blob: c8465eaff679807de445ad3e6c64862946be82a1 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/aec3/suppression_gain.h"
#include "webrtc/typedefs.h"
#if defined(WEBRTC_ARCH_X86_FAMILY)
#include <emmintrin.h>
#endif
#include <math.h>
#include <algorithm>
#include <functional>
#include <numeric>
#include "webrtc/modules/audio_processing/aec3/vector_math.h"
#include "webrtc/rtc_base/checks.h"
namespace webrtc {
namespace {
// Adjust the gains according to the presence of known external filters.
void AdjustForExternalFilters(std::array<float, kFftLengthBy2Plus1>* gain) {
// Limit the low frequency gains to avoid the impact of the high-pass filter
// on the lower-frequency gain influencing the overall achieved gain.
(*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]);
// Limit the high frequency gains to avoid the impact of the anti-aliasing
// filter on the upper-frequency gains influencing the overall achieved
// gain. TODO(peah): Update this when new anti-aliasing filters are
// implemented.
constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000;
const float min_upper_gain = (*gain)[kAntiAliasingImpactLimit];
std::for_each(
gain->begin() + kAntiAliasingImpactLimit, gain->end() - 1,
[min_upper_gain](float& a) { a = std::min(a, min_upper_gain); });
(*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1];
}
// Computes the gain to apply for the bands beyond the first band.
float UpperBandsGain(
bool saturated_echo,
const std::vector<std::vector<float>>& render,
const std::array<float, kFftLengthBy2Plus1>& low_band_gain) {
RTC_DCHECK_LT(0, render.size());
if (render.size() == 1) {
return 1.f;
}
constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2;
const float gain_below_8_khz = *std::min_element(
low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end());
// Always attenuate the upper bands when there is saturated echo.
if (saturated_echo) {
return std::min(0.001f, gain_below_8_khz);
}
// Compute the upper and lower band energies.
const auto sum_of_squares = [](float a, float b) { return a + b * b; };
const float low_band_energy =
std::accumulate(render[0].begin(), render[0].end(), 0.f, sum_of_squares);
float high_band_energy = 0.f;
for (size_t k = 1; k < render.size(); ++k) {
const float energy = std::accumulate(render[k].begin(), render[k].end(),
0.f, sum_of_squares);
high_band_energy = std::max(high_band_energy, energy);
}
// If there is more power in the lower frequencies than the upper frequencies,
// or if the power in upper frequencies is low, do not bound the gain in the
// upper bands.
float anti_howling_gain;
constexpr float kThreshold = kSubBlockSize * 10.f * 10.f;
if (high_band_energy < std::max(low_band_energy, kThreshold)) {
anti_howling_gain = 1.f;
} else {
// In all other cases, bound the gain for upper frequencies.
RTC_DCHECK_LE(low_band_energy, high_band_energy);
RTC_DCHECK_NE(0.f, high_band_energy);
anti_howling_gain = 0.01f * sqrtf(low_band_energy / high_band_energy);
}
// Choose the gain as the minimum of the lower and upper gains.
return std::min(gain_below_8_khz, anti_howling_gain);
}
// Limits the gain increase.
