blob: 7d7da352f8ce1965826061d59e65545a9551cfd7 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/media_optimization.h"
#include <limits>
#include "webrtc/modules/video_coding/utility/frame_dropper.h"
#include "webrtc/rtc_base/logging.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
namespace media_optimization {
const int kMsPerSec = 1000;
const int kBitsPerByte = 8;
struct MediaOptimization::EncodedFrameSample {
EncodedFrameSample(size_t size_bytes,
uint32_t timestamp,
int64_t time_complete_ms)
: size_bytes(size_bytes),
timestamp(timestamp),
time_complete_ms(time_complete_ms) {}
size_t size_bytes;
uint32_t timestamp;
int64_t time_complete_ms;
};
MediaOptimization::MediaOptimization(Clock* clock)
: clock_(clock),
max_bit_rate_(0),
codec_width_(0),
codec_height_(0),
user_frame_rate_(0),
frame_dropper_(new FrameDropper),
send_statistics_zero_encode_(0),
max_payload_size_(1460),
video_target_bitrate_(0),
incoming_frame_rate_(0),
encoded_frame_samples_(),
avg_sent_framerate_(0),
num_layers_(0) {
memset(send_statistics_, 0, sizeof(send_statistics_));
memset(incoming_frame_times_, -1, sizeof(incoming_frame_times_));
}
MediaOptimization::~MediaOptimization(void) {
}
void MediaOptimization::Reset() {
rtc::CritScope lock(&crit_sect_);
SetEncodingDataInternal(0, 0, 0, 0, 0, 0, max_payload_size_);
memset(incoming_frame_times_, -1, sizeof(incoming_frame_times_));
incoming_frame_rate_ = 0.0;
frame_dropper_->Reset();
frame_dropper_->SetRates(0, 0);
send_statistics_zero_encode_ = 0;
video_target_bitrate_ = 0;
codec_width_ = 0;
codec_height_ = 0;
user_frame_rate_ = 0;
encoded_frame_samples_.clear();
num_layers_ = 1;
}
void MediaOptimization::SetEncodingData(int32_t max_bit_rate,
uint32_t target_bitrate,
uint16_t width,
uint16_t height,
uint32_t frame_rate,
int num_layers,
int32_t mtu) {
rtc::CritScope lock(&crit_sect_);
SetEncodingDataInternal(max_bit_rate, frame_rate, target_bitrate, width,
height, num_layers, mtu);
}
void MediaOptimization::SetEncodingDataInternal(int32_t max_bit_rate,
uint32_t frame_rate,
uint32_t target_bitrate,
uint16_t width,
uint16_t height,
int num_layers,
int32_t mtu) {
// Everything codec specific should be reset here since this means the codec
// has changed.
max_bit_rate_ = max_bit_rate;
video_target_bitrate_ = target_bitrate;
float target_bitrate_kbps = static_cast<float>(target_bitrate) / 1000.0f;
frame_dropper_->Reset();
frame_dropper_->SetRates(target_bitrate_kbps, static_cast<float>(frame_rate));
user_frame_rate_ = static_cast<float>(frame_rate);
codec_width_ = width;
codec_height_ = height;
num_layers_ = (num_layers <= 1) ? 1 : num_layers; // Can also be zero.
max_payload_size_ = mtu;
}
uint32_t MediaOptimization::SetTargetRates(uint32_t target_bitrate) {
rtc::CritScope lock(&crit_sect_);
video_target_bitrate_ = target_bitrate;
// Cap target video bitrate to codec maximum.
if (max_bit_rate_ > 0 && video_target_bitrate_ > max_bit_rate_) {
video_target_bitrate_ = max_bit_rate_;
}
// Update encoding rates following protection settings.
float target_video_bitrate_kbps =
static_cast<float>(video_target_bitrate_) / 1000.0f;
float framerate = incoming_frame_rate_;
if (framerate == 0.0) {
// No framerate estimate available, use configured max framerate instead.
