_sent_rate3, incoming_frame_rate3, |
| fraction_lost3, 5); |
| |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(1, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 1.0f, 1.0f, 2.0f / 3.0f, 480, |
| 360, 30.0f)); |
| |
| // Go up spatial. |
| qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); |
| EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); |
| qm_resolution_->ResetRates(); |
| int target_rate4[] = {500, 500, 500, 500, 500}; |
| int encoder_sent_rate4[] = {500, 500, 500, 500, 500}; |
| int incoming_frame_rate4[] = {30, 30, 30, 30, 30}; |
| uint8_t fraction_lost4[] = {30, 30, 30, 30, 30}; |
| UpdateQmRateData(target_rate4, encoder_sent_rate4, incoming_frame_rate4, |
| fraction_lost4, 5); |
| |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 3.0f / 4.0f, 3.0f / 4.0f, |
| 1.0f, 640, 480, 30.0f)); |
| } |
| |
| // Two stages of 3/4x3/4 converted to one stage of 1/2x1/2. |
| TEST_F(QmSelectTest, ConvertThreeQuartersToOneHalf) { |
| // Initialize with bitrate, frame rate, native system width/height, and |
| // number of temporal layers. |
| InitQmNativeData(150, 30, 640, 480, 1); |
| |
| // Update with encoder frame size. |
| uint16_t codec_width = 640; |
| uint16_t codec_height = 480; |
| qm_resolution_->UpdateCodecParameters(30.0f, codec_width, codec_height); |
| EXPECT_EQ(5, qm_resolution_->GetImageType(codec_width, codec_height)); |
| |
| // Go down 3/4x3/4 spatial. |
| // Update rates for a sequence of intervals. |
| int target_rate[] = {150, 150, 150}; |
| int encoder_sent_rate[] = {150, 150, 150}; |
| int incoming_frame_rate[] = {30, 30, 30}; |
| uint8_t fraction_lost[] = {10, 10, 10}; |
| UpdateQmRateData(target_rate, encoder_sent_rate, incoming_frame_rate, |
| fraction_lost, 3); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Medium motion, low spatial. |
| UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 4.0f / 3.0f, 4.0f / 3.0f, |
| 1.0f, 480, 360, 30.0f)); |
| |
| // Set rates to go down another 3/4 spatial. Should be converted ton 1/2. |
| qm_resolution_->UpdateCodecParameters(30.0f, 480, 360); |
| EXPECT_EQ(4, qm_resolution_->GetImageType(480, 360)); |
| qm_resolution_->ResetRates(); |
| int target_rate2[] = {100, 100, 100, 100, 100}; |
| int encoder_sent_rate2[] = {100, 100, 100, 100, 100}; |
| int incoming_frame_rate2[] = {30, 30, 30, 30, 30}; |
| uint8_t fraction_lost2[] = {10, 10, 10, 10, 10}; |
| UpdateQmRateData(target_rate2, encoder_sent_rate2, incoming_frame_rate2, |
| fraction_lost2, 5); |
| |
| // Update content: motion level, and 3 spatial prediction errors. |
| // Medium motion, low spatial. |
| UpdateQmContentData(kTemporalMedium, kSpatialLow, kSpatialLow, kSpatialLow); |
| EXPECT_EQ(0, qm_resolution_->SelectResolution(&qm_scale_)); |
| EXPECT_EQ(6, qm_resolution_->ComputeContentClass()); |
| EXPECT_EQ(kStableEncoding, qm_resolution_->GetEncoderState()); |
| EXPECT_TRUE(IsSelectedActionCorrect(qm_scale_, 2.0f, 2.0f, 1.0f, 320, 240, |
| 30.0f)); |
| } |
| |
| void QmSelectTest::InitQmNativeData(float initial_bit_rate, |
| int user_frame_rate, |
| int native_width, |
| int native_height, |
| int num_layers) { |
| EXPECT_EQ(0, qm_resolution_->Initialize(initial_bit_rate, |
| user_frame_rate, |
| native_width, |
| native_height, |
| num_layers)); |
| } |
| |
| void QmSelectTest::UpdateQmContentData(float motion_metric, |
| float spatial_metric, |
| float spatial_metric_horiz, |
| float spatial_metric_vert) { |
| content_metrics_->motion_magnitude = motion_metric; |
| content_metrics_->spatial_pred_err = spatial_metric; |
| content_metrics_->spatial_pred_err_h = spatial_metric_horiz; |
| content_metrics_->spatial_pred_err_v = spatial_metric_vert; |
| qm_resolution_->UpdateContent(content_metrics_); |
| } |
| |
| void QmSelectTest::UpdateQmEncodedFrame(size_t* encoded_size, |
| size_t num_updates) { |
| for (size_t i = 0; i < num_updates; ++i) { |
| // Convert to bytes. |
| size_t encoded_size_update = 1000 * encoded_size[i] / 8; |
| qm_resolution_->UpdateEncodedSize(encoded_size_update); |
| } |
| } |
| |
| void QmSelectTest::UpdateQmRateData(int* target_rate, |
| int* encoder_sent_rate, |
| int* incoming_frame_rate, |
| uint8_t* fraction_lost, |
| int num_updates) { |
| for (int i = 0; i < num_updates; ++i) { |
| float target_rate_update = target_rate[i]; |
| float encoder_sent_rate_update = encoder_sent_rate[i]; |
| float incoming_frame_rate_update = incoming_frame_rate[i]; |
| uint8_t fraction_lost_update = fraction_lost[i]; |
| qm_resolution_->UpdateRates(target_rate_update, |
| encoder_sent_rate_update, |
| incoming_frame_rate_update, |
| fraction_lost_update); |
| } |
| } |
| |
| // Check is the selected action from the QmResolution class is the same |
| // as the expected scales from |fac_width|, |fac_height|, |fac_temp|. |
| bool QmSelectTest::IsSelectedActionCorrect(VCMResolutionScale* qm_scale, |
| float fac_width, |
| float fac_height, |
| float fac_temp, |
| uint16_t new_width, |
| uint16_t new_height, |
| float new_frame_rate) { |
| if (qm_scale->spatial_width_fact == fac_width && |
| qm_scale->spatial_height_fact == fac_height && |
| qm_scale->temporal_fact == fac_temp && |
| qm_scale->codec_width == new_width && |
| qm_scale->codec_height == new_height && |
| qm_scale->frame_rate == new_frame_rate) { |
| return true; |
| } else { |
| return false; |
| } |
| } |
| } // namespace webrtc |