void UpdateMaxGainIncrease(
size_t no_saturation_counter,
bool low_noise_render,
const std::array<float, kFftLengthBy2Plus1>& last_echo,
const std::array<float, kFftLengthBy2Plus1>& echo,
const std::array<float, kFftLengthBy2Plus1>& last_gain,
const std::array<float, kFftLengthBy2Plus1>& new_gain,
std::array<float, kFftLengthBy2Plus1>* gain_increase) {
float max_increasing;
float max_decreasing;
float rate_increasing;
float rate_decreasing;
float min_increasing;
float min_decreasing;
if (low_noise_render) {
max_increasing = 8.f;
max_decreasing = 8.f;
rate_increasing = 2.f;
rate_decreasing = 2.f;
min_increasing = 4.f;
min_decreasing = 4.f;
} else if (no_saturation_counter > 10) {
max_increasing = 4.f;
max_decreasing = 4.f;
rate_increasing = 2.f;
rate_decreasing = 2.f;
min_increasing = 1.2f;
min_decreasing = 2.f;
} else {
max_increasing = 1.2f;
max_decreasing = 1.2f;
rate_increasing = 1.5f;
rate_decreasing = 1.5f;
min_increasing = 1.f;
min_decreasing = 1.f;
}
for (size_t k = 0; k < new_gain.size(); ++k) {
if (echo[k] > last_echo[k]) {
(*gain_increase)[k] =
new_gain[k] > last_gain[k]
? std::min(max_increasing, (*gain_increase)[k] * rate_increasing)
: min_increasing;
} else {
(*gain_increase)[k] =
new_gain[k] > last_gain[k]
? std::min(max_decreasing, (*gain_increase)[k] * rate_decreasing)
: min_decreasing;
}
}
}
// Computes the gain to reduce the echo to a non audible level.
void GainToNoAudibleEcho(
bool low_noise_render,
bool saturated_echo,
const std::array<float, kFftLengthBy2Plus1>& nearend,
const std::array<float, kFftLengthBy2Plus1>& echo,
const std::array<float, kFftLengthBy2Plus1>& masker,
const std::array<float, kFftLengthBy2Plus1>& min_gain,
const std::array<float, kFftLengthBy2Plus1>& max_gain,
const std::array<float, kFftLengthBy2Plus1>& one_by_echo,
std::array<float, kFftLengthBy2Plus1>* gain) {
constexpr float kEchoMaskingMargin = 1.f / 100.f;
const float nearend_masking_margin =
low_noise_render ? 0.1f : (saturated_echo ? 0.001f : 0.01f);
for (size_t k = 0; k < gain->size(); ++k) {
RTC_DCHECK_LE(0.f, nearend_masking_margin * nearend[k]);
if (echo[k] <= nearend_masking_margin * nearend[k]) {
(*gain)[k] = 1.f;
} else {
(*gain)[k] = kEchoMaskingMargin * masker[k] * one_by_echo[k];
}
(*gain)[k] = std::min(std::max((*gain)[k], min_gain[k]), max_gain[k]);
}
}
// Computes the signal output power that masks the echo signal.
void MaskingPower(const std::array<float, kFftLengthBy2Plus1>& nearend,
const std::array<float, kFftLengthBy2Plus1>& comfort_noise,
const std::array<float, kFftLengthBy2Plus1>& last_masker,
const std::array<float, kFftLengthBy2Plus1>& gain,
std::array<float, kFftLengthBy2Plus1>* masker) {
std::array<float, kFftLengthBy2Plus1> side_band_masker;
for (size_t k = 0; k < gain.size(); ++k) {
side_band_masker[k] = nearend[k] * gain[k] + comfort_noise[k];
(*masker)[k] = comfort_noise[k] + 0.1f * last_masker[k];
}
for (size_t k = 1; k < gain.size() - 1; ++k) {
(*masker)[k] += 0.1f * (side_band_masker[k - 1] + side_band_masker[k + 1]);
}
}
} // namespace
// TODO(peah): Add further optimizations, in particular for the divisions.
void SuppressionGain::LowerBandGain(
bool low_noise_render,
bool saturated_echo,
const std::array<float, kFftLengthBy2Plus1>& nearend,
const std::array<float, kFftLengthBy2Plus1>& echo,
const std::array<float, kFftLengthBy2Plus1>& comfort_noise,
std::array<float, kFftLengthBy2Plus1>* gain) {
// Count the number of blocks since saturation.
no_saturation_counter_ = saturated_echo ? 0 : no_saturation_counter_ + 1;
// Precompute 1/echo (note that when the echo is zero, the precomputed value
// is never used).
std::array<float, kFftLengthBy2Plus1> one_by_echo;
std::transform(echo.begin(), echo.end(), one_by_echo.begin(),
[](float a) { return a > 0.f ? 1.f / a : 1.f; });
// Compute the minimum gain as the attenuating gain to put the signal just
// above the zero sample values.
