blob: 99e53cf619fee1ca5d4987643c1f6fe893f27530 [file] [log] [blame]
/*
* Copyright 2009 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <memory>
#include "webrtc/p2p/base/basicpacketsocketfactory.h"
#include "webrtc/p2p/base/p2pconstants.h"
#include "webrtc/p2p/base/p2ptransportchannel.h"
#include "webrtc/p2p/base/testrelayserver.h"
#include "webrtc/p2p/base/teststunserver.h"
#include "webrtc/p2p/base/testturnserver.h"
#include "webrtc/p2p/client/basicportallocator.h"
#include "webrtc/rtc_base/fakeclock.h"
#include "webrtc/rtc_base/fakenetwork.h"
#include "webrtc/rtc_base/firewallsocketserver.h"
#include "webrtc/rtc_base/gunit.h"
#include "webrtc/rtc_base/helpers.h"
#include "webrtc/rtc_base/ipaddress.h"
#include "webrtc/rtc_base/logging.h"
#include "webrtc/rtc_base/natserver.h"
#include "webrtc/rtc_base/natsocketfactory.h"
#include "webrtc/rtc_base/nethelpers.h"
#include "webrtc/rtc_base/network.h"
#include "webrtc/rtc_base/socketaddress.h"
#include "webrtc/rtc_base/ssladapter.h"
#include "webrtc/rtc_base/thread.h"
#include "webrtc/rtc_base/virtualsocketserver.h"
using rtc::IPAddress;
using rtc::SocketAddress;
using rtc::Thread;
#define MAYBE_SKIP_IPV4 \
if (!rtc::HasIPv4Enabled()) { \
LOG(LS_INFO) << "No IPv4... skipping"; \
return; \
}
static const SocketAddress kAnyAddr("0.0.0.0", 0);
static const SocketAddress kClientAddr("11.11.11.11", 0);
static const SocketAddress kClientAddr2("22.22.22.22", 0);
static const SocketAddress kLoopbackAddr("127.0.0.1", 0);
static const SocketAddress kPrivateAddr("192.168.1.11", 0);
static const SocketAddress kPrivateAddr2("192.168.1.12", 0);
static const SocketAddress kClientIPv6Addr("2401:fa00:4:1000:be30:5bff:fee5:c3",
0);
static const SocketAddress kClientIPv6Addr2(
"2401:fa00:4:2000:be30:5bff:fee5:c3",
0);
static const SocketAddress kNatUdpAddr("77.77.77.77", rtc::NAT_SERVER_UDP_PORT);
static const SocketAddress kNatTcpAddr("77.77.77.77", rtc::NAT_SERVER_TCP_PORT);
static const SocketAddress kRemoteClientAddr("22.22.22.22", 0);
static const SocketAddress kStunAddr("99.99.99.1", cricket::STUN_SERVER_PORT);
static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000);
static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001);
static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002);
static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003);
static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004);
static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005);
static const SocketAddress kTurnUdpIntAddr("99.99.99.4", 3478);
static const SocketAddress kTurnUdpIntIPv6Addr(
"2402:fb00:4:1000:be30:5bff:fee5:c3",
3479);
static const SocketAddress kTurnTcpIntAddr("99.99.99.5", 3478);
static const SocketAddress kTurnTcpIntIPv6Addr(
"2402:fb00:4:2000:be30:5bff:fee5:c3",
3479);
static const SocketAddress kTurnUdpExtAddr("99.99.99.6", 0);
// Minimum and maximum port for port range tests.
static const int kMinPort = 10000;
static const int kMaxPort = 10099;
// Based on ICE_UFRAG_LENGTH
static const char kIceUfrag0[] = "UF00";
// Based on ICE_PWD_LENGTH
static const char kIcePwd0[] = "TESTICEPWD00000000000000";
static const char kContentName[] = "test content";
static const int kDefaultAllocationTimeout = 3000;
static const char kTurnUsername[] = "test";
static const char kTurnPassword[] = "test";
// STUN timeout (with all retries) is cricket::STUN_TOTAL_TIMEOUT.
// Add some margin of error for slow bots.
static const int kStunTimeoutMs = cricket::STUN_TOTAL_TIMEOUT;
namespace cricket {
// Helper for dumping candidates
std::ostream& operator<<(std::ostream& os,
const std::vector<Candidate>& candidates) {
os << '[';
bool first = true;
for (const Candidate& c : candidates) {
if (!first) {
os << ", ";
}
os << c.ToString();
first = false;
};
os << ']';
return os;
}
class BasicPortAllocatorTestBase : public testing::Test,
public sigslot::has_slots<> {
public:
BasicPortAllocatorTestBase()
: vss_(new rtc::VirtualSocketServer()),
fss_(new rtc::FirewallSocketServer(vss_.get())),
thread_(fss_.get()),
// Note that the NAT is not used by default. ResetWithStunServerAndNat
// must be called.
nat_factory_(vss_.get(), kNatUdpAddr, kNatTcpAddr),
nat_socket_factory_(new rtc::BasicPacketSocketFactory(&nat_factory_)),
stun_server_(TestStunServer::Create(Thread::Current(), kStunAddr)),
relay_server_(Thread::Current(),
kRelayUdpIntAddr,
kRelayUdpExtAddr,
kRelayTcpIntAddr,
kRelayTcpExtAddr,
kRelaySslTcpIntAddr,
kRelaySslTcpExtAddr),
turn_server_(Thread::Current(), kTurnUdpIntAddr, kTurnUdpExtAddr),
candidate_allocation_done_(false) {
ServerAddresses stun_servers;
stun_servers.insert(kStunAddr);
// Passing the addresses of GTURN servers will enable GTURN in
// Basicportallocator.
