blob: 643271fec8804a9dffbe429bb034593a1f65021c [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cstdint>
#include <vector>
#include "common_video/h264/h264_common.h"
#include "common_video/h264/sps_vui_rewriter.h"
#include "rtc_base/bit_buffer.h"
#include "rtc_base/buffer.h"
#include "rtc_base/logging.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
enum SpsMode {
kNoRewriteRequired_VuiOptimal,
kRewriteRequired_NoVui,
kRewriteRequired_NoBitstreamRestriction,
kRewriteRequired_VuiSuboptimal,
};
static const size_t kSpsBufferMaxSize = 256;
static const size_t kWidth = 640;
static const size_t kHeight = 480;
static const uint8_t kStartSequence[] = {0x00, 0x00, 0x00, 0x01};
static const uint8_t kSpsNaluType[] = {H264::NaluType::kSps};
static const uint8_t kIdr1[] = {H264::NaluType::kIdr, 0xFF, 0x00, 0x00, 0x04};
static const uint8_t kIdr2[] = {H264::NaluType::kIdr, 0xFF, 0x00, 0x11};
// Generates a fake SPS with basically everything empty and with characteristics
// based off SpsMode.
// Pass in a buffer of at least kSpsBufferMaxSize.
// The fake SPS that this generates also always has at least one emulation byte
// at offset 2, since the first two bytes are always 0, and has a 0x3 as the
// level_idc, to make sure the parser doesn't eat all 0x3 bytes.
void GenerateFakeSps(SpsMode mode, rtc::Buffer* out_buffer) {
uint8_t rbsp[kSpsBufferMaxSize] = {0};
rtc::BitBufferWriter writer(rbsp, kSpsBufferMaxSize);
// Profile byte.
writer.WriteUInt8(0);
// Constraint sets and reserved zero bits.
writer.WriteUInt8(0);
// level_idc.
writer.WriteUInt8(3);
// seq_paramter_set_id.
writer.WriteExponentialGolomb(0);
// Profile is not special, so we skip all the chroma format settings.
// Now some bit magic.
// log2_max_frame_num_minus4: ue(v). 0 is fine.
writer.WriteExponentialGolomb(0);
// pic_order_cnt_type: ue(v).
writer.WriteExponentialGolomb(0);
// log2_max_pic_order_cnt_lsb_minus4: ue(v). 0 is fine.
writer.WriteExponentialGolomb(0);
// max_num_ref_frames: ue(v). Use 1, to make optimal/suboptimal more obvious.
writer.WriteExponentialGolomb(1);
// gaps_in_frame_num_value_allowed_flag: u(1).
writer.WriteBits(0, 1);
// Next are width/height. First, calculate the mbs/map_units versions.
uint16_t width_in_mbs_minus1 = (kWidth + 15) / 16 - 1;
// For the height, we're going to define frame_mbs_only_flag, so we need to
// divide by 2. See the parser for the full calculation.
uint16_t height_in_map_units_minus1 = ((kHeight + 15) / 16 - 1) / 2;
// Write each as ue(v).
writer.WriteExponentialGolomb(width_in_mbs_minus1);
writer.WriteExponentialGolomb(height_in_map_units_minus1);
// frame_mbs_only_flag: u(1). Needs to be false.
writer.WriteBits(0, 1);
// mb_adaptive_frame_field_flag: u(1).
writer.WriteBits(0, 1);
// direct_8x8_inferene_flag: u(1).
writer.WriteBits(0, 1);
// frame_cropping_flag: u(1). 1, so we can supply crop.
writer.WriteBits(1, 1);
// Now we write the left/right/top/bottom crop. For simplicity, we'll put all
// the crop at the left/top.
// We picked a 4:2:0 format, so the crops are 1/2 the pixel crop values.
// Left/right.
writer.WriteExponentialGolomb(((16 - (kWidth % 16)) % 16) / 2);
writer.WriteExponentialGolomb(0);
// Top/bottom.
writer.WriteExponentialGolomb(((16 - (kHeight % 16)) % 16) / 2);
writer.WriteExponentialGolomb(0);
// Finally! The VUI.
// vui_parameters_present_flag: u(1)
if (mode == kRewriteRequired_NoVui) {
writer.WriteBits(0, 1);
} else {
writer.WriteBits(1, 1);
// VUI time. 8 flags to ignore followed by the bitstream restriction flag.
writer.WriteBits(0, 8);
if (mode == kRewriteRequired_NoBitstreamRestriction) {
writer.WriteBits(0, 1);
} else {
writer.WriteBits(1, 1);
// Write some defaults. Shouldn't matter for parsing, though.
