blob: d29c19dc8c9234963d73e39f09a061d659db06b0 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#ifdef RTC_ENABLE_VP9
#include "modules/video_coding/codecs/vp9/vp9_impl.h"
#include <algorithm>
#include <limits>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "api/video/color_space.h"
#include "api/video/i010_buffer.h"
#include "common_video/include/video_frame_buffer.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/video_coding/codecs/vp9/svc_rate_allocator.h"
#include "modules/video_coding/utility/vp9_uncompressed_header_parser.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/rate_control_settings.h"
#include "rtc_base/keep_ref_until_done.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/field_trial.h"
#include "vpx/vp8cx.h"
#include "vpx/vp8dx.h"
#include "vpx/vpx_decoder.h"
#include "vpx/vpx_encoder.h"
namespace webrtc {
namespace {
// Maps from gof_idx to encoder internal reference frame buffer index. These
// maps work for 1,2 and 3 temporal layers with GOF length of 1,2 and 4 frames.
uint8_t kRefBufIdx[4] = {0, 0, 0, 1};
uint8_t kUpdBufIdx[4] = {0, 0, 1, 0};
// Maximum allowed PID difference for differnet per-layer frame-rate case.
const int kMaxAllowedPidDiff = 30;
constexpr double kLowRateFactor = 1.0;
constexpr double kHighRateFactor = 2.0;
// TODO(ilink): Tune these thresholds further.
// Selected using ConverenceMotion_1280_720_50.yuv clip.
// No toggling observed on any link capacity from 100-2000kbps.
// HD was reached consistently when link capacity was 1500kbps.
// Set resolutions are a bit more conservative than svc_config.cc sets, e.g.
// for 300kbps resolution converged to 270p instead of 360p.
constexpr int kLowVp9QpThreshold = 149;
constexpr int kHighVp9QpThreshold = 205;
// These settings correspond to the settings in vpx_codec_enc_cfg.
struct Vp9RateSettings {
uint32_t rc_undershoot_pct;
uint32_t rc_overshoot_pct;
uint32_t rc_buf_sz;
uint32_t rc_buf_optimal_sz;
uint32_t rc_dropframe_thresh;
};
// Only positive speeds, range for real-time coding currently is: 5 - 8.
// Lower means slower/better quality, higher means fastest/lower quality.
int GetCpuSpeed(int width, int height) {
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || defined(ANDROID)
return 8;
#else
// For smaller resolutions, use lower speed setting (get some coding gain at
// the cost of increased encoding complexity).
if (width * height <= 352 * 288)
return 5;
else
return 7;
#endif
}
// Helper class for extracting VP9 colorspace.
ColorSpace ExtractVP9ColorSpace(vpx_color_space_t space_t,
vpx_color_range_t range_t,
unsigned int bit_depth) {
ColorSpace::PrimaryID primaries = ColorSpace::PrimaryID::kUnspecified;
ColorSpace::TransferID transfer = ColorSpace::TransferID::kUnspecified;
ColorSpace::MatrixID matrix = ColorSpace::MatrixID::kUnspecified;
switch (space_t) {
case VPX_CS_BT_601:
case VPX_CS_SMPTE_170:
primaries = ColorSpace::PrimaryID::kSMPTE170M;
transfer = ColorSpace::TransferID::kSMPTE170M;
matrix = ColorSpace::MatrixID::kSMPTE170M;
break;
case VPX_CS_SMPTE_240:
primaries = ColorSpace::PrimaryID::kSMPTE240M;
transfer = ColorSpace::TransferID::kSMPTE240M;
matrix = ColorSpace::MatrixID::kSMPTE240M;
break;
case VPX_CS_BT_709:
primaries = ColorSpace::PrimaryID::kBT709;
transfer = ColorSpace::TransferID::kBT709;
matrix = ColorSpace::MatrixID::kBT709;
break;
case VPX_CS_BT_2020:
primaries = ColorSpace::PrimaryID::kBT2020;
switch (bit_depth) {
case 8:
transfer = ColorSpace::TransferID::kBT709;
break;
case 10:
transfer = ColorSpace::TransferID::kBT2020_10;
break;
default:
RTC_NOTREACHED();
break;
}
matrix = ColorSpace::MatrixID::kBT2020_NCL;
break;
case VPX_CS_SRGB:
primaries = ColorSpace::PrimaryID::kBT709;
transfer = ColorSpace::TransferID::kIEC61966_2_1;
matrix = ColorSpace::MatrixID::kBT709;
break;
default:
break;
}
ColorSpace::RangeID range = ColorSpace::RangeID::kInvalid;
switch (range_t) {
case VPX_CR_STUDIO_RANGE:
range = ColorSpace::RangeID::kLimited;
break;
case VPX_CR_FULL_RANGE:
range = ColorSpace::RangeID::kFull;
break;
default:
break;
}
return ColorSpace(primaries, transfer, matrix, range);
}
std::pair<size_t, size_t> GetActiveLayers(
const VideoBitrateAllocation& allocation) {
for (size_t sl_idx = 0; sl_idx < kMaxSpatialLayers; ++sl_idx) {
if (allocation.GetSpatialLayerSum(sl_idx) > 0) {
size_t last_layer = sl_idx + 1;
while (last_layer < kMaxSpatialLayers &&
allocation.GetSpatialLayerSum(last_layer) > 0) {
++last_layer;
}
return std::make_pair(sl_idx, last_layer);
}
}
return {0, 0};
}
uint32_t Interpolate(uint32_t low,
uint32_t high,
double bandwidth_headroom_factor) {
RTC_DCHECK_GE(bandwidth_headroom_factor, kLowRateFactor);
RTC_DCHECK_LE(bandwidth_headroom_factor, kHighRateFactor);
// |factor| is between 0.0 and 1.0.
const double factor = bandwidth_headroom_factor - kLowRateFactor;
return static_cast<uint32_t>(((1.0 - factor) * low) + (factor * high) + 0.5);
}
Vp9RateSettings GetRateSettings(double bandwidth_headroom_factor) {
static const Vp9RateSettings low_settings{100u, 0u, 100u, 33u, 40u};
static const Vp9RateSettings high_settings{50u, 50u, 1000u, 700u, 5u};
if (bandwidth_headroom_factor <= kLowRateFactor) {
return low_settings;
} else if (bandwidth_headroom_factor >= kHighRateFactor) {
return high_settings;
}
Vp9RateSettings settings;
settings.rc_undershoot_pct =
Interpolate(low_settings.rc_undershoot_pct,
high_settings.rc_undershoot_pct, bandwidth_headroom_factor);
settings.rc_overshoot_pct =
Interpolate(low_settings.rc_overshoot_pct, high_settings.rc_overshoot_pct,
bandwidth_headroom_factor);
settings.rc_buf_sz =
Interpolate(low_settings.rc_buf_sz, high_settings.rc_buf_sz,
bandwidth_headroom_factor);
settings.rc_buf_optimal_sz =
Interpolate(low_settings.rc_buf_optimal_sz,
high_settings.rc_buf_optimal_sz, bandwidth_headroom_factor);
settings.rc_dropframe_thresh =
Interpolate(low_settings.rc_dropframe_thresh,
high_settings.rc_dropframe_thresh, bandwidth_headroom_factor);
return settings;
}
void UpdateRateSettings(vpx_codec_enc_cfg_t* config,
const Vp9RateSettings& new_settings) {
config->rc_undershoot_pct = new_settings.rc_undershoot_pct;
config->rc_overshoot_pct = new_settings.rc_overshoot_pct;
config->rc_buf_sz = new_settings.rc_buf_sz;
config->rc_buf_optimal_sz = new_settings.rc_buf_optimal_sz;
config->rc_dropframe_thresh = new_settings.rc_dropframe_thresh;
}
} // namespace
void VP9EncoderImpl::EncoderOutputCodedPacketCallback(vpx_codec_cx_pkt* pkt,
void* user_data) {
VP9EncoderImpl* enc = static_cast<VP9EncoderImpl*>(user_data);
enc->GetEncodedLayerFrame(pkt);
}
VP9EncoderImpl::VP9EncoderImpl(const cricket::VideoCodec& codec)
: encoded_image_(),
encoded_complete_callback_(nullptr),
profile_(
ParseSdpForVP9Profile(codec.params).value_or(VP9Profile::kProfile0)),
inited_(false),
timestamp_(0),
cpu_speed_(3),
rc_max_intra_target_(0),
encoder_(nullptr),
config_(nullptr),
raw_(nullptr),
input_image_(nullptr),
force_key_frame_(true),
pics_since_key_(0),
num_temporal_layers_(0),
num_spatial_layers_(0),
num_active_spatial_layers_(0),
first_active_layer_(0),
layer_deactivation_requires_key_frame_(
field_trial::IsEnabled("WebRTC-Vp9IssueKeyFrameOnLayerDeactivation")),
is_svc_(false),
inter_layer_pred_(InterLayerPredMode::kOn),
external_ref_control_(false), // Set in InitEncode because of tests.
trusted_rate_controller_(RateControlSettings::ParseFromFieldTrials()
.LibvpxVp9TrustedRateController()),
dynamic_rate_settings_(
RateControlSettings::ParseFromFieldTrials().Vp9DynamicRateSettings()),
layer_buffering_(false),
full_superframe_drop_(true),
first_frame_in_picture_(true),
ss_info_needed_(false),
force_all_active_layers_(false),
is_flexible_mode_(false),
variable_framerate_experiment_(ParseVariableFramerateConfig(
"WebRTC-VP9VariableFramerateScreenshare")),
variable_framerate_controller_(
variable_framerate_experiment_.framerate_limit),
quality_scaler_experiment_(
ParseQualityScalerConfig("WebRTC-VP9QualityScaler")),
num_steady_state_frames_(0),
config_changed_(true) {
codec_ = {};
memset(&svc_params_, 0, sizeof(vpx_svc_extra_cfg_t));
}
VP9EncoderImpl::~VP9EncoderImpl() {
Release();
}
void VP9EncoderImpl::SetFecControllerOverride(
FecControllerOverride* fec_controller_override) {
// Ignored.