framerate = user_frame_rate_;
}
frame_dropper_->SetRates(target_video_bitrate_kbps, framerate);
return video_target_bitrate_;
}
uint32_t MediaOptimization::InputFrameRate() {
rtc::CritScope lock(&crit_sect_);
return InputFrameRateInternal();
}
uint32_t MediaOptimization::InputFrameRateInternal() {
ProcessIncomingFrameRate(clock_->TimeInMilliseconds());
uint32_t framerate = static_cast<uint32_t>(std::min<float>(
std::numeric_limits<uint32_t>::max(), incoming_frame_rate_ + 0.5f));
return framerate;
}
uint32_t MediaOptimization::SentFrameRate() {
rtc::CritScope lock(&crit_sect_);
return SentFrameRateInternal();
}
uint32_t MediaOptimization::SentFrameRateInternal() {
PurgeOldFrameSamples(clock_->TimeInMilliseconds() - kBitrateAverageWinMs);
UpdateSentFramerate();
return avg_sent_framerate_;
}
uint32_t MediaOptimization::SentBitRate() {
rtc::CritScope lock(&crit_sect_);
PurgeOldFrameSamples(clock_->TimeInMilliseconds() - kBitrateAverageWinMs);
size_t sent_bytes = 0;
for (auto& frame_sample : encoded_frame_samples_) {
sent_bytes += frame_sample.size_bytes;
}
return sent_bytes * kBitsPerByte * kMsPerSec / kBitrateAverageWinMs;
}
int32_t MediaOptimization::UpdateWithEncodedData(
const EncodedImage& encoded_image) {
size_t encoded_length = encoded_image._length;
uint32_t timestamp = encoded_image._timeStamp;
rtc::CritScope lock(&crit_sect_);
const int64_t now_ms = clock_->TimeInMilliseconds();
PurgeOldFrameSamples(now_ms - kBitrateAverageWinMs);
if (encoded_frame_samples_.size() > 0 &&
encoded_frame_samples_.back().timestamp == timestamp) {
// Frames having the same timestamp are generated from the same input
// frame. We don't want to double count them, but only increment the
// size_bytes.
encoded_frame_samples_.back().size_bytes += encoded_length;
encoded_frame_samples_.back().time_complete_ms = now_ms;
} else {
encoded_frame_samples_.push_back(
EncodedFrameSample(encoded_length, timestamp, now_ms));
}
UpdateSentFramerate();
if (encoded_length > 0) {
const bool delta_frame = encoded_image._frameType != kVideoFrameKey;
frame_dropper_->Fill(encoded_length, delta_frame);
}
return VCM_OK;
}
void MediaOptimization::EnableFrameDropper(bool enable) {
rtc::CritScope lock(&crit_sect_);
frame_dropper_->Enable(enable);
}
bool MediaOptimization::DropFrame() {
rtc::CritScope lock(&crit_sect_);
UpdateIncomingFrameRate();
// Leak appropriate number of bytes.
frame_dropper_->Leak((uint32_t)(InputFrameRateInternal() + 0.5f));
return frame_dropper_->DropFrame();
}
void MediaOptimization::UpdateIncomingFrameRate() {
int64_t now = clock_->TimeInMilliseconds();
if (incoming_frame_times_[0] == 0) {
// No shifting if this is the first time.
} else {
// Shift all times one step.
for (int32_t i = (kFrameCountHistorySize - 2); i >= 0; i--) {
incoming_frame_times_[i + 1] = incoming_frame_times_[i];
}
}
incoming_frame_times_[0] = now;
ProcessIncomingFrameRate(now);
}
void MediaOptimization::PurgeOldFrameSamples(int64_t threshold_ms) {
while (!encoded_frame_samples_.empty()) {
if (encoded_frame_samples_.front().time_complete_ms < threshold_ms) {
encoded_frame_samples_.pop_front();
} else {
break;
}
}
}
void MediaOptimization::UpdateSentFramerate() {
if (encoded_frame_samples_.size() <= 1) {
avg_sent_framerate_ = encoded_frame_samples_.size();
return;
}
int denom = encoded_frame_samples_.back().timestamp -
encoded_frame_samples_.front().timestamp;
if (denom > 0) {
avg_sent_framerate_ =
(90000 * (encoded_frame_samples_.size() - 1) + denom / 2) / denom;
} else {
avg_sent_framerate_ = encoded_frame_samples_.size();
}
}
// Allowing VCM to keep track of incoming frame rate.
void MediaOptimization::ProcessIncomingFrameRate(int64_t now) {
int32_t num = 0;
int32_t nr_of_frames = 0;
for (num = 1; num < (kFrameCountHistorySize - 1); ++num) {
if (incoming_frame_times_[num] <= 0 ||
// don't use data older than 2 s
now - incoming_frame_times_[num] > kFrameHistoryWinMs) {
break;
} else {
nr_of_frames++;
}
}
if (num > 1) {
const int64_t diff =
incoming_frame_times_[0] - incoming_frame_times_[num - 1];
incoming_frame_rate_ = 0.0; // No frame rate estimate available.
if (diff > 0) {
incoming_frame_rate_ = nr_of_frames * 1000.0f / static_cast<float>(diff);
}
}
}
} // namespace media_optimization
} // namespace webrtc