// motion_vectors_over_pic_boundaries_flag: u(1)
writer.WriteBits(1, 1);
// max_bytes_per_pic_denom: ue(v)
writer.WriteExponentialGolomb(2);
// max_bits_per_mb_denom: ue(v)
writer.WriteExponentialGolomb(1);
// log2_max_mv_length_horizontal: ue(v)
// log2_max_mv_length_vertical: ue(v)
writer.WriteExponentialGolomb(16);
writer.WriteExponentialGolomb(16);
// Next are the limits we care about.
// max_num_reorder_frames: ue(v)
// max_dec_frame_buffering: ue(v)
if (mode == kRewriteRequired_VuiSuboptimal) {
writer.WriteExponentialGolomb(4);
writer.WriteExponentialGolomb(4);
} else {
writer.WriteExponentialGolomb(0);
writer.WriteExponentialGolomb(1);
}
}
}
// Get the number of bytes written (including the last partial byte).
size_t byte_count, bit_offset;
writer.GetCurrentOffset(&byte_count, &bit_offset);
if (bit_offset > 0) {
byte_count++;
}
H264::WriteRbsp(rbsp, byte_count, out_buffer);
}
void TestSps(SpsMode mode, SpsVuiRewriter::ParseResult expected_parse_result) {
rtc::LogMessage::LogToDebug(rtc::LS_VERBOSE);
rtc::Buffer original_sps;
GenerateFakeSps(mode, &original_sps);
absl::optional<SpsParser::SpsState> sps;
rtc::Buffer rewritten_sps;
SpsVuiRewriter::ParseResult result = SpsVuiRewriter::ParseAndRewriteSps(
original_sps.data(), original_sps.size(), &sps, &rewritten_sps,
SpsVuiRewriter::Direction::kIncoming);
EXPECT_EQ(expected_parse_result, result);
ASSERT_TRUE(sps);
EXPECT_EQ(sps->width, kWidth);
EXPECT_EQ(sps->height, kHeight);
if (mode != kRewriteRequired_NoVui) {
EXPECT_EQ(sps->vui_params_present, 1u);
}
if (result == SpsVuiRewriter::ParseResult::kVuiRewritten) {
// Ensure that added/rewritten SPS is parsable.
rtc::Buffer tmp;
result = SpsVuiRewriter::ParseAndRewriteSps(
rewritten_sps.data(), rewritten_sps.size(), &sps, &tmp,
SpsVuiRewriter::Direction::kIncoming);
EXPECT_EQ(SpsVuiRewriter::ParseResult::kVuiOk, result);
ASSERT_TRUE(sps);
EXPECT_EQ(sps->width, kWidth);
EXPECT_EQ(sps->height, kHeight);
EXPECT_EQ(sps->vui_params_present, 1u);
}
}
#define REWRITE_TEST(test_name, mode, expected_parse_result) \
TEST(SpsVuiRewriterTest, test_name) { TestSps(mode, expected_parse_result); }
REWRITE_TEST(VuiAlreadyOptimal,
kNoRewriteRequired_VuiOptimal,
SpsVuiRewriter::ParseResult::kVuiOk)
REWRITE_TEST(RewriteFullVui,
kRewriteRequired_NoVui,
SpsVuiRewriter::ParseResult::kVuiRewritten)
REWRITE_TEST(AddBitstreamRestriction,
kRewriteRequired_NoBitstreamRestriction,
SpsVuiRewriter::ParseResult::kVuiRewritten)
REWRITE_TEST(RewriteSuboptimalVui,
kRewriteRequired_VuiSuboptimal,
SpsVuiRewriter::ParseResult::kVuiRewritten)
TEST(SpsVuiRewriterTest, ParseOutgoingBitstreamOptimalVui) {
rtc::LogMessage::LogToDebug(rtc::LS_VERBOSE);
rtc::Buffer optimal_sps;
GenerateFakeSps(kNoRewriteRequired_VuiOptimal, &optimal_sps);
rtc::Buffer buffer;
const size_t kNumNalus = 2;
size_t nalu_offsets[kNumNalus];
size_t nalu_lengths[kNumNalus];
buffer.AppendData(kStartSequence);
nalu_offsets[0] = buffer.size();
nalu_lengths[0] = optimal_sps.size();
buffer.AppendData(optimal_sps);
buffer.AppendData(kStartSequence);
nalu_offsets[1] = buffer.size();