}
int VP9EncoderImpl::Release() {
int ret_val = WEBRTC_VIDEO_CODEC_OK;
if (encoder_ != nullptr) {
if (inited_) {
if (vpx_codec_destroy(encoder_)) {
ret_val = WEBRTC_VIDEO_CODEC_MEMORY;
}
}
delete encoder_;
encoder_ = nullptr;
}
if (config_ != nullptr) {
delete config_;
config_ = nullptr;
}
if (raw_ != nullptr) {
vpx_img_free(raw_);
raw_ = nullptr;
}
inited_ = false;
return ret_val;
}
bool VP9EncoderImpl::ExplicitlyConfiguredSpatialLayers() const {
// We check target_bitrate_bps of the 0th layer to see if the spatial layers
// (i.e. bitrates) were explicitly configured.
return codec_.spatialLayers[0].targetBitrate > 0;
}
bool VP9EncoderImpl::SetSvcRates(
const VideoBitrateAllocation& bitrate_allocation) {
std::pair<size_t, size_t> current_layers =
GetActiveLayers(current_bitrate_allocation_);
std::pair<size_t, size_t> new_layers = GetActiveLayers(bitrate_allocation);
const bool layer_activation_requires_key_frame =
inter_layer_pred_ == InterLayerPredMode::kOff ||
inter_layer_pred_ == InterLayerPredMode::kOnKeyPic;
const bool lower_layers_enabled = new_layers.first < current_layers.first;
const bool higher_layers_enabled = new_layers.second > current_layers.second;
const bool disabled_layers = new_layers.first > current_layers.first ||
new_layers.second < current_layers.second;
if (lower_layers_enabled ||
(higher_layers_enabled && layer_activation_requires_key_frame) ||
(disabled_layers && layer_deactivation_requires_key_frame_)) {
force_key_frame_ = true;
}
if (current_layers != new_layers) {
ss_info_needed_ = true;
}
config_->rc_target_bitrate = bitrate_allocation.get_sum_kbps();
if (ExplicitlyConfiguredSpatialLayers()) {
for (size_t sl_idx = 0; sl_idx < num_spatial_layers_; ++sl_idx) {
const bool was_layer_active = (config_->ss_target_bitrate[sl_idx] > 0);
config_->ss_target_bitrate[sl_idx] =
bitrate_allocation.GetSpatialLayerSum(sl_idx) / 1000;
for (size_t tl_idx = 0; tl_idx < num_temporal_layers_; ++tl_idx) {
config_->layer_target_bitrate[sl_idx * num_temporal_layers_ + tl_idx] =
bitrate_allocation.GetTemporalLayerSum(sl_idx, tl_idx) / 1000;
}
if (!was_layer_active) {
// Reset frame rate controller if layer is resumed after pause.
framerate_controller_[sl_idx].Reset();
}
framerate_controller_[sl_idx].SetTargetRate(
codec_.spatialLayers[sl_idx].maxFramerate);
}
} else {
float rate_ratio[VPX_MAX_LAYERS] = {0};
float total = 0;
for (int i = 0; i < num_spatial_layers_; ++i) {
if (svc_params_.scaling_factor_num[i] <= 0 ||
svc_params_.scaling_factor_den[i] <= 0) {
RTC_LOG(LS_ERROR) << "Scaling factors not specified!";
return false;
}
rate_ratio[i] = static_cast<float>(svc_params_.scaling_factor_num[i]) /
svc_params_.scaling_factor_den[i];
total += rate_ratio[i];
}
for (int i = 0; i < num_spatial_layers_; ++i) {
RTC_CHECK_GT(total, 0);
config_->ss_target_bitrate[i] = static_cast<unsigned int>(
config_->rc_target_bitrate * rate_ratio[i] / total);
if (num_temporal_layers_ == 1) {
config_->layer_target_bitrate[i] = config_->ss_target_bitrate[i];
} else if (num_temporal_layers_ == 2) {
config_->layer_target_bitrate[i * num_temporal_layers_] =
config_->ss_target_bitrate[i] * 2 / 3;
config_->layer_target_bitrate[i * num_temporal_layers_ + 1] =
config_->ss_target_bitrate[i];
} else if (num_temporal_layers_ == 3) {
config_->layer_target_bitrate[i * num_temporal_layers_] =
config_->ss_target_bitrate[i] / 2;
config_->layer_target_bitrate[i * num_temporal_layers_ + 1] =
config_->layer_target_bitrate[i * num_temporal_layers_] +
(config_->ss_target_bitrate[i] / 4);
config_->layer_target_bitrate[i * num_temporal_layers_ + 2] =
config_->ss_target_bitrate[i];
} else {
RTC_LOG(LS_ERROR) << "Unsupported number of temporal layers: "
<< num_temporal_layers_;
return false;
}
framerate_controller_[i].SetTargetRate(codec_.maxFramerate);
}
}
num_active_spatial_layers_ = 0;
first_active_layer_ = 0;
bool seen_active_layer = false;
bool expect_no_more_active_layers = false;
for (int i = 0; i < num_spatial_layers_; ++i) {
if (config_->ss_target_bitrate[i] > 0) {
RTC_DCHECK(!expect_no_more_active_layers) << "Only middle layer is "
"deactivated.";
if (!seen_active_layer) {
first_active_layer_ = i;
}
num_active_spatial_layers_ = i + 1;
seen_active_layer = true;
} else {
expect_no_more_active_layers = seen_active_layer;
}
}
if (higher_layers_enabled && !force_key_frame_) {
// Prohibit drop of all layers for the next frame, so newly enabled
// layer would have a valid spatial reference.
for (size_t i = 0; i < num_spatial_layers_; ++i) {
svc_drop_frame_.framedrop_thresh[i] = 0;
}
force_all_active_layers_ = true;
}
current_bitrate_allocation_ = bitrate_allocation;
config_changed_ = true;
return true;
}
void VP9EncoderImpl::SetRates(const RateControlParameters& parameters) {
if (!inited_) {
RTC_LOG(LS_WARNING) << "SetRates() calll while uninitialzied.";
return;
}
if (encoder_->err) {
RTC_LOG(LS_WARNING) << "Encoder in error state: " << encoder_->err;
return;
}
if (parameters.framerate_fps < 1.0) {
RTC_LOG(LS_WARNING) << "Unsupported framerate: "
<< parameters.framerate_fps;
return;
}
codec_.maxFramerate = static_cast<uint32_t>(parameters.framerate_fps + 0.5);
if (dynamic_rate_settings_) {
// Tweak rate control settings based on available network headroom.
UpdateRateSettings(
config_, GetRateSettings(parameters.bandwidth_allocation.bps<double>() /
parameters.bitrate.get_sum_bps()));
}
bool res = SetSvcRates(parameters.bitrate);
RTC_DCHECK(res) << "Failed to set new bitrate allocation";
config_changed_ = true;
}
// TODO(eladalon): s/inst/codec_settings/g.
int VP9EncoderImpl::InitEncode(const VideoCodec* inst,
const Settings& settings) {
if (inst == nullptr) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->maxFramerate < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Allow zero to represent an unspecified maxBitRate
if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->width < 1 || inst->height < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (settings.number_of_cores < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->VP9().numberOfTemporalLayers > 3) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// libvpx probably does not support more than 3 spatial layers.
if (inst->VP9().numberOfSpatialLayers > 3) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int ret_val = Release();
if (ret_val < 0) {
return ret_val;
}
if (encoder_ == nullptr) {
encoder_ = new vpx_codec_ctx_t;
}
if (config_ == nullptr) {
config_ = new vpx_codec_enc_cfg_t;
}
timestamp_ = 0;
if (&codec_ != inst) {
codec_ = *inst;
}
force_key_frame_ = true;
pics_since_key_ = 0;
num_spatial_layers_ = inst->VP9().numberOfSpatialLayers;
RTC_DCHECK_GT(num_spatial_layers_, 0);
num_temporal_layers_ = inst->VP9().numberOfTemporalLayers;
if (num_temporal_layers_ == 0) {
num_temporal_layers_ = 1;
}
framerate_controller_ = std::vector<FramerateController>(
num_spatial_layers_, FramerateController(codec_.maxFramerate));
is_svc_ = (num_spatial_layers_ > 1 || num_temporal_layers_ > 1);
encoded_image_._completeFrame = true;
// Populate encoder configuration with default values.
if (vpx_codec_enc_config_default(vpx_codec_vp9_cx(), config_, 0)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
vpx_img_fmt img_fmt = VPX_IMG_FMT_NONE;
unsigned int bits_for_storage = 8;
switch (profile_) {
case VP9Profile::kProfile0:
img_fmt = VPX_IMG_FMT_I420;
bits_for_storage = 8;
config_->g_bit_depth = VPX_BITS_8;
config_->g_profile = 0;
config_->g_input_bit_depth = 8;
break;
case VP9Profile::kProfile1:
// Encoding of profile 1 is not implemented. It would require extended
// support for I444, I422, and I440 buffers.
