| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/video_coding/receiver.h" |
| |
| #include <assert.h> |
| |
| #include <cstdlib> |
| |
| #include "webrtc/base/logging.h" |
| #include "webrtc/base/trace_event.h" |
| #include "webrtc/modules/video_coding/encoded_frame.h" |
| #include "webrtc/modules/video_coding/internal_defines.h" |
| #include "webrtc/modules/video_coding/media_opt_util.h" |
| #include "webrtc/system_wrappers/include/clock.h" |
| |
| namespace webrtc { |
| |
| enum { kMaxReceiverDelayMs = 10000 }; |
| |
| VCMReceiver::VCMReceiver(VCMTiming* timing, |
| Clock* clock, |
| EventFactory* event_factory) |
| : VCMReceiver(timing, |
| clock, |
| rtc::scoped_ptr<EventWrapper>(event_factory->CreateEvent()), |
| rtc::scoped_ptr<EventWrapper>(event_factory->CreateEvent())) { |
| } |
| |
| VCMReceiver::VCMReceiver(VCMTiming* timing, |
| Clock* clock, |
| rtc::scoped_ptr<EventWrapper> receiver_event, |
| rtc::scoped_ptr<EventWrapper> jitter_buffer_event) |
| : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()), |
| clock_(clock), |
| jitter_buffer_(clock_, jitter_buffer_event.Pass()), |
| timing_(timing), |
| render_wait_event_(receiver_event.Pass()), |
| max_video_delay_ms_(kMaxVideoDelayMs) { |
| Reset(); |
| } |
| |
| VCMReceiver::~VCMReceiver() { |
| render_wait_event_->Set(); |
| delete crit_sect_; |
| } |
| |
| void VCMReceiver::Reset() { |
| CriticalSectionScoped cs(crit_sect_); |
| if (!jitter_buffer_.Running()) { |
| jitter_buffer_.Start(); |
| } else { |
| jitter_buffer_.Flush(); |
| } |
| } |
| |
| void VCMReceiver::UpdateRtt(int64_t rtt) { |
| jitter_buffer_.UpdateRtt(rtt); |
| } |
| |
| int32_t VCMReceiver::InsertPacket(const VCMPacket& packet, |
| uint16_t frame_width, |
| uint16_t frame_height) { |
| // Insert the packet into the jitter buffer. The packet can either be empty or |
| // contain media at this point. |
| bool retransmitted = false; |
| const VCMFrameBufferEnum ret = jitter_buffer_.InsertPacket(packet, |
| &retransmitted); |
| if (ret == kOldPacket) { |
| return VCM_OK; |
| } else if (ret == kFlushIndicator) { |
| return VCM_FLUSH_INDICATOR; |
| } else if (ret < 0) { |
| return VCM_JITTER_BUFFER_ERROR; |
| } |
| if (ret == kCompleteSession && !retransmitted) { |
| // We don't want to include timestamps which have suffered from |
| // retransmission here, since we compensate with extra retransmission |
| // delay within the jitter estimate. |
| timing_->IncomingTimestamp(packet.timestamp, clock_->TimeInMilliseconds()); |
| } |
| return VCM_OK; |
| } |
| |
| void VCMReceiver::TriggerDecoderShutdown() { |
| jitter_buffer_.Stop(); |
| render_wait_event_->Set(); |
| } |
| |
| VCMEncodedFrame* VCMReceiver::FrameForDecoding(uint16_t max_wait_time_ms, |
| int64_t& next_render_time_ms, |
| bool render_timing) { |
| const int64_t start_time_ms = clock_->TimeInMilliseconds(); |
| uint32_t frame_timestamp = 0; |
| // Exhaust wait time to get a complete frame for decoding. |
| bool found_frame = jitter_buffer_.NextCompleteTimestamp( |
| max_wait_time_ms, &frame_timestamp); |
| |
| if (!found_frame) |
| found_frame = jitter_buffer_.NextMaybeIncompleteTimestamp(&frame_timestamp); |
| |
| if (!found_frame) |
| return NULL; |
| |
| // We have a frame - Set timing and render timestamp. |
| timing_->SetJitterDelay(jitter_buffer_.EstimatedJitterMs()); |
| const int64_t now_ms = clock_->TimeInMilliseconds(); |
| timing_->UpdateCurrentDelay(frame_timestamp); |
| next_render_time_ms = timing_->RenderTimeMs(frame_timestamp, now_ms); |
| // Check render timing. |
| bool timing_error = false; |
| // Assume that render timing errors are due to changes in the video stream. |
| if (next_render_time_ms < 0) { |
| timing_error = true; |
| } else if (std::abs(next_render_time_ms - now_ms) > max_video_delay_ms_) { |
| int frame_delay = static_cast<int>(std::abs(next_render_time_ms - now_ms)); |
| LOG(LS_WARNING) << "A frame about to be decoded is out of the configured " |
| << "delay bounds (" << frame_delay << " > " |
| << max_video_delay_ms_ |
| << "). Resetting the video jitter buffer."; |
| timing_error = true; |
| } else if (static_cast<int>(timing_->TargetVideoDelay()) > |
| max_video_delay_ms_) { |
| LOG(LS_WARNING) << "The video target delay has grown larger than " |
| << max_video_delay_ms_ << " ms. Resetting jitter buffer."; |
| timing_error = true; |
| } |
| |
| if (timing_error) { |
| // Timing error => reset timing and flush the jitter buffer. |
| jitter_buffer_.Flush(); |
| timing_->Reset(); |
| return NULL; |
| } |
| |
| if (!render_timing) { |
| // Decode frame as close as possible to the render timestamp. |