// TODO(deadbeef): Stop using GTURN by default in this test... Either the
// configuration should be blank by default (preferred), or it should use
// TURN instead.
allocator_.reset(new BasicPortAllocator(&network_manager_, stun_servers,
kRelayUdpIntAddr, kRelayTcpIntAddr,
kRelaySslTcpIntAddr));
allocator_->set_step_delay(kMinimumStepDelay);
}
void AddInterface(const SocketAddress& addr) {
network_manager_.AddInterface(addr);
}
void AddInterface(const SocketAddress& addr, const std::string& if_name) {
network_manager_.AddInterface(addr, if_name);
}
void AddInterface(const SocketAddress& addr,
const std::string& if_name,
rtc::AdapterType type) {
network_manager_.AddInterface(addr, if_name, type);
}
// The default route is the public address that STUN server will observe when
// the endpoint is sitting on the public internet and the local port is bound
// to the "any" address. This may be different from the default local address
// which the endpoint observes. This can occur if the route to the public
// endpoint like 8.8.8.8 (specified as the default local address) is
// different from the route to the STUN server (the default route).
void AddInterfaceAsDefaultRoute(const SocketAddress& addr) {
AddInterface(addr);
// When a binding comes from the any address, the |addr| will be used as the
// srflx address.
vss_->SetDefaultRoute(addr.ipaddr());
}
void RemoveInterface(const SocketAddress& addr) {
network_manager_.RemoveInterface(addr);
}
bool SetPortRange(int min_port, int max_port) {
return allocator_->SetPortRange(min_port, max_port);
}
// Endpoint is on the public network. No STUN or TURN.
void ResetWithNoServersOrNat() {
allocator_.reset(new BasicPortAllocator(&network_manager_));
allocator_->set_step_delay(kMinimumStepDelay);
}
// Endpoint is behind a NAT, with STUN specified.
void ResetWithStunServerAndNat(const rtc::SocketAddress& stun_server) {
ResetWithStunServer(stun_server, true);
}
// Endpoint is on the public network, with STUN specified.
void ResetWithStunServerNoNat(const rtc::SocketAddress& stun_server) {
ResetWithStunServer(stun_server, false);
}
// Endpoint is on the public network, with TURN specified.
void ResetWithTurnServersNoNat(const rtc::SocketAddress& udp_turn,
const rtc::SocketAddress& tcp_turn) {
ResetWithNoServersOrNat();
AddTurnServers(udp_turn, tcp_turn);
}
void AddTurnServers(const rtc::SocketAddress& udp_turn,
const rtc::SocketAddress& tcp_turn) {
RelayServerConfig turn_server(RELAY_TURN);
RelayCredentials credentials(kTurnUsername, kTurnPassword);
turn_server.credentials = credentials;
if (!udp_turn.IsNil()) {
turn_server.ports.push_back(ProtocolAddress(udp_turn, PROTO_UDP));
}
if (!tcp_turn.IsNil()) {
turn_server.ports.push_back(ProtocolAddress(tcp_turn, PROTO_TCP));
}
allocator_->AddTurnServer(turn_server);
}
bool CreateSession(int component) {
session_ = CreateSession("session", component);
if (!session_) {
return false;
}
return true;
}
bool CreateSession(int component, const std::string& content_name) {
session_ = CreateSession("session", content_name, component);
if (!session_) {
return false;
}
return true;
}
std::unique_ptr<PortAllocatorSession> CreateSession(const std::string& sid,
int component) {
return CreateSession(sid, kContentName, component);
}
std::unique_ptr<PortAllocatorSession> CreateSession(
const std::string& sid,
const std::string& content_name,
int component) {
return CreateSession(sid, content_name, component, kIceUfrag0, kIcePwd0);
}
std::unique_ptr<PortAllocatorSession> CreateSession(
const std::string& sid,
const std::string& content_name,
int component,
const std::string& ice_ufrag,
const std::string& ice_pwd) {
std::unique_ptr<PortAllocatorSession> session =
allocator_->CreateSession(content_name, component, ice_ufrag, ice_pwd);
session->SignalPortReady.connect(this,
&BasicPortAllocatorTestBase::OnPortReady);
session->SignalPortsPruned.connect(
this, &BasicPortAllocatorTestBase::OnPortsPruned);
session->SignalCandidatesReady.connect(
this, &BasicPortAllocatorTestBase::OnCandidatesReady);
session->SignalCandidatesRemoved.connect(
this, &BasicPortAllocatorTestBase::OnCandidatesRemoved);
session->SignalCandidatesAllocationDone.connect(
this, &BasicPortAllocatorTestBase::OnCandidatesAllocationDone);
return session;
}
// Return true if the addresses are the same, or the port is 0 in |pattern|
// (acting as a wildcard) and the IPs are the same.
// Even with a wildcard port, the port of the address should be nonzero if
// the IP is nonzero.
static bool AddressMatch(const SocketAddress& address,
const SocketAddress& pattern) {
return address.ipaddr() == pattern.ipaddr() &&
((pattern.port() == 0 &&
(address.port() != 0 || IPIsAny(address.ipaddr()))) ||
(pattern.port() != 0 && address.port() == pattern.port()));
}
// Returns the number of ports that have matching type, protocol and
// address.
static int CountPorts(const std::vector<PortInterface*>& ports,
const std::string& type,
ProtocolType protocol,
const SocketAddress& client_addr) {
return std::count_if(
ports.begin(), ports.end(),
[type, protocol, client_addr](PortInterface* port) {
return port->Type() == type && port->GetProtocol() == protocol &&
port->Network()->GetBestIP() == client_addr.ipaddr();
});
}
static int CountCandidates(const std::vector<Candidate>& candidates,
const std::string& type,
const std::string& proto,
const SocketAddress& addr) {
return std::count_if(candidates.begin(), candidates.end(),
[type, proto, addr](const Candidate& c) {
return c.type() == type && c.protocol() == proto &&
AddressMatch(c.address(), addr);
});
}
// Find a candidate and return it.
static bool FindCandidate(const std::vector<Candidate>& candidates,
const std::string& type,
const std::string& proto,
const SocketAddress& addr,
Candidate* found) {
auto it = std::find_if(candidates.begin(), candidates.end(),
[type, proto, addr](const Candidate& c) {
return c.type() == type && c.protocol() == proto &&
AddressMatch(c.address(), addr);
});
if (it != candidates.end() && found) {
*found = *it;
}
return it != candidates.end();
}
// Convenience method to call FindCandidate with no return.