RTC_NOTREACHED();
break;
case VP9Profile::kProfile2:
img_fmt = VPX_IMG_FMT_I42016;
bits_for_storage = 16;
config_->g_bit_depth = VPX_BITS_10;
config_->g_profile = 2;
config_->g_input_bit_depth = 10;
break;
}
// Creating a wrapper to the image - setting image data to nullptr. Actual
// pointer will be set in encode. Setting align to 1, as it is meaningless
// (actual memory is not allocated).
raw_ =
vpx_img_wrap(nullptr, img_fmt, codec_.width, codec_.height, 1, nullptr);
raw_->bit_depth = bits_for_storage;
config_->g_w = codec_.width;
config_->g_h = codec_.height;
config_->rc_target_bitrate = inst->startBitrate; // in kbit/s
config_->g_error_resilient = is_svc_ ? VPX_ERROR_RESILIENT_DEFAULT : 0;
// Setting the time base of the codec.
config_->g_timebase.num = 1;
config_->g_timebase.den = 90000;
config_->g_lag_in_frames = 0; // 0- no frame lagging
config_->g_threads = 1;
// Rate control settings.
config_->rc_dropframe_thresh = inst->VP9().frameDroppingOn ? 30 : 0;
config_->rc_end_usage = VPX_CBR;
config_->g_pass = VPX_RC_ONE_PASS;
config_->rc_min_quantizer =
codec_.mode == VideoCodecMode::kScreensharing ? 8 : 2;
config_->rc_max_quantizer = 52;
config_->rc_undershoot_pct = 50;
config_->rc_overshoot_pct = 50;
config_->rc_buf_initial_sz = 500;
config_->rc_buf_optimal_sz = 600;
config_->rc_buf_sz = 1000;
// Set the maximum target size of any key-frame.
rc_max_intra_target_ = MaxIntraTarget(config_->rc_buf_optimal_sz);
// Key-frame interval is enforced manually by this wrapper.
config_->kf_mode = VPX_KF_DISABLED;
// TODO(webm:1592): work-around for libvpx issue, as it can still
// put some key-frames at will even in VPX_KF_DISABLED kf_mode.
config_->kf_max_dist = inst->VP9().keyFrameInterval;
config_->kf_min_dist = config_->kf_max_dist;
if (quality_scaler_experiment_.enabled) {
// In that experiment webrtc wide quality scaler is used instead of libvpx
// internal scaler.
config_->rc_resize_allowed = 0;
} else {
config_->rc_resize_allowed = inst->VP9().automaticResizeOn ? 1 : 0;
}
// Determine number of threads based on the image size and #cores.
config_->g_threads =
NumberOfThreads(config_->g_w, config_->g_h, settings.number_of_cores);
cpu_speed_ = GetCpuSpeed(config_->g_w, config_->g_h);
is_flexible_mode_ = inst->VP9().flexibleMode;
inter_layer_pred_ = inst->VP9().interLayerPred;
if (num_spatial_layers_ > 1 &&
codec_.mode == VideoCodecMode::kScreensharing && !is_flexible_mode_) {
RTC_LOG(LS_ERROR) << "Flexible mode is required for screenshare with "
"several spatial layers";
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// External reference control is required for different frame rate on spatial
// layers because libvpx generates rtp incompatible references in this case.
external_ref_control_ =
!field_trial::IsDisabled("WebRTC-Vp9ExternalRefCtrl") ||
(num_spatial_layers_ > 1 &&
codec_.mode == VideoCodecMode::kScreensharing) ||
inter_layer_pred_ == InterLayerPredMode::kOn;
if (num_temporal_layers_ == 1) {
gof_.SetGofInfoVP9(kTemporalStructureMode1);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING;
config_->ts_number_layers = 1;
config_->ts_rate_decimator[0] = 1;
config_->ts_periodicity = 1;
config_->ts_layer_id[0] = 0;
} else if (num_temporal_layers_ == 2) {
gof_.SetGofInfoVP9(kTemporalStructureMode2);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0101;
config_->ts_number_layers = 2;
config_->ts_rate_decimator[0] = 2;
config_->ts_rate_decimator[1] = 1;
config_->ts_periodicity = 2;
config_->ts_layer_id[0] = 0;
config_->ts_layer_id[1] = 1;
} else if (num_temporal_layers_ == 3) {
gof_.SetGofInfoVP9(kTemporalStructureMode3);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0212;
config_->ts_number_layers = 3;
config_->ts_rate_decimator[0] = 4;
config_->ts_rate_decimator[1] = 2;
config_->ts_rate_decimator[2] = 1;
config_->ts_periodicity = 4;
config_->ts_layer_id[0] = 0;
config_->ts_layer_id[1] = 2;
config_->ts_layer_id[2] = 1;
config_->ts_layer_id[3] = 2;
} else {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (external_ref_control_) {
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS;
if (num_temporal_layers_ > 1 && num_spatial_layers_ > 1 &&
codec_.mode == VideoCodecMode::kScreensharing) {
// External reference control for several temporal layers with different
// frame rates on spatial layers is not implemented yet.
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
}
ref_buf_.clear();
return InitAndSetControlSettings(inst);
}
int VP9EncoderImpl::NumberOfThreads(int width,
int height,
int number_of_cores) {
// Keep the number of encoder threads equal to the possible number of column
// tiles, which is (1, 2, 4, 8). See comments below for VP9E_SET_TILE_COLUMNS.
if (width * height >= 1280 * 720 && number_of_cores > 4) {
return 4;
} else if (width * height >= 640 * 360 && number_of_cores > 2) {
return 2;
} else {
// Use 2 threads for low res on ARM.
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || \
defined(WEBRTC_ANDROID)
if (width * height >= 320 * 180 && number_of_cores > 2) {
return 2;
}
#endif
// 1 thread less than VGA.
return 1;
}
}
int VP9EncoderImpl::InitAndSetControlSettings(const VideoCodec* inst) {
// Set QP-min/max per spatial and temporal layer.
int tot_num_layers = num_spatial_layers_ * num_temporal_layers_;
for (int i = 0; i < tot_num_layers; ++i) {
svc_params_.max_quantizers[i] = config_->rc_max_quantizer;
svc_params_.min_quantizers[i] = config_->rc_min_quantizer;
}
config_->ss_number_layers = num_spatial_layers_;
if (ExplicitlyConfiguredSpatialLayers()) {
for (int i = 0; i < num_spatial_layers_; ++i) {
const auto& layer = codec_.spatialLayers[i];
RTC_CHECK_GT(layer.width, 0);
const int scale_factor = codec_.width / layer.width;
RTC_DCHECK_GT(scale_factor, 0);
// Ensure scaler factor is integer.
if (scale_factor * layer.width != codec_.width) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Ensure scale factor is the same in both dimensions.
if (scale_factor * layer.height != codec_.height) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Ensure scale factor is power of two.
const bool is_pow_of_two = (scale_factor & (scale_factor - 1)) == 0;
if (!is_pow_of_two) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
svc_params_.scaling_factor_num[i] = 1;
svc_params_.scaling_factor_den[i] = scale_factor;
RTC_DCHECK_GT(codec_.spatialLayers[i].maxFramerate, 0);
RTC_DCHECK_LE(codec_.spatialLayers[i].maxFramerate, codec_.maxFramerate);
if (i > 0) {
// Frame rate of high spatial layer is supposed to be equal or higher
// than frame rate of low spatial layer.
RTC_DCHECK_GE(codec_.spatialLayers[i].maxFramerate,
codec_.spatialLayers[i - 1].maxFramerate);
}
}
} else {
int scaling_factor_num = 256;
for (int i = num_spatial_layers_ - 1; i >= 0; --i) {
// 1:2 scaling in each dimension.
svc_params_.scaling_factor_num[i] = scaling_factor_num;
svc_params_.scaling_factor_den[i] = 256;
}
}
SvcRateAllocator init_allocator(codec_);
current_bitrate_allocation_ =
init_allocator.Allocate(VideoBitrateAllocationParameters(
inst->startBitrate * 1000, inst->maxFramerate));
if (!SetSvcRates(current_bitrate_allocation_)) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
const vpx_codec_err_t rv = vpx_codec_enc_init(
encoder_, vpx_codec_vp9_cx(), config_,
config_->g_bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH);
if (rv != VPX_CODEC_OK) {
RTC_LOG(LS_ERROR) << "Init error: " << vpx_codec_err_to_string(rv);
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
vpx_codec_control(encoder_, VP8E_SET_CPUUSED, cpu_speed_);
vpx_codec_control(encoder_, VP8E_SET_MAX_INTRA_BITRATE_PCT,
rc_max_intra_target_);
vpx_codec_control(encoder_, VP9E_SET_AQ_MODE,
inst->VP9().adaptiveQpMode ? 3 : 0);
vpx_codec_control(encoder_, VP9E_SET_FRAME_PARALLEL_DECODING, 0);
vpx_codec_control(encoder_, VP9E_SET_SVC_GF_TEMPORAL_REF, 0);
if (is_svc_) {
vpx_codec_control(encoder_, VP9E_SET_SVC, 1);
vpx_codec_control(encoder_, VP9E_SET_SVC_PARAMETERS, &svc_params_);
}
if (num_spatial_layers_ > 1) {
switch (inter_layer_pred_) {
case InterLayerPredMode::kOn:
vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 0);
break;
case InterLayerPredMode::kOff:
vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 1);
break;
case InterLayerPredMode::kOnKeyPic:
vpx_codec_control(encoder_, VP9E_SET_SVC_INTER_LAYER_PRED, 2);
break;
default:
RTC_NOTREACHED();
}
memset(&svc_drop_frame_, 0, sizeof(svc_drop_frame_));
const bool reverse_constrained_drop_mode =
inter_layer_pred_ == InterLayerPredMode::kOn &&
codec_.mode == VideoCodecMode::kScreensharing &&
num_spatial_layers_ > 1;
if (reverse_constrained_drop_mode) {
// Screenshare dropping mode: drop a layer only together with all lower
// layers. This ensures that drops on lower layers won't reduce frame-rate
// for higher layers and reference structure is RTP-compatible.