std::array<float, kFftLengthBy2Plus1> min_gain;
const float min_echo_power = low_noise_render ? 192.f : 64.f;
if (no_saturation_counter_ > 10) {
for (size_t k = 0; k < nearend.size(); ++k) {
const float denom = std::min(nearend[k], echo[k]);
min_gain[k] = denom > 0.f ? min_echo_power / denom : 1.f;
min_gain[k] = std::min(min_gain[k], 1.f);
}
} else {
min_gain.fill(0.f);
}
// Compute the maximum gain by limiting the gain increase from the previous
// gain.
std::array<float, kFftLengthBy2Plus1> max_gain;
for (size_t k = 0; k < gain->size(); ++k) {
max_gain[k] =
std::min(std::max(last_gain_[k] * gain_increase_[k], 0.001f), 1.f);
}
// Iteratively compute the gain required to attenuate the echo to a non
// noticeable level.
gain->fill(0.f);
for (int k = 0; k < 2; ++k) {
std::array<float, kFftLengthBy2Plus1> masker;
MaskingPower(nearend, comfort_noise, last_masker_, *gain, &masker);
GainToNoAudibleEcho(low_noise_render, saturated_echo, nearend, echo, masker,
min_gain, max_gain, one_by_echo, gain);
AdjustForExternalFilters(gain);
}
// Update the allowed maximum gain increase.
UpdateMaxGainIncrease(no_saturation_counter_, low_noise_render, last_echo_,
echo, last_gain_, *gain, &gain_increase_);
// Store data required for the gain computation of the next block.
std::copy(echo.begin(), echo.end(), last_echo_.begin());
std::copy(gain->begin(), gain->end(), last_gain_.begin());
MaskingPower(nearend, comfort_noise, last_masker_, *gain, &last_masker_);
aec3::VectorMath(optimization_).Sqrt(*gain);
}
SuppressionGain::SuppressionGain(Aec3Optimization optimization)
: optimization_(optimization) {
last_gain_.fill(1.f);
last_masker_.fill(0.f);
gain_increase_.fill(1.f);
last_echo_.fill(0.f);
}
void SuppressionGain::GetGain(
const std::array<float, kFftLengthBy2Plus1>& nearend,
const std::array<float, kFftLengthBy2Plus1>& echo,
const std::array<float, kFftLengthBy2Plus1>& comfort_noise,
bool saturated_echo,
const std::vector<std::vector<float>>& render,
bool force_zero_gain,
float* high_bands_gain,
std::array<float, kFftLengthBy2Plus1>* low_band_gain) {
RTC_DCHECK(high_bands_gain);
RTC_DCHECK(low_band_gain);
if (force_zero_gain) {
last_gain_.fill(0.f);
std::copy(comfort_noise.begin(), comfort_noise.end(), last_masker_.begin());
low_band_gain->fill(0.f);
gain_increase_.fill(1.f);
*high_bands_gain = 0.f;
return;
}
bool low_noise_render = low_render_detector_.Detect(render);
// Compute gain for the lower band.
LowerBandGain(low_noise_render, saturated_echo, nearend, echo, comfort_noise,
low_band_gain);
// Compute the gain for the upper bands.
*high_bands_gain = UpperBandsGain(saturated_echo, render, *low_band_gain);
}
// Detects when the render signal can be considered to have low power and
// consist of stationary noise.
bool SuppressionGain::LowNoiseRenderDetector::Detect(
const std::vector<std::vector<float>>& render) {
float x2_sum = 0.f;
float x2_max = 0.f;
for (auto x_k : render[0]) {
const float x2 = x_k * x_k;
x2_sum += x2;
x2_max = std::max(x2_max, x2);
}
constexpr float kThreshold = 50.f * 50.f * 64.f;
const bool low_noise_render =
average_power_ < kThreshold && x2_max < 3 * average_power_;
average_power_ = average_power_ * 0.9f + x2_sum * 0.1f;
return low_noise_render;
}
} // namespace webrtc