static bool HasCandidate(const std::vector<Candidate>& candidates,
const std::string& type,
const std::string& proto,
const SocketAddress& addr) {
return FindCandidate(candidates, type, proto, addr, nullptr);
}
// Version of HasCandidate that also takes a related address.
static bool HasCandidateWithRelatedAddr(
const std::vector<Candidate>& candidates,
const std::string& type,
const std::string& proto,
const SocketAddress& addr,
const SocketAddress& related_addr) {
auto it =
std::find_if(candidates.begin(), candidates.end(),
[type, proto, addr, related_addr](const Candidate& c) {
return c.type() == type && c.protocol() == proto &&
AddressMatch(c.address(), addr) &&
AddressMatch(c.related_address(), related_addr);
});
return it != candidates.end();
}
static bool CheckPort(const rtc::SocketAddress& addr,
int min_port,
int max_port) {
return (addr.port() >= min_port && addr.port() <= max_port);
}
void OnCandidatesAllocationDone(PortAllocatorSession* session) {
// We should only get this callback once, except in the mux test where
// we have multiple port allocation sessions.
if (session == session_.get()) {
ASSERT_FALSE(candidate_allocation_done_);
candidate_allocation_done_ = true;
}
EXPECT_TRUE(session->CandidatesAllocationDone());
}
// Check if all ports allocated have send-buffer size |expected|. If
// |expected| == -1, check if GetOptions returns SOCKET_ERROR.
void CheckSendBufferSizesOfAllPorts(int expected) {
std::vector<PortInterface*>::iterator it;
for (it = ports_.begin(); it < ports_.end(); ++it) {
int send_buffer_size;
if (expected == -1) {
EXPECT_EQ(SOCKET_ERROR,
(*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size));
} else {
EXPECT_EQ(0,
(*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size));
ASSERT_EQ(expected, send_buffer_size);
}
}
}
rtc::VirtualSocketServer* virtual_socket_server() { return vss_.get(); }
protected:
BasicPortAllocator& allocator() { return *allocator_; }
void OnPortReady(PortAllocatorSession* ses, PortInterface* port) {
LOG(LS_INFO) << "OnPortReady: " << port->ToString();
ports_.push_back(port);
// Make sure the new port is added to ReadyPorts.
auto ready_ports = ses->ReadyPorts();
EXPECT_NE(ready_ports.end(),
std::find(ready_ports.begin(), ready_ports.end(), port));
}
void OnPortsPruned(PortAllocatorSession* ses,
const std::vector<PortInterface*>& pruned_ports) {
LOG(LS_INFO) << "Number of ports pruned: " << pruned_ports.size();
auto ready_ports = ses->ReadyPorts();
auto new_end = ports_.end();
for (PortInterface* port : pruned_ports) {
new_end = std::remove(ports_.begin(), new_end, port);
// Make sure the pruned port is not in ReadyPorts.
EXPECT_EQ(ready_ports.end(),
std::find(ready_ports.begin(), ready_ports.end(), port));
}
ports_.erase(new_end, ports_.end());
}
void OnCandidatesReady(PortAllocatorSession* ses,
const std::vector<Candidate>& candidates) {
for (const Candidate& candidate : candidates) {
LOG(LS_INFO) << "OnCandidatesReady: " << candidate.ToString();
// Sanity check that the ICE component is set.
EXPECT_EQ(ICE_CANDIDATE_COMPONENT_RTP, candidate.component());
candidates_.push_back(candidate);
}
// Make sure the new candidates are added to Candidates.
auto ses_candidates = ses->ReadyCandidates();
for (const Candidate& candidate : candidates) {
EXPECT_NE(
ses_candidates.end(),
std::find(ses_candidates.begin(), ses_candidates.end(), candidate));
}
}
void OnCandidatesRemoved(PortAllocatorSession* session,
const std::vector<Candidate>& removed_candidates) {
auto new_end = std::remove_if(
candidates_.begin(), candidates_.end(),
[removed_candidates](Candidate& candidate) {
for (const Candidate& removed_candidate : removed_candidates) {
if (candidate.MatchesForRemoval(removed_candidate)) {
return true;
}
}
return false;
});
candidates_.erase(new_end, candidates_.end());
}
bool HasRelayAddress(const ProtocolAddress& proto_addr) {
for (size_t i = 0; i < allocator_->turn_servers().size(); ++i) {
RelayServerConfig server_config = allocator_->turn_servers()[i];
PortList::const_iterator relay_port;
for (relay_port = server_config.ports.begin();
relay_port != server_config.ports.end(); ++relay_port) {
if (proto_addr.address == relay_port->address &&
proto_addr.proto == relay_port->proto)
return true;
}
}
return false;
}
void ResetWithStunServer(const rtc::SocketAddress& stun_server,
bool with_nat) {
if (with_nat) {
nat_server_.reset(new rtc::NATServer(
rtc::NAT_OPEN_CONE, vss_.get(), kNatUdpAddr, kNatTcpAddr, vss_.get(),
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
} else {
nat_socket_factory_.reset(new rtc::BasicPacketSocketFactory());
}
ServerAddresses stun_servers;
if (!stun_server.IsNil()) {
stun_servers.insert(stun_server);
}
allocator_.reset(new BasicPortAllocator(
&network_manager_, nat_socket_factory_.get(), stun_servers));
allocator().set_step_delay(kMinimumStepDelay);
}
std::unique_ptr<rtc::VirtualSocketServer> vss_;
std::unique_ptr<rtc::FirewallSocketServer> fss_;
rtc::AutoSocketServerThread thread_;
std::unique_ptr<rtc::NATServer> nat_server_;
rtc::NATSocketFactory nat_factory_;
std::unique_ptr<rtc::BasicPacketSocketFactory> nat_socket_factory_;
std::unique_ptr<TestStunServer> stun_server_;
TestRelayServer relay_server_;
TestTurnServer turn_server_;
rtc::FakeNetworkManager network_manager_;
std::unique_ptr<BasicPortAllocator> allocator_;
std::unique_ptr<PortAllocatorSession> session_;
std::vector<PortInterface*> ports_;
std::vector<Candidate> candidates_;
bool candidate_allocation_done_;
};
class BasicPortAllocatorTestWithRealClock : public BasicPortAllocatorTestBase {
};
class FakeClockBase {
public:
rtc::ScopedFakeClock fake_clock;
};
class BasicPortAllocatorTest : public FakeClockBase,
public BasicPortAllocatorTestBase {
public:
// This function starts the port/address gathering and check the existence of
// candidates as specified. When |expect_stun_candidate| is true,
// |stun_candidate_addr| carries the expected reflective address, which is
// also the related address for TURN candidate if it is expected. Otherwise,
// it should be ignore.