svc_drop_frame_.framedrop_mode = CONSTRAINED_FROM_ABOVE_DROP;
svc_drop_frame_.max_consec_drop = 5;
for (size_t i = 0; i < num_spatial_layers_; ++i) {
svc_drop_frame_.framedrop_thresh[i] = config_->rc_dropframe_thresh;
}
// No buffering is needed because the highest layer is always present in
// all frames in CONSTRAINED_FROM_ABOVE drop mode.
layer_buffering_ = false;
} else {
// Configure encoder to drop entire superframe whenever it needs to drop
// a layer. This mode is preferred over per-layer dropping which causes
// quality flickering and is not compatible with RTP non-flexible mode.
svc_drop_frame_.framedrop_mode =
full_superframe_drop_ ? FULL_SUPERFRAME_DROP : CONSTRAINED_LAYER_DROP;
// Buffering is needed only for constrained layer drop, as it's not clear
// which frame is the last.
layer_buffering_ = !full_superframe_drop_;
svc_drop_frame_.max_consec_drop = std::numeric_limits<int>::max();
for (size_t i = 0; i < num_spatial_layers_; ++i) {
svc_drop_frame_.framedrop_thresh[i] = config_->rc_dropframe_thresh;
}
}
vpx_codec_control(encoder_, VP9E_SET_SVC_FRAME_DROP_LAYER,
&svc_drop_frame_);
}
// Register callback for getting each spatial layer.
vpx_codec_priv_output_cx_pkt_cb_pair_t cbp = {
VP9EncoderImpl::EncoderOutputCodedPacketCallback,
reinterpret_cast<void*>(this)};
vpx_codec_control(encoder_, VP9E_REGISTER_CX_CALLBACK,
reinterpret_cast<void*>(&cbp));
// Control function to set the number of column tiles in encoding a frame, in
// log2 unit: e.g., 0 = 1 tile column, 1 = 2 tile columns, 2 = 4 tile columns.
// The number tile columns will be capped by the encoder based on image size
// (minimum width of tile column is 256 pixels, maximum is 4096).
vpx_codec_control(encoder_, VP9E_SET_TILE_COLUMNS, (config_->g_threads >> 1));
// Turn on row-based multithreading.
vpx_codec_control(encoder_, VP9E_SET_ROW_MT, 1);
#if !defined(WEBRTC_ARCH_ARM) && !defined(WEBRTC_ARCH_ARM64) && \
!defined(ANDROID)
// Do not enable the denoiser on ARM since optimization is pending.
// Denoiser is on by default on other platforms.
vpx_codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY,
inst->VP9().denoisingOn ? 1 : 0);
#endif
if (codec_.mode == VideoCodecMode::kScreensharing) {
// Adjust internal parameters to screen content.
vpx_codec_control(encoder_, VP9E_SET_TUNE_CONTENT, 1);
}
// Enable encoder skip of static/low content blocks.
vpx_codec_control(encoder_, VP8E_SET_STATIC_THRESHOLD, 1);
inited_ = true;
config_changed_ = true;
return WEBRTC_VIDEO_CODEC_OK;
}
uint32_t VP9EncoderImpl::MaxIntraTarget(uint32_t optimal_buffer_size) {
// Set max to the optimal buffer level (normalized by target BR),
// and scaled by a scale_par.
// Max target size = scale_par * optimal_buffer_size * targetBR[Kbps].
// This value is presented in percentage of perFrameBw:
// perFrameBw = targetBR[Kbps] * 1000 / framerate.
// The target in % is as follows:
float scale_par = 0.5;
uint32_t target_pct =
optimal_buffer_size * scale_par * codec_.maxFramerate / 10;
// Don't go below 3 times the per frame bandwidth.
const uint32_t min_intra_size = 300;
return (target_pct < min_intra_size) ? min_intra_size : target_pct;
}
int VP9EncoderImpl::Encode(const VideoFrame& input_image,
const std::vector<VideoFrameType>* frame_types) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (encoded_complete_callback_ == nullptr) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (num_active_spatial_layers_ == 0) {
// All spatial layers are disabled, return without encoding anything.
return WEBRTC_VIDEO_CODEC_OK;
}
// We only support one stream at the moment.
if (frame_types && !frame_types->empty()) {
if ((*frame_types)[0] == VideoFrameType::kVideoFrameKey) {
force_key_frame_ = true;
}
}
if (pics_since_key_ + 1 ==
static_cast<size_t>(codec_.VP9()->keyFrameInterval)) {
force_key_frame_ = true;
}
vpx_svc_layer_id_t layer_id = {0};
if (!force_key_frame_) {
const size_t gof_idx = (pics_since_key_ + 1) % gof_.num_frames_in_gof;
layer_id.temporal_layer_id = gof_.temporal_idx[gof_idx];
if (VideoCodecMode::kScreensharing == codec_.mode) {
const uint32_t frame_timestamp_ms =
1000 * input_image.timestamp() / kVideoPayloadTypeFrequency;
// To ensure that several rate-limiters with different limits don't
// interfere, they must be queried in order of increasing limit.
bool use_steady_state_limiter =
variable_framerate_experiment_.enabled &&
input_image.update_rect().IsEmpty() &&
num_steady_state_frames_ >=
variable_framerate_experiment_.frames_before_steady_state;
// Need to check all frame limiters, even if lower layers are disabled,
// because variable frame-rate limiter should be checked after the first
// layer. It's easier to overwrite active layers after, then check all
// cases.
for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) {
const float layer_fps =
framerate_controller_[layer_id.spatial_layer_id].GetTargetRate();
// Use steady state rate-limiter at the correct place.
if (use_steady_state_limiter &&
layer_fps > variable_framerate_experiment_.framerate_limit - 1e-9) {
if (variable_framerate_controller_.DropFrame(frame_timestamp_ms)) {
layer_id.spatial_layer_id = num_active_spatial_layers_;
}
// Break always: if rate limiter triggered frame drop, no need to
// continue; otherwise, the rate is less than the next limiters.
break;
}
if (framerate_controller_[sl_idx].DropFrame(frame_timestamp_ms)) {
++layer_id.spatial_layer_id;
} else {
break;
}
}
if (use_steady_state_limiter &&
layer_id.spatial_layer_id < num_active_spatial_layers_) {
variable_framerate_controller_.AddFrame(frame_timestamp_ms);
}
}
if (force_all_active_layers_) {
layer_id.spatial_layer_id = first_active_layer_;
force_all_active_layers_ = false;
}
RTC_DCHECK_LE(layer_id.spatial_layer_id, num_active_spatial_layers_);
if (layer_id.spatial_layer_id >= num_active_spatial_layers_) {
// Drop entire picture.
return WEBRTC_VIDEO_CODEC_OK;
}
}
// Need to set temporal layer id on ALL layers, even disabled ones.
// Otherwise libvpx might produce frames on a disabled layer:
// http://crbug.com/1051476
for (int sl_idx = 0; sl_idx < num_spatial_layers_; ++sl_idx) {
layer_id.temporal_layer_id_per_spatial[sl_idx] = layer_id.temporal_layer_id;
}
if (layer_id.spatial_layer_id < first_active_layer_) {
layer_id.spatial_layer_id = first_active_layer_;
}
vpx_codec_control(encoder_, VP9E_SET_SVC_LAYER_ID, &layer_id);
if (num_spatial_layers_ > 1) {
// Update frame dropping settings as they may change on per-frame basis.
vpx_codec_control(encoder_, VP9E_SET_SVC_FRAME_DROP_LAYER,
&svc_drop_frame_);
}
if (config_changed_) {
if (vpx_codec_enc_config_set(encoder_, config_)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
config_changed_ = false;
}
RTC_DCHECK_EQ(input_image.width(), raw_->d_w);
RTC_DCHECK_EQ(input_image.height(), raw_->d_h);
// Set input image for use in the callback.
// This was necessary since you need some information from input_image.
// You can save only the necessary information (such as timestamp) instead of
// doing this.
input_image_ = &input_image;
// Keep reference to buffer until encode completes.
rtc::scoped_refptr<I420BufferInterface> i420_buffer;
const I010BufferInterface* i010_buffer;
rtc::scoped_refptr<const I010BufferInterface> i010_copy;
switch (profile_) {
case VP9Profile::kProfile0: {
i420_buffer = input_image.video_frame_buffer()->ToI420();
// Image in vpx_image_t format.
