blob: e78dbd232a6784e5a762c1690e34301c3a10f333 [file] [log] [blame]
/*
* Copyright 2019 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/task_queue/task_queue_test.h"
#include "absl/memory/memory.h"
#include "absl/strings/string_view.h"
#include "rtc_base/event.h"
#include "rtc_base/task_utils/to_queued_task.h"
#include "rtc_base/time_utils.h"
namespace webrtc {
namespace {
std::unique_ptr<TaskQueueBase, TaskQueueDeleter> CreateTaskQueue(
const std::unique_ptr<webrtc::TaskQueueFactory>& factory,
absl::string_view task_queue_name,
TaskQueueFactory::Priority priority = TaskQueueFactory::Priority::NORMAL) {
return factory->CreateTaskQueue(task_queue_name, priority);
}
TEST_P(TaskQueueTest, Construct) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()();
auto queue = CreateTaskQueue(factory, "Construct");
EXPECT_FALSE(queue->IsCurrent());
}
TEST_P(TaskQueueTest, PostAndCheckCurrent) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()();
rtc::Event event;
auto queue = CreateTaskQueue(factory, "PostAndCheckCurrent");
// We're not running a task, so there shouldn't be a current queue.
EXPECT_FALSE(queue->IsCurrent());
EXPECT_FALSE(TaskQueueBase::Current());
queue->PostTask(ToQueuedTask([&event, &queue] {
EXPECT_TRUE(queue->IsCurrent());
event.Set();
}));
EXPECT_TRUE(event.Wait(1000));
}
TEST_P(TaskQueueTest, PostCustomTask) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()();
rtc::Event ran;
auto queue = CreateTaskQueue(factory, "PostCustomImplementation");
class CustomTask : public QueuedTask {
public:
explicit CustomTask(rtc::Event* ran) : ran_(ran) {}
private:
bool Run() override {
ran_->Set();
return false; // Do not allow the task to be deleted by the queue.
}
rtc::Event* const ran_;
} my_task(&ran);
queue->PostTask(absl::WrapUnique(&my_task));
EXPECT_TRUE(ran.Wait(1000));
}
TEST_P(TaskQueueTest, PostDelayedZero) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()();
rtc::Event event;
auto queue = CreateTaskQueue(factory, "PostDelayedZero");
queue->PostDelayedTask(ToQueuedTask([&event] { event.Set(); }), 0);
EXPECT_TRUE(event.Wait(1000));
}
TEST_P(TaskQueueTest, PostFromQueue) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()();
rtc::Event event;
auto queue = CreateTaskQueue(factory, "PostFromQueue");
queue->PostTask(ToQueuedTask([&event, &queue] {
queue->PostTask(ToQueuedTask([&event] { event.Set(); }));
}));
EXPECT_TRUE(event.Wait(1000));
}
TEST_P(TaskQueueTest, PostDelayed) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()();
rtc::Event event;
auto queue =
CreateTaskQueue(factory, "PostDelayed", TaskQueueFactory::Priority::HIGH);
int64_t start = rtc::TimeMillis();
queue->PostDelayedTask(ToQueuedTask([&event, &queue] {
EXPECT_TRUE(queue->IsCurrent());
event.Set();
}),
100);
EXPECT_TRUE(event.Wait(1000));
int64_t end = rtc::TimeMillis();
// These tests are a little relaxed due to how "powerful" our test bots can
// be. Most recently we've seen windows bots fire the callback after 94-99ms,
// which is why we have a little bit of leeway backwards as well.
EXPECT_GE(end - start, 90u);
EXPECT_NEAR(end - start, 190u, 100u); // Accept 90-290.
}
TEST_P(TaskQueueTest, PostMultipleDelayed) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()();
auto queue = CreateTaskQueue(factory, "PostMultipleDelayed");
std::vector<rtc::Event> events(100);
for (int i = 0; i < 100; ++i) {
rtc::Event* event = &events[i];
queue->PostDelayedTask(ToQueuedTask([event, &queue] {
EXPECT_TRUE(queue->IsCurrent());
event->Set();
}),
i);
}
for (rtc::Event& e : events)
EXPECT_TRUE(e.Wait(1000));
}
TEST_P(TaskQueueTest, PostDelayedAfterDestruct) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()();
rtc::Event run;
rtc::Event deleted;
auto queue = CreateTaskQueue(factory, "PostDelayedAfterDestruct");
queue->PostDelayedTask(
ToQueuedTask([&run] { run.Set(); }, [&deleted] { deleted.Set(); }), 100);
// Destroy the queue.
queue = nullptr;
// Task might outlive the TaskQueue, but still should be deleted.