nalu_lengths[1] = sizeof(kIdr1);
buffer.AppendData(kIdr1);
rtc::Buffer modified_buffer;
size_t modified_nalu_offsets[kNumNalus];
size_t modified_nalu_lengths[kNumNalus];
SpsVuiRewriter::ParseOutgoingBitstreamAndRewriteSps(
buffer, kNumNalus, nalu_offsets, nalu_lengths, &modified_buffer,
modified_nalu_offsets, modified_nalu_lengths);
EXPECT_THAT(
std::vector<uint8_t>(modified_buffer.data(),
modified_buffer.data() + modified_buffer.size()),
::testing::ElementsAreArray(buffer.data(), buffer.size()));
EXPECT_THAT(std::vector<size_t>(modified_nalu_offsets,
modified_nalu_offsets + kNumNalus),
::testing::ElementsAreArray(nalu_offsets, kNumNalus));
EXPECT_THAT(std::vector<size_t>(modified_nalu_lengths,
modified_nalu_lengths + kNumNalus),
::testing::ElementsAreArray(nalu_lengths, kNumNalus));
}
TEST(SpsVuiRewriterTest, ParseOutgoingBitstreamNoVui) {
rtc::LogMessage::LogToDebug(rtc::LS_VERBOSE);
rtc::Buffer sps;
GenerateFakeSps(kRewriteRequired_NoVui, &sps);
rtc::Buffer buffer;
const size_t kNumNalus = 3;
size_t nalu_offsets[kNumNalus];
size_t nalu_lengths[kNumNalus];
buffer.AppendData(kStartSequence);
nalu_offsets[0] = buffer.size();
nalu_lengths[0] = sizeof(kIdr1);
buffer.AppendData(kIdr1);
buffer.AppendData(kStartSequence);
nalu_offsets[1] = buffer.size();
nalu_lengths[1] = sizeof(kSpsNaluType) + sps.size();
buffer.AppendData(kSpsNaluType);
buffer.AppendData(sps);
buffer.AppendData(kStartSequence);
nalu_offsets[2] = buffer.size();
nalu_lengths[2] = sizeof(kIdr2);
buffer.AppendData(kIdr2);
rtc::Buffer optimal_sps;
GenerateFakeSps(kNoRewriteRequired_VuiOptimal, &optimal_sps);
rtc::Buffer expected_buffer;
size_t expected_nalu_offsets[kNumNalus];
size_t expected_nalu_lengths[kNumNalus];
expected_buffer.AppendData(kStartSequence);
expected_nalu_offsets[0] = expected_buffer.size();
expected_nalu_lengths[0] = sizeof(kIdr1);
expected_buffer.AppendData(kIdr1);
expected_buffer.AppendData(kStartSequence);
expected_nalu_offsets[1] = expected_buffer.size();
expected_nalu_lengths[1] = sizeof(kSpsNaluType) + optimal_sps.size();
expected_buffer.AppendData(kSpsNaluType);
expected_buffer.AppendData(optimal_sps);
expected_buffer.AppendData(kStartSequence);
expected_nalu_offsets[2] = expected_buffer.size();
expected_nalu_lengths[2] = sizeof(kIdr2);
expected_buffer.AppendData(kIdr2);
rtc::Buffer modified_buffer;
size_t modified_nalu_offsets[kNumNalus];
size_t modified_nalu_lengths[kNumNalus];
SpsVuiRewriter::ParseOutgoingBitstreamAndRewriteSps(
buffer, kNumNalus, nalu_offsets, nalu_lengths, &modified_buffer,
modified_nalu_offsets, modified_nalu_lengths);
EXPECT_THAT(
std::vector<uint8_t>(modified_buffer.data(),
modified_buffer.data() + modified_buffer.size()),
::testing::ElementsAreArray(expected_buffer.data(),
expected_buffer.size()));
EXPECT_THAT(std::vector<size_t>(modified_nalu_offsets,
modified_nalu_offsets + kNumNalus),
::testing::ElementsAreArray(expected_nalu_offsets, kNumNalus));
EXPECT_THAT(std::vector<size_t>(modified_nalu_lengths,
modified_nalu_lengths + kNumNalus),
::testing::ElementsAreArray(expected_nalu_lengths, kNumNalus));
}
} // namespace webrtc