// Input image is const. VPX's raw image is not defined as const.
raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>(i420_buffer->DataY());
raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>(i420_buffer->DataU());
raw_->planes[VPX_PLANE_V] = const_cast<uint8_t*>(i420_buffer->DataV());
raw_->stride[VPX_PLANE_Y] = i420_buffer->StrideY();
raw_->stride[VPX_PLANE_U] = i420_buffer->StrideU();
raw_->stride[VPX_PLANE_V] = i420_buffer->StrideV();
break;
}
case VP9Profile::kProfile1: {
RTC_NOTREACHED();
break;
}
case VP9Profile::kProfile2: {
// We can inject kI010 frames directly for encode. All other formats
// should be converted to it.
switch (input_image.video_frame_buffer()->type()) {
case VideoFrameBuffer::Type::kI010: {
i010_buffer = input_image.video_frame_buffer()->GetI010();
break;
}
default: {
i010_copy =
I010Buffer::Copy(*input_image.video_frame_buffer()->ToI420());
i010_buffer = i010_copy.get();
}
}
raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>(
reinterpret_cast<const uint8_t*>(i010_buffer->DataY()));
raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>(
reinterpret_cast<const uint8_t*>(i010_buffer->DataU()));
raw_->planes[VPX_PLANE_V] = const_cast<uint8_t*>(
reinterpret_cast<const uint8_t*>(i010_buffer->DataV()));
raw_->stride[VPX_PLANE_Y] = i010_buffer->StrideY() * 2;
raw_->stride[VPX_PLANE_U] = i010_buffer->StrideU() * 2;
raw_->stride[VPX_PLANE_V] = i010_buffer->StrideV() * 2;
break;
}
}
vpx_enc_frame_flags_t flags = 0;
if (force_key_frame_) {
flags = VPX_EFLAG_FORCE_KF;
}
if (external_ref_control_) {
vpx_svc_ref_frame_config_t ref_config =
SetReferences(force_key_frame_, layer_id.spatial_layer_id);
if (VideoCodecMode::kScreensharing == codec_.mode) {
for (uint8_t sl_idx = 0; sl_idx < num_active_spatial_layers_; ++sl_idx) {
ref_config.duration[sl_idx] = static_cast<int64_t>(
90000 / (std::min(static_cast<float>(codec_.maxFramerate),
framerate_controller_[sl_idx].GetTargetRate())));
}
}
vpx_codec_control(encoder_, VP9E_SET_SVC_REF_FRAME_CONFIG, &ref_config);
}
first_frame_in_picture_ = true;
// TODO(ssilkin): Frame duration should be specified per spatial layer
// since their frame rate can be different. For now calculate frame duration
// based on target frame rate of the highest spatial layer, which frame rate
// is supposed to be equal or higher than frame rate of low spatial layers.
// Also, timestamp should represent actual time passed since previous frame
// (not 'expected' time). Then rate controller can drain buffer more
// accurately.
RTC_DCHECK_GE(framerate_controller_.size(), num_active_spatial_layers_);
float target_framerate_fps =
(codec_.mode == VideoCodecMode::kScreensharing)
? std::min(static_cast<float>(codec_.maxFramerate),
framerate_controller_[num_active_spatial_layers_ - 1]
.GetTargetRate())
: codec_.maxFramerate;
uint32_t duration = static_cast<uint32_t>(90000 / target_framerate_fps);
const vpx_codec_err_t rv = vpx_codec_encode(encoder_, raw_, timestamp_,
duration, flags, VPX_DL_REALTIME);
if (rv != VPX_CODEC_OK) {
RTC_LOG(LS_ERROR) << "Encoding error: " << vpx_codec_err_to_string(rv)
<< "\n"
"Details: "
<< vpx_codec_error(encoder_) << "\n"
<< vpx_codec_error_detail(encoder_);
return WEBRTC_VIDEO_CODEC_ERROR;
}
timestamp_ += duration;
if (layer_buffering_) {
const bool end_of_picture = true;
DeliverBufferedFrame(end_of_picture);
}
return WEBRTC_VIDEO_CODEC_OK;
}
void VP9EncoderImpl::PopulateCodecSpecific(CodecSpecificInfo* codec_specific,
absl::optional<int>* spatial_idx,
const vpx_codec_cx_pkt& pkt,
uint32_t timestamp) {
RTC_CHECK(codec_specific != nullptr);
codec_specific->codecType = kVideoCodecVP9;
CodecSpecificInfoVP9* vp9_info = &(codec_specific->codecSpecific.VP9);
vp9_info->first_frame_in_picture = first_frame_in_picture_;
vp9_info->flexible_mode = is_flexible_mode_;
if (pkt.data.frame.flags & VPX_FRAME_IS_KEY) {
pics_since_key_ = 0;
} else if (first_frame_in_picture_) {
++pics_since_key_;
}
vpx_svc_layer_id_t layer_id = {0};
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
// Can't have keyframe with non-zero temporal layer.
RTC_DCHECK(pics_since_key_ != 0 || layer_id.temporal_layer_id == 0);
RTC_CHECK_GT(num_temporal_layers_, 0);
RTC_CHECK_GT(num_active_spatial_layers_, 0);
if (num_temporal_layers_ == 1) {
RTC_CHECK_EQ(layer_id.temporal_layer_id, 0);
vp9_info->temporal_idx = kNoTemporalIdx;
} else {
vp9_info->temporal_idx = layer_id.temporal_layer_id;
}
if (num_active_spatial_layers_ == 1) {
RTC_CHECK_EQ(layer_id.spatial_layer_id, 0);
*spatial_idx = absl::nullopt;
} else {
*spatial_idx = layer_id.spatial_layer_id;
}
// TODO(asapersson): this info has to be obtained from the encoder.
vp9_info->temporal_up_switch = false;
const bool is_key_pic = (pics_since_key_ == 0);
const bool is_inter_layer_pred_allowed =
(inter_layer_pred_ == InterLayerPredMode::kOn ||
(inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic));
// Always set inter_layer_predicted to true on high layer frame if inter-layer
// prediction (ILP) is allowed even if encoder didn't actually use it.
// Setting inter_layer_predicted to false would allow receiver to decode high
// layer frame without decoding low layer frame. If that would happen (e.g.
// if low layer frame is lost) then receiver won't be able to decode next high
// layer frame which uses ILP.
vp9_info->inter_layer_predicted =
first_frame_in_picture_ ? false : is_inter_layer_pred_allowed;
// Mark all low spatial layer frames as references (not just frames of
// active low spatial layers) if inter-layer prediction is enabled since
// these frames are indirect references of high spatial layer, which can
// later be enabled without key frame.
vp9_info->non_ref_for_inter_layer_pred =
!is_inter_layer_pred_allowed ||
layer_id.spatial_layer_id + 1 == num_spatial_layers_;
// Always populate this, so that the packetizer can properly set the marker
// bit.
vp9_info->num_spatial_layers = num_active_spatial_layers_;
vp9_info->first_active_layer = first_active_layer_;
vp9_info->num_ref_pics = 0;
FillReferenceIndices(pkt, pics_since_key_, vp9_info->inter_layer_predicted,
vp9_info);
if (vp9_info->flexible_mode) {
vp9_info->gof_idx = kNoGofIdx;
} else {
vp9_info->gof_idx =
static_cast<uint8_t>(pics_since_key_ % gof_.num_frames_in_gof);
vp9_info->temporal_up_switch = gof_.temporal_up_switch[vp9_info->gof_idx];
RTC_DCHECK(vp9_info->num_ref_pics == gof_.num_ref_pics[vp9_info->gof_idx] ||
vp9_info->num_ref_pics == 0);
}
vp9_info->inter_pic_predicted = (!is_key_pic && vp9_info->num_ref_pics > 0);
// Write SS on key frame of independently coded spatial layers and on base
// temporal/spatial layer frame if number of layers changed without issuing
// of key picture (inter-layer prediction is enabled).
const bool is_key_frame = is_key_pic && !vp9_info->inter_layer_predicted;
if (is_key_frame || (ss_info_needed_ && layer_id.temporal_layer_id == 0 &&
layer_id.spatial_layer_id == first_active_layer_)) {
vp9_info->ss_data_available = true;
vp9_info->spatial_layer_resolution_present = true;
// Signal disabled layers.
for (size_t i = 0; i < first_active_layer_; ++i) {
vp9_info->width[i] = 0;
vp9_info->height[i] = 0;
}
for (size_t i = first_active_layer_; i < num_active_spatial_layers_; ++i) {
vp9_info->width[i] = codec_.width * svc_params_.scaling_factor_num[i] /
svc_params_.scaling_factor_den[i];
vp9_info->height[i] = codec_.height * svc_params_.scaling_factor_num[i] /
svc_params_.scaling_factor_den[i];
}
if (vp9_info->flexible_mode) {
vp9_info->gof.num_frames_in_gof = 0;
} else {
vp9_info->gof.CopyGofInfoVP9(gof_);
}
ss_info_needed_ = false;
} else {
vp9_info->ss_data_available = false;
}
first_frame_in_picture_ = false;
}
void VP9EncoderImpl::FillReferenceIndices(const vpx_codec_cx_pkt& pkt,
const size_t pic_num,
const bool inter_layer_predicted,
CodecSpecificInfoVP9* vp9_info) {
vpx_svc_layer_id_t layer_id = {0};
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
const bool is_key_frame =
(pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? true : false;
std::vector<RefFrameBuffer> ref_buf_list;
if (is_svc_) {
vpx_svc_ref_frame_config_t enc_layer_conf = {{0}};
vpx_codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, &enc_layer_conf);
int ref_buf_flags = 0;
if (enc_layer_conf.reference_last[layer_id.spatial_layer_id]) {
const size_t fb_idx =
enc_layer_conf.lst_fb_idx[layer_id.spatial_layer_id];
RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end());
if (std::find(ref_buf_list.begin(), ref_buf_list.end(),
ref_buf_.at(fb_idx)) == ref_buf_list.end()) {
ref_buf_list.push_back(ref_buf_.at(fb_idx));
ref_buf_flags |= 1 << fb_idx;
}
}
if (enc_layer_conf.reference_alt_ref[layer_id.spatial_layer_id]) {
const size_t fb_idx =
enc_layer_conf.alt_fb_idx[layer_id.spatial_layer_id];
RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end());
if (std::find(ref_buf_list.begin(), ref_buf_list.end(),
ref_buf_.at(fb_idx)) == ref_buf_list.end()) {
ref_buf_list.push_back(ref_buf_.at(fb_idx));
ref_buf_flags |= 1 << fb_idx;
}
}
if (enc_layer_conf.reference_golden[layer_id.spatial_layer_id]) {
const size_t fb_idx =
enc_layer_conf.gld_fb_idx[layer_id.spatial_layer_id];
RTC_DCHECK(ref_buf_.find(fb_idx) != ref_buf_.end());
if (std::find(ref_buf_list.begin(), ref_buf_list.end(),
ref_buf_.at(fb_idx)) == ref_buf_list.end()) {
ref_buf_list.push_back(ref_buf_.at(fb_idx));
ref_buf_flags |= 1 << fb_idx;
}
}
RTC_LOG(LS_VERBOSE) << "Frame " << pic_num << " sl "
<< layer_id.spatial_layer_id << " tl "
<< layer_id.temporal_layer_id << " refered buffers "
<< (ref_buf_flags & (1 << 0) ? 1 : 0)
<< (ref_buf_flags & (1 << 1) ? 1 : 0)
<< (ref_buf_flags & (1 << 2) ? 1 : 0)
<< (ref_buf_flags & (1 << 3) ? 1 : 0)
<< (ref_buf_flags & (1 << 4) ? 1 : 0)
<< (ref_buf_flags & (1 << 5) ? 1 : 0)
<< (ref_buf_flags & (1 << 6) ? 1 : 0)
<< (ref_buf_flags & (1 << 7) ? 1 : 0);
} else if (!is_key_frame) {
RTC_DCHECK_EQ(num_spatial_layers_, 1);
RTC_DCHECK_EQ(num_temporal_layers_, 1);
// In non-SVC mode encoder doesn't provide reference list. Assume each frame
// refers previous one, which is stored in buffer 0.