void CheckDisableAdapterEnumeration(
uint32_t total_ports,
const rtc::IPAddress& host_candidate_addr,
const rtc::IPAddress& stun_candidate_addr,
const rtc::IPAddress& relay_candidate_udp_transport_addr,
const rtc::IPAddress& relay_candidate_tcp_transport_addr) {
network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
rtc::IPAddress());
if (!session_) {
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
}
session_->set_flags(session_->flags() |
PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
allocator().set_allow_tcp_listen(false);
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
uint32_t total_candidates = 0;
if (!host_candidate_addr.IsNil()) {
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp",
rtc::SocketAddress(kPrivateAddr.ipaddr(), 0));
++total_candidates;
}
if (!stun_candidate_addr.IsNil()) {
rtc::SocketAddress related_address(host_candidate_addr, 0);
if (host_candidate_addr.IsNil()) {
related_address.SetIP(rtc::GetAnyIP(stun_candidate_addr.family()));
}
EXPECT_PRED5(HasCandidateWithRelatedAddr, candidates_, "stun", "udp",
rtc::SocketAddress(stun_candidate_addr, 0), related_address);
++total_candidates;
}
if (!relay_candidate_udp_transport_addr.IsNil()) {
EXPECT_PRED5(HasCandidateWithRelatedAddr, candidates_, "relay", "udp",
rtc::SocketAddress(relay_candidate_udp_transport_addr, 0),
rtc::SocketAddress(stun_candidate_addr, 0));
++total_candidates;
}
if (!relay_candidate_tcp_transport_addr.IsNil()) {
EXPECT_PRED5(HasCandidateWithRelatedAddr, candidates_, "relay", "udp",
rtc::SocketAddress(relay_candidate_tcp_transport_addr, 0),
rtc::SocketAddress(stun_candidate_addr, 0));
++total_candidates;
}
EXPECT_EQ(total_candidates, candidates_.size());
EXPECT_EQ(total_ports, ports_.size());
}
void TestIPv6TurnPortPrunesIPv4TurnPort() {
turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
// Add two IP addresses on the same interface.
AddInterface(kClientAddr, "net1");
AddInterface(kClientIPv6Addr, "net1");
allocator_.reset(new BasicPortAllocator(&network_manager_));
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), 0, true);
AddTurnServers(kTurnUdpIntIPv6Addr, rtc::SocketAddress());
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
allocator_->set_step_delay(kMinimumStepDelay);
allocator_->set_flags(
allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
// Three ports (one IPv4 STUN, one IPv6 STUN and one TURN) will be ready.
EXPECT_EQ(3U, session_->ReadyPorts().size());
EXPECT_EQ(3U, ports_.size());
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr));
EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr));
EXPECT_EQ(0, CountPorts(ports_, "relay", PROTO_UDP, kClientAddr));
// Now that we remove candidates when a TURN port is pruned, there will be
// exactly 3 candidates in both |candidates_| and |ready_candidates|.
EXPECT_EQ(3U, candidates_.size());
const std::vector<Candidate>& ready_candidates =
session_->ReadyCandidates();
EXPECT_EQ(3U, ready_candidates.size());
EXPECT_PRED4(HasCandidate, ready_candidates, "local", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, ready_candidates, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0));
}
void TestUdpTurnPortPrunesTcpTurnPort() {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddInterface(kClientAddr);
allocator_.reset(new BasicPortAllocator(&network_manager_));
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), 0, true);
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
allocator_->set_step_delay(kMinimumStepDelay);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
// Only 2 ports (one STUN and one TURN) are actually being used.
EXPECT_EQ(2U, session_->ReadyPorts().size());
// We have verified that each port, when it is added to |ports_|, it is
// found in |ready_ports|, and when it is pruned, it is not found in
// |ready_ports|, so we only need to verify the content in one of them.
EXPECT_EQ(2U, ports_.size());
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientAddr));
EXPECT_EQ(0, CountPorts(ports_, "relay", PROTO_TCP, kClientAddr));
// Now that we remove candidates when a TURN port is pruned, |candidates_|
// should only contains two candidates regardless whether the TCP TURN port
// is created before or after the UDP turn port.
EXPECT_EQ(2U, candidates_.size());
// There will only be 2 candidates in |ready_candidates| because it only
// includes the candidates in the ready ports.
const std::vector<Candidate>& ready_candidates =
session_->ReadyCandidates();
EXPECT_EQ(2U, ready_candidates.size());
EXPECT_PRED4(HasCandidate, ready_candidates, "local", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, ready_candidates, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0));
}
void TestEachInterfaceHasItsOwnTurnPorts() {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
turn_server_.AddInternalSocket(kTurnTcpIntIPv6Addr, PROTO_TCP);
// Add two interfaces both having IPv4 and IPv6 addresses.
AddInterface(kClientAddr, "net1", rtc::ADAPTER_TYPE_WIFI);
AddInterface(kClientIPv6Addr, "net1", rtc::ADAPTER_TYPE_WIFI);
AddInterface(kClientAddr2, "net2", rtc::ADAPTER_TYPE_CELLULAR);
AddInterface(kClientIPv6Addr2, "net2", rtc::ADAPTER_TYPE_CELLULAR);
allocator_.reset(new BasicPortAllocator(&network_manager_));
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), 0, true);
// Have both UDP/TCP and IPv4/IPv6 TURN ports.