| const int32_t available_wait_time = max_wait_time_ms - |
| static_cast<int32_t>(clock_->TimeInMilliseconds() - start_time_ms); |
| uint16_t new_max_wait_time = static_cast<uint16_t>( |
| VCM_MAX(available_wait_time, 0)); |
| uint32_t wait_time_ms = timing_->MaxWaitingTime( |
| next_render_time_ms, clock_->TimeInMilliseconds()); |
| if (new_max_wait_time < wait_time_ms) { |
| // We're not allowed to wait until the frame is supposed to be rendered, |
| // waiting as long as we're allowed to avoid busy looping, and then return |
| // NULL. Next call to this function might return the frame. |
| render_wait_event_->Wait(new_max_wait_time); |
| return NULL; |
| } |
| // Wait until it's time to render. |
| render_wait_event_->Wait(wait_time_ms); |
| } |
| |
| // Extract the frame from the jitter buffer and set the render time. |
| VCMEncodedFrame* frame = jitter_buffer_.ExtractAndSetDecode(frame_timestamp); |
| if (frame == NULL) { |
| return NULL; |
| } |
| frame->SetRenderTime(next_render_time_ms); |
| TRACE_EVENT_ASYNC_STEP1("webrtc", "Video", frame->TimeStamp(), |
| "SetRenderTS", "render_time", next_render_time_ms); |
| if (!frame->Complete()) { |
| // Update stats for incomplete frames. |
| bool retransmitted = false; |
| const int64_t last_packet_time_ms = |
| jitter_buffer_.LastPacketTime(frame, &retransmitted); |
| if (last_packet_time_ms >= 0 && !retransmitted) { |
| // We don't want to include timestamps which have suffered from |
| // retransmission here, since we compensate with extra retransmission |
| // delay within the jitter estimate. |
| timing_->IncomingTimestamp(frame_timestamp, last_packet_time_ms); |
| } |
| } |
| return frame; |
| } |
| |
| void VCMReceiver::ReleaseFrame(VCMEncodedFrame* frame) { |
| jitter_buffer_.ReleaseFrame(frame); |
| } |
| |
| void VCMReceiver::ReceiveStatistics(uint32_t* bitrate, |
| uint32_t* framerate) { |
| assert(bitrate); |
| assert(framerate); |
| jitter_buffer_.IncomingRateStatistics(framerate, bitrate); |
| } |
| |
| uint32_t VCMReceiver::DiscardedPackets() const { |
| return jitter_buffer_.num_discarded_packets(); |
| } |
| |
| void VCMReceiver::SetNackMode(VCMNackMode nackMode, |
| int64_t low_rtt_nack_threshold_ms, |
| int64_t high_rtt_nack_threshold_ms) { |
| CriticalSectionScoped cs(crit_sect_); |
| // Default to always having NACK enabled in hybrid mode. |
| jitter_buffer_.SetNackMode(nackMode, low_rtt_nack_threshold_ms, |
| high_rtt_nack_threshold_ms); |
| } |
| |
| void VCMReceiver::SetNackSettings(size_t max_nack_list_size, |
| int max_packet_age_to_nack, |
| int max_incomplete_time_ms) { |
| jitter_buffer_.SetNackSettings(max_nack_list_size, |
| max_packet_age_to_nack, |
| max_incomplete_time_ms); |
| } |
| |
| VCMNackMode VCMReceiver::NackMode() const { |
| CriticalSectionScoped cs(crit_sect_); |
| return jitter_buffer_.nack_mode(); |
| } |
| |
| std::vector<uint16_t> VCMReceiver::NackList(bool* request_key_frame) { |
| return jitter_buffer_.GetNackList(request_key_frame); |
| } |
| |
| void VCMReceiver::SetDecodeErrorMode(VCMDecodeErrorMode decode_error_mode) { |
| jitter_buffer_.SetDecodeErrorMode(decode_error_mode); |
| } |
| |
| VCMDecodeErrorMode VCMReceiver::DecodeErrorMode() const { |
| return jitter_buffer_.decode_error_mode(); |
| } |
| |
| int VCMReceiver::SetMinReceiverDelay(int desired_delay_ms) { |
| CriticalSectionScoped cs(crit_sect_); |
| if (desired_delay_ms < 0 || desired_delay_ms > kMaxReceiverDelayMs) { |
| return -1; |
| } |
| max_video_delay_ms_ = desired_delay_ms + kMaxVideoDelayMs; |
| // Initializing timing to the desired delay. |
| timing_->set_min_playout_delay(desired_delay_ms); |
| return 0; |
| } |
| |
| int VCMReceiver::RenderBufferSizeMs() { |
| uint32_t timestamp_start = 0u; |
| uint32_t timestamp_end = 0u; |
| // Render timestamps are computed just prior to decoding. Therefore this is |
| // only an estimate based on frames' timestamps and current timing state. |
| jitter_buffer_.RenderBufferSize(×tamp_start, ×tamp_end); |
| if (timestamp_start == timestamp_end) { |
| return 0; |
| } |
| // Update timing. |
| const int64_t now_ms = clock_->TimeInMilliseconds(); |
| timing_->SetJitterDelay(jitter_buffer_.EstimatedJitterMs()); |
| // Get render timestamps. |
| uint32_t render_start = timing_->RenderTimeMs(timestamp_start, now_ms); |
| uint32_t render_end = timing_->RenderTimeMs(timestamp_end, now_ms); |
| return render_end - render_start; |
| } |
| |
| void VCMReceiver::RegisterStatsCallback( |
| VCMReceiveStatisticsCallback* callback) { |
| jitter_buffer_.RegisterStatsCallback(callback); |
| } |
| |
| } // namespace webrtc |