ref_buf_list.push_back(ref_buf_.at(0));
}
size_t max_ref_temporal_layer_id = 0;
std::vector<size_t> ref_pid_list;
vp9_info->num_ref_pics = 0;
for (const RefFrameBuffer& ref_buf : ref_buf_list) {
RTC_DCHECK_LE(ref_buf.pic_num, pic_num);
if (ref_buf.pic_num < pic_num) {
if (inter_layer_pred_ != InterLayerPredMode::kOn) {
// RTP spec limits temporal prediction to the same spatial layer.
// It is safe to ignore this requirement if inter-layer prediction is
// enabled for all frames when all base frames are relayed to receiver.
RTC_DCHECK_EQ(ref_buf.spatial_layer_id, layer_id.spatial_layer_id);
} else {
RTC_DCHECK_LE(ref_buf.spatial_layer_id, layer_id.spatial_layer_id);
}
RTC_DCHECK_LE(ref_buf.temporal_layer_id, layer_id.temporal_layer_id);
// Encoder may reference several spatial layers on the same previous
// frame in case if some spatial layers are skipped on the current frame.
// We shouldn't put duplicate references as it may break some old
// clients and isn't RTP compatible.
if (std::find(ref_pid_list.begin(), ref_pid_list.end(),
ref_buf.pic_num) != ref_pid_list.end()) {
continue;
}
ref_pid_list.push_back(ref_buf.pic_num);
const size_t p_diff = pic_num - ref_buf.pic_num;
RTC_DCHECK_LE(p_diff, 127UL);
vp9_info->p_diff[vp9_info->num_ref_pics] = static_cast<uint8_t>(p_diff);
++vp9_info->num_ref_pics;
max_ref_temporal_layer_id =
std::max(max_ref_temporal_layer_id, ref_buf.temporal_layer_id);
} else {
RTC_DCHECK(inter_layer_predicted);
// RTP spec only allows to use previous spatial layer for inter-layer
// prediction.
RTC_DCHECK_EQ(ref_buf.spatial_layer_id + 1, layer_id.spatial_layer_id);
}
}
vp9_info->temporal_up_switch =
(max_ref_temporal_layer_id <
static_cast<size_t>(layer_id.temporal_layer_id));
}
void VP9EncoderImpl::UpdateReferenceBuffers(const vpx_codec_cx_pkt& pkt,
const size_t pic_num) {
vpx_svc_layer_id_t layer_id = {0};
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
RefFrameBuffer frame_buf(pic_num, layer_id.spatial_layer_id,
layer_id.temporal_layer_id);
if (is_svc_) {
vpx_svc_ref_frame_config_t enc_layer_conf = {{0}};
vpx_codec_control(encoder_, VP9E_GET_SVC_REF_FRAME_CONFIG, &enc_layer_conf);
const int update_buffer_slot =
enc_layer_conf.update_buffer_slot[layer_id.spatial_layer_id];
for (size_t i = 0; i < kNumVp9Buffers; ++i) {
if (update_buffer_slot & (1 << i)) {
ref_buf_[i] = frame_buf;
}
}
RTC_LOG(LS_VERBOSE) << "Frame " << pic_num << " sl "
<< layer_id.spatial_layer_id << " tl "
<< layer_id.temporal_layer_id << " updated buffers "
<< (update_buffer_slot & (1 << 0) ? 1 : 0)
<< (update_buffer_slot & (1 << 1) ? 1 : 0)
<< (update_buffer_slot & (1 << 2) ? 1 : 0)
<< (update_buffer_slot & (1 << 3) ? 1 : 0)
<< (update_buffer_slot & (1 << 4) ? 1 : 0)
<< (update_buffer_slot & (1 << 5) ? 1 : 0)
<< (update_buffer_slot & (1 << 6) ? 1 : 0)
<< (update_buffer_slot & (1 << 7) ? 1 : 0);
} else {
RTC_DCHECK_EQ(num_spatial_layers_, 1);
RTC_DCHECK_EQ(num_temporal_layers_, 1);
// In non-svc mode encoder doesn't provide reference list. Assume each frame
// is reference and stored in buffer 0.
ref_buf_[0] = frame_buf;
}
}
vpx_svc_ref_frame_config_t VP9EncoderImpl::SetReferences(
bool is_key_pic,
size_t first_active_spatial_layer_id) {
// kRefBufIdx, kUpdBufIdx need to be updated to support longer GOFs.
RTC_DCHECK_LE(gof_.num_frames_in_gof, 4);
vpx_svc_ref_frame_config_t ref_config;
memset(&ref_config, 0, sizeof(ref_config));
const size_t num_temporal_refs = std::max(1, num_temporal_layers_ - 1);
const bool is_inter_layer_pred_allowed =
inter_layer_pred_ == InterLayerPredMode::kOn ||
(inter_layer_pred_ == InterLayerPredMode::kOnKeyPic && is_key_pic);
absl::optional<int> last_updated_buf_idx;
// Put temporal reference to LAST and spatial reference to GOLDEN. Update
// frame buffer (i.e. store encoded frame) if current frame is a temporal
// reference (i.e. it belongs to a low temporal layer) or it is a spatial
// reference. In later case, always store spatial reference in the last
// reference frame buffer.
// For the case of 3 temporal and 3 spatial layers we need 6 frame buffers
// for temporal references plus 1 buffer for spatial reference. 7 buffers
// in total.
for (size_t sl_idx = first_active_spatial_layer_id;
sl_idx < num_active_spatial_layers_; ++sl_idx) {
const size_t curr_pic_num = is_key_pic ? 0 : pics_since_key_ + 1;
const size_t gof_idx = curr_pic_num % gof_.num_frames_in_gof;
if (!is_key_pic) {
// Set up temporal reference.
const int buf_idx = sl_idx * num_temporal_refs + kRefBufIdx[gof_idx];
// Last reference frame buffer is reserved for spatial reference. It is
// not supposed to be used for temporal prediction.
RTC_DCHECK_LT(buf_idx, kNumVp9Buffers - 1);
const int pid_diff = curr_pic_num - ref_buf_[buf_idx].pic_num;
// Incorrect spatial layer may be in the buffer due to a key-frame.
const bool same_spatial_layer =
ref_buf_[buf_idx].spatial_layer_id == sl_idx;
bool correct_pid = false;
if (is_flexible_mode_) {
correct_pid = pid_diff > 0 && pid_diff < kMaxAllowedPidDiff;
} else {
// Below code assumes single temporal referecence.
RTC_DCHECK_EQ(gof_.num_ref_pics[gof_idx], 1);
correct_pid = pid_diff == gof_.pid_diff[gof_idx][0];
}
if (same_spatial_layer && correct_pid) {
ref_config.lst_fb_idx[sl_idx] = buf_idx;
ref_config.reference_last[sl_idx] = 1;
} else {
// This reference doesn't match with one specified by GOF. This can
// only happen if spatial layer is enabled dynamically without key
// frame. Spatial prediction is supposed to be enabled in this case.
RTC_DCHECK(is_inter_layer_pred_allowed &&
sl_idx > first_active_spatial_layer_id);
}
}
if (is_inter_layer_pred_allowed && sl_idx > first_active_spatial_layer_id) {
// Set up spatial reference.
RTC_DCHECK(last_updated_buf_idx);
ref_config.gld_fb_idx[sl_idx] = *last_updated_buf_idx;
ref_config.reference_golden[sl_idx] = 1;
} else {
RTC_DCHECK(ref_config.reference_last[sl_idx] != 0 ||
sl_idx == first_active_spatial_layer_id ||
inter_layer_pred_ == InterLayerPredMode::kOff);
}
last_updated_buf_idx.reset();
if (gof_.temporal_idx[gof_idx] < num_temporal_layers_ - 1 ||
num_temporal_layers_ == 1) {
last_updated_buf_idx = sl_idx * num_temporal_refs + kUpdBufIdx[gof_idx];
// Ensure last frame buffer is not used for temporal prediction (it is
// reserved for spatial reference).