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
allocator_->set_step_delay(kMinimumStepDelay);
allocator_->set_flags(
allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
// 10 ports (4 STUN and 1 TURN ports on each interface) will be ready to
// use.
EXPECT_EQ(10U, session_->ReadyPorts().size());
EXPECT_EQ(10U, ports_.size());
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr2));
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr));
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr2));
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr));
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr2));
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr));
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr2));
EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr));
EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr2));
// Now that we remove candidates when TURN ports are pruned, there will be
// exactly 10 candidates in |candidates_|.
EXPECT_EQ(10U, candidates_.size());
const std::vector<Candidate>& ready_candidates =
session_->ReadyCandidates();
EXPECT_EQ(10U, ready_candidates.size());
EXPECT_PRED4(HasCandidate, ready_candidates, "local", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, ready_candidates, "local", "udp", kClientAddr2);
EXPECT_PRED4(HasCandidate, ready_candidates, "local", "udp",
kClientIPv6Addr);
EXPECT_PRED4(HasCandidate, ready_candidates, "local", "udp",
kClientIPv6Addr2);
EXPECT_PRED4(HasCandidate, ready_candidates, "local", "tcp", kClientAddr);
EXPECT_PRED4(HasCandidate, ready_candidates, "local", "tcp", kClientAddr2);
EXPECT_PRED4(HasCandidate, ready_candidates, "local", "tcp",
kClientIPv6Addr);
EXPECT_PRED4(HasCandidate, ready_candidates, "local", "tcp",
kClientIPv6Addr2);
EXPECT_PRED4(HasCandidate, ready_candidates, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0));
}
};
// Tests that we can init the port allocator and create a session.
TEST_F(BasicPortAllocatorTest, TestBasic) {
EXPECT_EQ(&network_manager_, allocator().network_manager());
EXPECT_EQ(kStunAddr, *allocator().stun_servers().begin());
ASSERT_EQ(1u, allocator().turn_servers().size());
EXPECT_EQ(RELAY_GTURN, allocator().turn_servers()[0].type);
// Empty relay credentials are used for GTURN.
EXPECT_TRUE(allocator().turn_servers()[0].credentials.username.empty());
EXPECT_TRUE(allocator().turn_servers()[0].credentials.password.empty());
EXPECT_TRUE(HasRelayAddress(ProtocolAddress(kRelayUdpIntAddr, PROTO_UDP)));
EXPECT_TRUE(HasRelayAddress(ProtocolAddress(kRelayTcpIntAddr, PROTO_TCP)));
EXPECT_TRUE(
HasRelayAddress(ProtocolAddress(kRelaySslTcpIntAddr, PROTO_SSLTCP)));
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
EXPECT_FALSE(session_->CandidatesAllocationDone());
}
// Tests that our network filtering works properly.
TEST_F(BasicPortAllocatorTest, TestIgnoreOnlyLoopbackNetworkByDefault) {
AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
rtc::ADAPTER_TYPE_ETHERNET);
AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
rtc::ADAPTER_TYPE_WIFI);
AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
rtc::ADAPTER_TYPE_CELLULAR);
AddInterface(SocketAddress(IPAddress(0x12345603U), 0), "test_vpn0",
rtc::ADAPTER_TYPE_VPN);
AddInterface(SocketAddress(IPAddress(0x12345604U), 0), "test_lo",
rtc::ADAPTER_TYPE_LOOPBACK);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP);
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(4U, candidates_.size());
for (Candidate candidate : candidates_) {
EXPECT_LT(candidate.address().ip(), 0x12345604U);
}
}
TEST_F(BasicPortAllocatorTest, TestIgnoreNetworksAccordingToIgnoreMask) {
AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
rtc::ADAPTER_TYPE_ETHERNET);
AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
rtc::ADAPTER_TYPE_WIFI);
AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
rtc::ADAPTER_TYPE_CELLULAR);
allocator_->SetNetworkIgnoreMask(rtc::ADAPTER_TYPE_ETHERNET |
rtc::ADAPTER_TYPE_LOOPBACK |
rtc::ADAPTER_TYPE_WIFI);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP);
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(1U, candidates_.size());
EXPECT_EQ(0x12345602U, candidates_[0].address().ip());
}
// Test that high cost networks are filtered if the flag
// PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set.
TEST_F(BasicPortAllocatorTest, TestGatherLowCostNetworkOnly) {
SocketAddress addr_wifi(IPAddress(0x12345600U), 0);
SocketAddress addr_cellular(IPAddress(0x12345601U), 0);
SocketAddress addr_unknown1(IPAddress(0x12345602U), 0);
SocketAddress addr_unknown2(IPAddress(0x12345603U), 0);
// If both Wi-Fi and cellular interfaces are present, only gather on the Wi-Fi
// interface.
AddInterface(addr_wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
AddInterface(addr_cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
cricket::PORTALLOCATOR_DISABLE_RELAY |
cricket::PORTALLOCATOR_DISABLE_TCP |
cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
EXPECT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(1U, candidates_.size());
EXPECT_TRUE(addr_wifi.EqualIPs(candidates_[0].address()));
// If both cellular and unknown interfaces are present, only gather on the
// unknown interfaces.
candidates_.clear();
candidate_allocation_done_ = false;
RemoveInterface(addr_wifi);
AddInterface(addr_unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN);
AddInterface(addr_unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN);
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(2U, candidates_.size());
EXPECT_TRUE((addr_unknown1.EqualIPs(candidates_[0].address()) &&
addr_unknown2.EqualIPs(candidates_[1].address())) ||
(addr_unknown1.EqualIPs(candidates_[1].address()) &&
addr_unknown2.EqualIPs(candidates_[0].address())));
// If Wi-Fi, cellular, unknown interfaces are all present, only gather on the
// Wi-Fi interface.
candidates_.clear();
candidate_allocation_done_ = false;
AddInterface(addr_wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(1U, candidates_.size());
EXPECT_TRUE(addr_wifi.EqualIPs(candidates_[0].address()));
}
// Test that we could use loopback interface as host candidate.