EXPECT_TRUE(deleted.Wait(200));
EXPECT_FALSE(run.Wait(0)); // and should not run.
}
TEST_P(TaskQueueTest, PostAndReuse) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()();
rtc::Event event;
auto post_queue = CreateTaskQueue(factory, "PostQueue");
auto reply_queue = CreateTaskQueue(factory, "ReplyQueue");
int call_count = 0;
class ReusedTask : public QueuedTask {
public:
ReusedTask(int* counter, TaskQueueBase* reply_queue, rtc::Event* event)
: counter_(*counter), reply_queue_(reply_queue), event_(*event) {
EXPECT_EQ(counter_, 0);
}
private:
bool Run() override {
if (++counter_ == 1) {
reply_queue_->PostTask(absl::WrapUnique(this));
// At this point, the object is owned by reply_queue_ and it's
// theoratically possible that the object has been deleted (e.g. if
// posting wasn't possible). So, don't touch any member variables here.
// Indicate to the current queue that ownership has been transferred.
return false;
} else {
EXPECT_EQ(counter_, 2);
EXPECT_TRUE(reply_queue_->IsCurrent());
event_.Set();
return true; // Indicate that the object should be deleted.
}
}
int& counter_;
TaskQueueBase* const reply_queue_;
rtc::Event& event_;
};
auto task =
absl::make_unique<ReusedTask>(&call_count, reply_queue.get(), &event);
post_queue->PostTask(std::move(task));
EXPECT_TRUE(event.Wait(1000));
}
// Tests posting more messages than a queue can queue up.
// In situations like that, tasks will get dropped.
TEST_P(TaskQueueTest, PostALot) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()();
// To destruct the event after the queue has gone out of scope.
rtc::Event event;
int tasks_executed = 0;
int tasks_cleaned_up = 0;
static const int kTaskCount = 0xffff;
{
auto queue = CreateTaskQueue(factory, "PostALot");
// On linux, the limit of pending bytes in the pipe buffer is 0xffff.
// So here we post a total of 0xffff+1 messages, which triggers a failure
// case inside of the libevent queue implementation.
queue->PostTask(
ToQueuedTask([&event] { event.Wait(rtc::Event::kForever); }));
for (int i = 0; i < kTaskCount; ++i)
queue->PostTask(
ToQueuedTask([&tasks_executed] { ++tasks_executed; },
[&tasks_cleaned_up] { ++tasks_cleaned_up; }));
event.Set(); // Unblock the first task.
}
EXPECT_GE(tasks_cleaned_up, tasks_executed);
EXPECT_EQ(tasks_cleaned_up, kTaskCount);
}
// Test posting two tasks that have shared state not protected by a
// lock. The TaskQueue should guarantee memory read-write order and
// FIFO task execution order, so the second task should always see the
// changes that were made by the first task.
//
// If the TaskQueue doesn't properly synchronize the execution of
// tasks, there will be a data race, which is undefined behavior. The
// EXPECT calls may randomly catch this, but to make the most of this
// unit test, run it under TSan or some other tool that is able to
// directly detect data races.
TEST_P(TaskQueueTest, PostTwoWithSharedUnprotectedState) {
std::unique_ptr<webrtc::TaskQueueFactory> factory = GetParam()();
struct SharedState {
// First task will set this value to 1 and second will assert it.
int state = 0;
} state;
auto queue = CreateTaskQueue(factory, "PostTwoWithSharedUnprotectedState");
rtc::Event done;
queue->PostTask(ToQueuedTask([&state, &queue, &done] {
// Post tasks from queue to guarantee, that 1st task won't be
// executed before the second one will be posted.
queue->PostTask(ToQueuedTask([&state] { state.state = 1; }));
queue->PostTask(ToQueuedTask([&state, &done] {
EXPECT_EQ(state.state, 1);
done.Set();
}));
// Check, that state changing tasks didn't start yet.
EXPECT_EQ(state.state, 0);
}));
EXPECT_TRUE(done.Wait(1000));
}
} // namespace
} // namespace webrtc