RTC_DCHECK_LT(*last_updated_buf_idx, kNumVp9Buffers - 1);
} else if (is_inter_layer_pred_allowed) {
last_updated_buf_idx = kNumVp9Buffers - 1;
}
if (last_updated_buf_idx) {
ref_config.update_buffer_slot[sl_idx] = 1 << *last_updated_buf_idx;
}
}
return ref_config;
}
int VP9EncoderImpl::GetEncodedLayerFrame(const vpx_codec_cx_pkt* pkt) {
RTC_DCHECK_EQ(pkt->kind, VPX_CODEC_CX_FRAME_PKT);
if (pkt->data.frame.sz == 0) {
// Ignore dropped frame.
return WEBRTC_VIDEO_CODEC_OK;
}
vpx_svc_layer_id_t layer_id = {0};
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
if (layer_buffering_) {
// Deliver buffered low spatial layer frame.
const bool end_of_picture = false;
DeliverBufferedFrame(end_of_picture);
}
// TODO(nisse): Introduce some buffer cache or buffer pool, to reduce
// allocations and/or copy operations.
encoded_image_.SetEncodedData(EncodedImageBuffer::Create(
static_cast<const uint8_t*>(pkt->data.frame.buf), pkt->data.frame.sz));
const bool is_key_frame =
(pkt->data.frame.flags & VPX_FRAME_IS_KEY) ? true : false;
// Ensure encoder issued key frame on request.
RTC_DCHECK(is_key_frame || !force_key_frame_);
// Check if encoded frame is a key frame.
encoded_image_._frameType = VideoFrameType::kVideoFrameDelta;
if (is_key_frame) {
encoded_image_._frameType = VideoFrameType::kVideoFrameKey;
force_key_frame_ = false;
}
RTC_DCHECK_LE(encoded_image_.size(), encoded_image_.capacity());
codec_specific_ = {};
absl::optional<int> spatial_index;
PopulateCodecSpecific(&codec_specific_, &spatial_index, *pkt,
input_image_->timestamp());
encoded_image_.SetSpatialIndex(spatial_index);
UpdateReferenceBuffers(*pkt, pics_since_key_);
TRACE_COUNTER1("webrtc", "EncodedFrameSize", encoded_image_.size());
encoded_image_.SetTimestamp(input_image_->timestamp());
encoded_image_._encodedHeight =
pkt->data.frame.height[layer_id.spatial_layer_id];
encoded_image_._encodedWidth =
pkt->data.frame.width[layer_id.spatial_layer_id];
int qp = -1;
vpx_codec_control(encoder_, VP8E_GET_LAST_QUANTIZER, &qp);
encoded_image_.qp_ = qp;
if (!layer_buffering_) {
const bool end_of_picture = encoded_image_.SpatialIndex().value_or(0) + 1 ==
num_active_spatial_layers_;
DeliverBufferedFrame(end_of_picture);
}
return WEBRTC_VIDEO_CODEC_OK;
}
void VP9EncoderImpl::DeliverBufferedFrame(bool end_of_picture) {
if (encoded_image_.size() > 0) {
if (num_spatial_layers_ > 1) {
// Restore frame dropping settings, as dropping may be temporary forbidden
// due to dynamically enabled layers.
for (size_t i = 0; i < num_spatial_layers_; ++i) {
svc_drop_frame_.framedrop_thresh[i] = config_->rc_dropframe_thresh;
}
}
codec_specific_.codecSpecific.VP9.end_of_picture = end_of_picture;
// No data partitioning in VP9, so 1 partition only.
int part_idx = 0;
RTPFragmentationHeader frag_info;
frag_info.VerifyAndAllocateFragmentationHeader(1);
frag_info.fragmentationOffset[part_idx] = 0;
frag_info.fragmentationLength[part_idx] = encoded_image_.size();
encoded_complete_callback_->OnEncodedImage(encoded_image_, &codec_specific_,
&frag_info);
if (codec_.mode == VideoCodecMode::kScreensharing) {
const uint8_t spatial_idx = encoded_image_.SpatialIndex().value_or(0);
const uint32_t frame_timestamp_ms =
1000 * encoded_image_.Timestamp() / kVideoPayloadTypeFrequency;
framerate_controller_[spatial_idx].AddFrame(frame_timestamp_ms);
const size_t steady_state_size = SteadyStateSize(
spatial_idx, codec_specific_.codecSpecific.VP9.temporal_idx);
// Only frames on spatial layers, which may be limited in a steady state
// are considered for steady state detection.
if (framerate_controller_[spatial_idx].GetTargetRate() >
variable_framerate_experiment_.framerate_limit + 1e-9) {
if (encoded_image_.qp_ <=
variable_framerate_experiment_.steady_state_qp &&
encoded_image_.size() <= steady_state_size) {
++num_steady_state_frames_;
} else {
num_steady_state_frames_ = 0;
}
}
}
encoded_image_.set_size(0);
}
}
int VP9EncoderImpl::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
encoded_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
VideoEncoder::EncoderInfo VP9EncoderImpl::GetEncoderInfo() const {
EncoderInfo info;
info.supports_native_handle = false;
info.implementation_name = "libvpx";
if (quality_scaler_experiment_.enabled) {
info.scaling_settings = VideoEncoder::ScalingSettings(
quality_scaler_experiment_.low_qp, quality_scaler_experiment_.high_qp);
} else {
info.scaling_settings = VideoEncoder::ScalingSettings::kOff;
}
info.has_trusted_rate_controller = trusted_rate_controller_;
info.is_hardware_accelerated = false;
info.has_internal_source = false;
if (inited_) {
// Find the max configured fps of any active spatial layer.
float max_fps = 0.0;
for (size_t si = 0; si < num_spatial_layers_; ++si) {
if (codec_.spatialLayers[si].active &&
codec_.spatialLayers[si].maxFramerate > max_fps) {
max_fps = codec_.spatialLayers[si].maxFramerate;
}
}
for (size_t si = 0; si < num_spatial_layers_; ++si) {
info.fps_allocation[si].clear();
if (!codec_.spatialLayers[si].active) {
continue;
}
// This spatial layer may already use a fraction of the total frame rate.
const float sl_fps_fraction =
codec_.spatialLayers[si].maxFramerate / max_fps;
for (size_t ti = 0; ti < num_temporal_layers_; ++ti) {
const uint32_t decimator =
num_temporal_layers_ <= 1 ? 1 : config_->ts_rate_decimator[ti];
RTC_DCHECK_GT(decimator, 0);
info.fps_allocation[si].push_back(
rtc::saturated_cast<uint8_t>(EncoderInfo::kMaxFramerateFraction *
(sl_fps_fraction / decimator)));
}
}
}
return info;
}
size_t VP9EncoderImpl::SteadyStateSize(int sid, int tid) {
const size_t bitrate_bps = current_bitrate_allocation_.GetBitrate(
sid, tid == kNoTemporalIdx ? 0 : tid);
const float fps = (codec_.mode == VideoCodecMode::kScreensharing)
? std::min(static_cast<float>(codec_.maxFramerate),
framerate_controller_[sid].GetTargetRate())
: codec_.maxFramerate;
return static_cast<size_t>(
bitrate_bps / (8 * fps) *
(100 -
variable_framerate_experiment_.steady_state_undershoot_percentage) /
100 +
0.5);
}
// static
VP9EncoderImpl::VariableFramerateExperiment
VP9EncoderImpl::ParseVariableFramerateConfig(std::string group_name) {
FieldTrialFlag enabled = FieldTrialFlag("Enabled");
FieldTrialParameter<double> framerate_limit("min_fps", 5.0);
FieldTrialParameter<int> qp("min_qp", 32);
FieldTrialParameter<int> undershoot_percentage("undershoot", 30);
FieldTrialParameter<int> frames_before_steady_state(
"frames_before_steady_state", 5);
ParseFieldTrial({&enabled, &framerate_limit, &qp, &undershoot_percentage,
&frames_before_steady_state},
field_trial::FindFullName(group_name));
VariableFramerateExperiment config;
config.enabled = enabled.Get();
config.framerate_limit = framerate_limit.Get();
config.steady_state_qp = qp.Get();
config.steady_state_undershoot_percentage = undershoot_percentage.Get();
config.frames_before_steady_state = frames_before_steady_state.Get();
return config;
}
// static
VP9EncoderImpl::QualityScalerExperiment
VP9EncoderImpl::ParseQualityScalerConfig(std::string group_name) {
FieldTrialFlag disabled = FieldTrialFlag("Disabled");
FieldTrialParameter<int> low_qp("low_qp", kLowVp9QpThreshold);
FieldTrialParameter<int> high_qp("hihg_qp", kHighVp9QpThreshold);
ParseFieldTrial({&disabled, &low_qp, &high_qp},
field_trial::FindFullName(group_name));
QualityScalerExperiment config;
config.enabled = !disabled.Get();
RTC_LOG(LS_INFO) << "Webrtc quality scaler for vp9 is "
<< (config.enabled ? "enabled." : "disabled");
config.low_qp = low_qp.Get();
config.high_qp = high_qp.Get();
return config;
}
VP9DecoderImpl::VP9DecoderImpl()
: decode_complete_callback_(nullptr),
inited_(false),
decoder_(nullptr),
key_frame_required_(true) {}
VP9DecoderImpl::~VP9DecoderImpl() {
inited_ = true; // in order to do the actual release
Release();
int num_buffers_in_use = frame_buffer_pool_.GetNumBuffersInUse();
if (num_buffers_in_use > 0) {
// The frame buffers are reference counted and frames are exposed after
// decoding. There may be valid usage cases where previous frames are still
// referenced after ~VP9DecoderImpl that is not a leak.