TEST_F(BasicPortAllocatorTest, TestLoopbackNetworkInterface) {
AddInterface(kLoopbackAddr, "test_loopback", rtc::ADAPTER_TYPE_LOOPBACK);
allocator_->SetNetworkIgnoreMask(0);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP);
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(1U, candidates_.size());
}
// Tests that we can get all the desired addresses successfully.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithMinimumStepDelay) {
AddInterface(kClientAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(7U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(4U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "stun", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp", kRelayUdpIntAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp", kRelayUdpExtAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "tcp", kRelayTcpIntAddr);
EXPECT_PRED4(HasCandidate, candidates_, "local", "tcp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "ssltcp",
kRelaySslTcpIntAddr);
EXPECT_TRUE(candidate_allocation_done_);
}
// Test that when the same network interface is brought down and up, the
// port allocator session will restart a new allocation sequence if
// it is not stopped.
TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionNotStopped) {
std::string if_name("test_net0");
AddInterface(kClientAddr, if_name);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(7U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(4U, ports_.size());
EXPECT_TRUE(candidate_allocation_done_);
candidate_allocation_done_ = false;
candidates_.clear();
ports_.clear();
RemoveInterface(kClientAddr);
ASSERT_EQ_SIMULATED_WAIT(0U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(0U, ports_.size());
EXPECT_FALSE(candidate_allocation_done_);
// When the same interfaces are added again, new candidates/ports should be
// generated.
AddInterface(kClientAddr, if_name);
ASSERT_EQ_SIMULATED_WAIT(7U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(4U, ports_.size());
EXPECT_TRUE(candidate_allocation_done_);
}
// Test that when the same network interface is brought down and up, the
// port allocator session will not restart a new allocation sequence if
// it is stopped.
TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionStopped) {
std::string if_name("test_net0");
AddInterface(kClientAddr, if_name);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(7U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(4U, ports_.size());
EXPECT_TRUE(candidate_allocation_done_);
session_->StopGettingPorts();
candidates_.clear();
ports_.clear();
RemoveInterface(kClientAddr);
ASSERT_EQ_SIMULATED_WAIT(0U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(0U, ports_.size());
// When the same interfaces are added again, new candidates/ports should not
// be generated because the session has stopped.
AddInterface(kClientAddr, if_name);
ASSERT_EQ_SIMULATED_WAIT(0U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(0U, ports_.size());
EXPECT_TRUE(candidate_allocation_done_);
}
// Verify candidates with default step delay of 1sec.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithOneSecondStepDelay) {
AddInterface(kClientAddr);
allocator_->set_step_delay(kDefaultStepDelay);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
EXPECT_EQ(2U, ports_.size());
ASSERT_EQ_SIMULATED_WAIT(4U, candidates_.size(), 2000, fake_clock);
EXPECT_EQ(3U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp", kRelayUdpIntAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp", kRelayUdpExtAddr);
ASSERT_EQ_SIMULATED_WAIT(6U, candidates_.size(), 1500, fake_clock);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "tcp", kRelayTcpIntAddr);
EXPECT_PRED4(HasCandidate, candidates_, "local", "tcp", kClientAddr);
EXPECT_EQ(4U, ports_.size());
ASSERT_EQ_SIMULATED_WAIT(7U, candidates_.size(), 2000, fake_clock);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "ssltcp",
kRelaySslTcpIntAddr);
EXPECT_EQ(4U, ports_.size());
EXPECT_TRUE(candidate_allocation_done_);
// If we Stop gathering now, we shouldn't get a second "done" callback.
session_->StopGettingPorts();
}
TEST_F(BasicPortAllocatorTest, TestSetupVideoRtpPortsWithNormalSendBuffers) {
AddInterface(kClientAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP, CN_VIDEO));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(7U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_TRUE(candidate_allocation_done_);
// If we Stop gathering now, we shouldn't get a second "done" callback.
session_->StopGettingPorts();
// All ports should have unset send-buffer sizes.
CheckSendBufferSizesOfAllPorts(-1);
}
// Tests that we can get callback after StopGetAllPorts.
TEST_F(BasicPortAllocatorTest, TestStopGetAllPorts) {
AddInterface(kClientAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout);
EXPECT_EQ(2U, ports_.size());
session_->StopGettingPorts();
EXPECT_TRUE_WAIT(candidate_allocation_done_, kDefaultAllocationTimeout);
}
// Test that we restrict client ports appropriately when a port range is set.
// We check the candidates for udp/stun/tcp ports, and the from address
// for relay ports.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsPortRange) {
AddInterface(kClientAddr);
// Check that an invalid port range fails.
EXPECT_FALSE(SetPortRange(kMaxPort, kMinPort));
// Check that a null port range succeeds.
EXPECT_TRUE(SetPortRange(0, 0));
// Check that a valid port range succeeds.
EXPECT_TRUE(SetPortRange(kMinPort, kMaxPort));
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(7U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(4U, ports_.size());
int num_nonrelay_candidates = 0;
for (const Candidate& candidate : candidates_) {
// Check the port number for the UDP/STUN/TCP port objects.
if (candidate.type() != RELAY_PORT_TYPE) {
EXPECT_PRED3(CheckPort, candidate.address(), kMinPort, kMaxPort);
++num_nonrelay_candidates;
}
}
EXPECT_EQ(3, num_nonrelay_candidates);
// Check the port number used to connect to the relay server.
EXPECT_PRED3(CheckPort, relay_server_.GetConnection(0).source(), kMinPort,
kMaxPort);
EXPECT_TRUE(candidate_allocation_done_);
}
// Test that if we have no network adapters, we bind to the ANY address and
// still get non-host candidates.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoAdapters) {
// Default config uses GTURN and no NAT, so replace that with the
// desired setup (NAT, STUN server, TURN server, UDP/TCP).
ResetWithStunServerAndNat(kStunAddr);
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
// Disable IPv6, because our test infrastructure doesn't support having IPv4
// behind a NAT but IPv6 not, or having an IPv6 NAT.
// TODO(deadbeef): Fix this.
network_manager_.set_ipv6_enabled(false);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(4U, ports_.size());
EXPECT_EQ(1, CountPorts(ports_, "stun", PROTO_UDP, kAnyAddr));
EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kAnyAddr));
// Two TURN ports, using UDP/TCP for the first hop to the TURN server.
EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kAnyAddr));
EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_TCP, kAnyAddr));
// The "any" address port should be in the signaled ready ports, but the host
// candidate for it is useless and shouldn't be signaled. So we only have
// STUN/TURN candidates.
EXPECT_EQ(3U, candidates_.size());
EXPECT_PRED4(HasCandidate, candidates_, "stun", "udp",
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0));
// Again, two TURN candidates, using UDP/TCP for the first hop to the TURN
// server.
EXPECT_EQ(2,
CountCandidates(candidates_, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
}
// Test that when enumeration is disabled, we should not have any ports when
// candidate_filter() is set to CF_RELAY and no relay is specified.
TEST_F(BasicPortAllocatorTest,
TestDisableAdapterEnumerationWithoutNatRelayTransportOnly) {
ResetWithStunServerNoNat(kStunAddr);
allocator().set_candidate_filter(CF_RELAY);
// Expect to see no ports and no candidates.
CheckDisableAdapterEnumeration(0U, rtc::IPAddress(), rtc::IPAddress(),
rtc::IPAddress(), rtc::IPAddress());
}
// Test that even with multiple interfaces, the result should still be a single
// default private, one STUN and one TURN candidate since we bind to any address
// (i.e. all 0s).
TEST_F(BasicPortAllocatorTest,
TestDisableAdapterEnumerationBehindNatMultipleInterfaces) {
AddInterface(kPrivateAddr);
AddInterface(kPrivateAddr2);
ResetWithStunServerAndNat(kStunAddr);
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
// Enable IPv6 here. Since the network_manager doesn't have IPv6 default
// address set and we have no IPv6 STUN server, there should be no IPv6
// candidates.
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_ENABLE_IPV6);
// Expect to see 3 ports for IPv4: HOST/STUN, TURN/UDP and TCP ports, 2 ports
// for IPv6: HOST, and TCP. Only IPv4 candidates: a default private, STUN and
// TURN/UDP candidates.
CheckDisableAdapterEnumeration(5U, kPrivateAddr.ipaddr(),
kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
rtc::IPAddress());
}
// Test that we should get a default private, STUN, TURN/UDP and TURN/TCP
// candidates when both TURN/UDP and TURN/TCP servers are specified.
TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationBehindNatWithTcp) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddInterface(kPrivateAddr);
ResetWithStunServerAndNat(kStunAddr);
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
// Expect to see 4 ports - STUN, TURN/UDP, TURN/TCP and TCP port. A default
// private, STUN, TURN/UDP, and TURN/TCP candidates.
CheckDisableAdapterEnumeration(4U, kPrivateAddr.ipaddr(),
kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
kTurnUdpExtAddr.ipaddr());
}
// Test that when adapter enumeration is disabled, for endpoints without
// STUN/TURN specified, a default private candidate is still generated.
TEST_F(BasicPortAllocatorTest,
TestDisableAdapterEnumerationWithoutNatOrServers) {
ResetWithNoServersOrNat();
// Expect to see 2 ports: STUN and TCP ports, one default private candidate.
CheckDisableAdapterEnumeration(2U, kPrivateAddr.ipaddr(), rtc::IPAddress(),
rtc::IPAddress(), rtc::IPAddress());
}
// Test that when adapter enumeration is disabled, with
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
// a NAT, there is no local candidate.
TEST_F(BasicPortAllocatorTest,
TestDisableAdapterEnumerationWithoutNatLocalhostCandidateDisabled) {
ResetWithStunServerNoNat(kStunAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
// Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
// candidate.
CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), rtc::IPAddress(),
rtc::IPAddress(), rtc::IPAddress());
}
// Test that when adapter enumeration is disabled, with
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
// a NAT, there is no local candidate. However, this specified default route
// (kClientAddr) which was discovered when sending STUN requests, will become
// the srflx addresses.
TEST_F(
BasicPortAllocatorTest,
TestDisableAdapterEnumerationWithoutNatLocalhostCandidateDisabledWithDifferentDefaultRoute) {
ResetWithStunServerNoNat(kStunAddr);
AddInterfaceAsDefaultRoute(kClientAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
// Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
// candidate.
CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kClientAddr.ipaddr(),
rtc::IPAddress(), rtc::IPAddress());
}
// Test that when adapter enumeration is disabled, with
// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints behind a
// NAT, there is only one STUN candidate.
TEST_F(BasicPortAllocatorTest,
TestDisableAdapterEnumerationWithNatLocalhostCandidateDisabled) {
ResetWithStunServerAndNat(kStunAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
// Expect to see 2 ports: STUN and TCP ports, and single STUN candidate.
CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kNatUdpAddr.ipaddr(),
rtc::IPAddress(), rtc::IPAddress());
}
// Test that we disable relay over UDP, and only TCP is used when connecting to
// the relay server.
TEST_F(BasicPortAllocatorTest, TestDisableUdpTurn) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddInterface(kClientAddr);
ResetWithStunServerAndNat(kStunAddr);
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_UDP_RELAY |
PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
// Expect to see 2 ports and 2 candidates - TURN/TCP and TCP ports, TCP and
// TURN/TCP candidates.
EXPECT_EQ(2U, ports_.size());
EXPECT_EQ(2U, candidates_.size());
Candidate turn_candidate;
EXPECT_PRED5(FindCandidate, candidates_, "relay", "udp", kTurnUdpExtAddr,
&turn_candidate);
// The TURN candidate should use TCP to contact the TURN server.
EXPECT_EQ(TCP_PROTOCOL_NAME, turn_candidate.relay_protocol());
EXPECT_PRED4(HasCandidate, candidates_, "local", "tcp", kClientAddr);
}
// Disable for asan, see
// https://code.google.com/p/webrtc/issues/detail?id=4743 for details.
#if !defined(ADDRESS_SANITIZER)
// Test that we can get OnCandidatesAllocationDone callback when all the ports
// are disabled.