RTC_LOG(LS_INFO) << num_buffers_in_use
<< " Vp9FrameBuffers are still "
"referenced during ~VP9DecoderImpl.";
}
}
int VP9DecoderImpl::InitDecode(const VideoCodec* inst, int number_of_cores) {
int ret_val = Release();
if (ret_val < 0) {
return ret_val;
}
if (decoder_ == nullptr) {
decoder_ = new vpx_codec_ctx_t;
}
vpx_codec_dec_cfg_t cfg;
memset(&cfg, 0, sizeof(cfg));
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
// We focus on webrtc fuzzing here, not libvpx itself. Use single thread for
// fuzzing, because:
// - libvpx's VP9 single thread decoder is more fuzzer friendly. It detects
// errors earlier than the multi-threads version.
// - Make peak CPU usage under control (not depending on input)
cfg.threads = 1;
#else
if (!inst) {
// No config provided - don't know resolution to decode yet.
// Set thread count to one in the meantime.
cfg.threads = 1;
} else {
// We want to use multithreading when decoding high resolution videos. But
// not too many in order to avoid overhead when many stream are decoded
// concurrently.
// Set 2 thread as target for 1280x720 pixel count, and then scale up
// linearly from there - but cap at physical core count.
// For common resolutions this results in:
// 1 for 360p
// 2 for 720p
// 4 for 1080p
// 8 for 1440p
// 18 for 4K
int num_threads =
std::max(1, 2 * (inst->width * inst->height) / (1280 * 720));
cfg.threads = std::min(number_of_cores, num_threads);
current_codec_ = *inst;
}
#endif
num_cores_ = number_of_cores;
vpx_codec_flags_t flags = 0;
if (vpx_codec_dec_init(decoder_, vpx_codec_vp9_dx(), &cfg, flags)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
if (!frame_buffer_pool_.InitializeVpxUsePool(decoder_)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
inited_ = true;
// Always start with a complete key frame.
key_frame_required_ = true;
if (inst && inst->buffer_pool_size) {
if (!frame_buffer_pool_.Resize(*inst->buffer_pool_size)) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
}
vpx_codec_err_t status =
vpx_codec_control(decoder_, VP9D_SET_LOOP_FILTER_OPT, 1);
if (status != VPX_CODEC_OK) {
RTC_LOG(LS_ERROR) << "Failed to enable VP9D_SET_LOOP_FILTER_OPT. "
<< vpx_codec_error(decoder_);
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::Decode(const EncodedImage& input_image,
bool missing_frames,
int64_t /*render_time_ms*/) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (decode_complete_callback_ == nullptr) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (input_image._frameType == VideoFrameType::kVideoFrameKey) {
absl::optional<vp9::FrameInfo> frame_info =
vp9::ParseIntraFrameInfo(input_image.data(), input_image.size());
if (frame_info) {
if (frame_info->frame_width != current_codec_.width ||
frame_info->frame_height != current_codec_.height) {
// Resolution has changed, tear down and re-init a new decoder in
// order to get correct sizing.
Release();
current_codec_.width = frame_info->frame_width;
current_codec_.height = frame_info->frame_height;
int reinit_status = InitDecode(&current_codec_, num_cores_);
if (reinit_status != WEBRTC_VIDEO_CODEC_OK) {
RTC_LOG(LS_WARNING) << "Failed to re-init decoder.";
return reinit_status;
}
}
} else {
RTC_LOG(LS_WARNING) << "Failed to parse VP9 header from key-frame.";
}
}
// Always start with a complete key frame.
if (key_frame_required_) {
if (input_image._frameType != VideoFrameType::kVideoFrameKey)
return WEBRTC_VIDEO_CODEC_ERROR;
// We have a key frame - is it complete?
if (input_image._completeFrame) {
key_frame_required_ = false;
} else {
return WEBRTC_VIDEO_CODEC_ERROR;
}
}
vpx_codec_iter_t iter = nullptr;
vpx_image_t* img;
const uint8_t* buffer = input_image.data();
if (input_image.size() == 0) {
buffer = nullptr; // Triggers full frame concealment.
}
// During decode libvpx may get and release buffers from |frame_buffer_pool_|.
// In practice libvpx keeps a few (~3-4) buffers alive at a time.
if (vpx_codec_decode(decoder_, buffer,
static_cast<unsigned int>(input_image.size()), 0,
VPX_DL_REALTIME)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
// |img->fb_priv| contains the image data, a reference counted Vp9FrameBuffer.
// It may be released by libvpx during future vpx_codec_decode or
// vpx_codec_destroy calls.
img = vpx_codec_get_frame(decoder_, &iter);
int qp;
vpx_codec_err_t vpx_ret =
vpx_codec_control(decoder_, VPXD_GET_LAST_QUANTIZER, &qp);
RTC_DCHECK_EQ(vpx_ret, VPX_CODEC_OK);
int ret =
ReturnFrame(img, input_image.Timestamp(), qp, input_image.ColorSpace());
if (ret != 0) {
return ret;
}
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::ReturnFrame(
const vpx_image_t* img,
uint32_t timestamp,
int qp,
const webrtc::ColorSpace* explicit_color_space) {
if (img == nullptr) {
// Decoder OK and nullptr image => No show frame.
return WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
// This buffer contains all of |img|'s image data, a reference counted
// Vp9FrameBuffer. (libvpx is done with the buffers after a few
// vpx_codec_decode calls or vpx_codec_destroy).
Vp9FrameBufferPool::Vp9FrameBuffer* img_buffer =
static_cast<Vp9FrameBufferPool::Vp9FrameBuffer*>(img->fb_priv);
// The buffer can be used directly by the VideoFrame (without copy) by
// using a Wrapped*Buffer.
rtc::scoped_refptr<VideoFrameBuffer> img_wrapped_buffer;
switch (img->bit_depth) {
case 8:
if (img->fmt == VPX_IMG_FMT_I420) {
img_wrapped_buffer = WrapI420Buffer(
img->d_w, img->d_h, img->planes[VPX_PLANE_Y],
img->stride[VPX_PLANE_Y], img->planes[VPX_PLANE_U],
img->stride[VPX_PLANE_U], img->planes[VPX_PLANE_V],
img->stride[VPX_PLANE_V],
// WrappedI420Buffer's mechanism for allowing the release of its
// frame buffer is through a callback function. This is where we
// should release |img_buffer|.
rtc::KeepRefUntilDone(img_buffer));
} else if (img->fmt == VPX_IMG_FMT_I444) {
img_wrapped_buffer = WrapI444Buffer(
img->d_w, img->d_h, img->planes[VPX_PLANE_Y],
img->stride[VPX_PLANE_Y], img->planes[VPX_PLANE_U],
img->stride[VPX_PLANE_U], img->planes[VPX_PLANE_V],
img->stride[VPX_PLANE_V],
// WrappedI444Buffer's mechanism for allowing the release of its
// frame buffer is through a callback function. This is where we
// should release |img_buffer|.
rtc::KeepRefUntilDone(img_buffer));
} else {
RTC_LOG(LS_ERROR)
<< "Unsupported pixel format produced by the decoder: "
<< static_cast<int>(img->fmt);
return WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
break;
case 10:
img_wrapped_buffer = WrapI010Buffer(
img->d_w, img->d_h,
reinterpret_cast<const uint16_t*>(img->planes[VPX_PLANE_Y]),
img->stride[VPX_PLANE_Y] / 2,
reinterpret_cast<const uint16_t*>(img->planes[VPX_PLANE_U]),
img->stride[VPX_PLANE_U] / 2,
reinterpret_cast<const uint16_t*>(img->planes[VPX_PLANE_V]),
img->stride[VPX_PLANE_V] / 2, rtc::KeepRefUntilDone(img_buffer));
break;
default:
RTC_LOG(LS_ERROR) << "Unsupported bit depth produced by the decoder: "
<< img->bit_depth;
return WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
auto builder = VideoFrame::Builder()
.set_video_frame_buffer(img_wrapped_buffer)
.set_timestamp_rtp(timestamp);
if (explicit_color_space) {
builder.set_color_space(*explicit_color_space);
} else {
builder.set_color_space(
ExtractVP9ColorSpace(img->cs, img->range, img->bit_depth));
}
VideoFrame decoded_image = builder.build();
decode_complete_callback_->Decoded(decoded_image, absl::nullopt, qp);
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::RegisterDecodeCompleteCallback(
DecodedImageCallback* callback) {
decode_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::Release() {
int ret_val = WEBRTC_VIDEO_CODEC_OK;
if (decoder_ != nullptr) {
if (inited_) {
// When a codec is destroyed libvpx will release any buffers of
// |frame_buffer_pool_| it is currently using.
if (vpx_codec_destroy(decoder_)) {
ret_val = WEBRTC_VIDEO_CODEC_MEMORY;
}
}
delete decoder_;
decoder_ = nullptr;
}
// Releases buffers from the pool. Any buffers not in use are deleted. Buffers
// still referenced externally are deleted once fully released, not returning
// to the pool.
frame_buffer_pool_.ClearPool();
inited_ = false;
return ret_val;
}
const char* VP9DecoderImpl::ImplementationName() const {
return "libvpx";
}
} // namespace webrtc
#endif // RTC_ENABLE_VP9