TEST_F(BasicPortAllocatorTest, TestDisableAllPorts) {
AddInterface(kClientAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->set_flags(PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP);
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
EXPECT_EQ(0U, candidates_.size());
}
// Test that we don't crash or malfunction if we can't create UDP sockets.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSockets) {
AddInterface(kClientAddr);
fss_->set_udp_sockets_enabled(false);
EXPECT_TRUE(CreateSession(1));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(5U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(2U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp", kRelayUdpIntAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp", kRelayUdpExtAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "tcp", kRelayTcpIntAddr);
EXPECT_PRED4(HasCandidate, candidates_, "local", "tcp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "ssltcp",
kRelaySslTcpIntAddr);
EXPECT_TRUE(candidate_allocation_done_);
}
#endif // if !defined(ADDRESS_SANITIZER)
// Test that we don't crash or malfunction if we can't create UDP sockets or
// listen on TCP sockets. We still give out a local TCP address, since
// apparently this is needed for the remote side to accept our connection.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSocketsNoTcpListen) {
AddInterface(kClientAddr);
fss_->set_udp_sockets_enabled(false);
fss_->set_tcp_listen_enabled(false);
EXPECT_TRUE(CreateSession(1));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(5U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(2U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp", kRelayUdpIntAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp", kRelayUdpExtAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "tcp", kRelayTcpIntAddr);
EXPECT_PRED4(HasCandidate, candidates_, "local", "tcp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "ssltcp",
kRelaySslTcpIntAddr);
EXPECT_TRUE(candidate_allocation_done_);
}
// Test that we don't crash or malfunction if we can't create any sockets.
// TODO(deadbeef): Find a way to exit early here.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoSockets) {
AddInterface(kClientAddr);
fss_->set_tcp_sockets_enabled(false);
fss_->set_udp_sockets_enabled(false);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
WAIT(candidates_.size() > 0, 2000);
// TODO(deadbeef): Check candidate_allocation_done signal.
// In case of Relay, ports creation will succeed but sockets will fail.
// There is no error reporting from RelayEntry to handle this failure.
}
// Testing STUN timeout.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpAllowed) {
fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr);
AddInterface(kClientAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(2U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "local", "tcp", kClientAddr);
// RelayPort connection timeout is 3sec. TCP connection with RelayServer
// will be tried after about 3 seconds.
EXPECT_EQ_SIMULATED_WAIT(6U, candidates_.size(), 3500, fake_clock);
EXPECT_EQ(3U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp", kRelayUdpIntAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "tcp", kRelayTcpIntAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "ssltcp",
kRelaySslTcpIntAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp", kRelayUdpExtAddr);
// We wait at least for a full STUN timeout, which
// cricket::STUN_TOTAL_TIMEOUT seconds. But since 3-3.5 seconds
// already passed (see above), we wait 3 seconds less than that.
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
cricket::STUN_TOTAL_TIMEOUT - 3000, fake_clock);
}
TEST_F(BasicPortAllocatorTest, TestCandidatePriorityOfMultipleInterfaces) {
AddInterface(kClientAddr);
AddInterface(kClientAddr2);
// Allocating only host UDP ports. This is done purely for testing
// convenience.
allocator().set_flags(PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN |
PORTALLOCATOR_DISABLE_RELAY);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
ASSERT_EQ(2U, candidates_.size());
EXPECT_EQ(2U, ports_.size());
// Candidates priorities should be different.
EXPECT_NE(candidates_[0].priority(), candidates_[1].priority());
}
// Test to verify ICE restart process.
TEST_F(BasicPortAllocatorTest, TestGetAllPortsRestarts) {
AddInterface(kClientAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_EQ_SIMULATED_WAIT(7U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(4U, ports_.size());
EXPECT_TRUE(candidate_allocation_done_);
// TODO(deadbeef): Extend this to verify ICE restart.
}
// Test that the allocator session uses the candidate filter it's created with,
// rather than the filter of its parent allocator.
// The filter of the allocator should only affect the next gathering phase,
// according to JSEP, which means the *next* allocator session returned.
TEST_F(BasicPortAllocatorTest, TestSessionUsesOwnCandidateFilter) {
AddInterface(kClientAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
// Set candidate filter *after* creating the session. Should have no effect.
allocator().set_candidate_filter(CF_RELAY);
session_->StartGettingPorts();
// 7 candidates and 4 ports is what we would normally get (see the
// TestGetAllPorts* tests).
EXPECT_EQ_SIMULATED_WAIT(7U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(4U, ports_.size());
EXPECT_TRUE(candidate_allocation_done_);
}
// Test ICE candidate filter mechanism with options Relay/Host/Reflexive.
// This test also verifies that when the allocator is only allowed to use
// relay (i.e. IceTransportsType is relay), the raddr is an empty
// address with the correct family. This is to prevent any local
// reflective address leakage in the sdp line.
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithRelayOnly) {
AddInterface(kClientAddr);
// GTURN is not configured here.
ResetWithTurnServersNoNat(kTurnUdpIntAddr, rtc::SocketAddress());
allocator().set_candidate_filter(CF_RELAY);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0));
EXPECT_EQ(1U, candidates_.size());
EXPECT_EQ(1U, ports_.size()); // Only Relay port will be in ready state.
EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidates_[0].type());
EXPECT_EQ(
candidates_[0].related_address(),
rtc::EmptySocketAddressWithFamily(candidates_[0].address().family()));
}
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithHostOnly) {
AddInterface(kClientAddr);
allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
allocator().set_candidate_filter(CF_HOST);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(2U, candidates_.size()); // Host UDP/TCP candidates only.
EXPECT_EQ(2U, ports_.size()); // UDP/TCP ports only.
for (const Candidate& candidate : candidates_) {
EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type());
}
}
// Host is behind the NAT.
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnly) {
AddInterface(kPrivateAddr);
ResetWithStunServerAndNat(kStunAddr);
allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
allocator().set_candidate_filter(CF_REFLEXIVE);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
// Host is behind NAT, no private address will be exposed. Hence only UDP
// port with STUN candidate will be sent outside.
EXPECT_EQ(1U, candidates_.size()); // Only STUN candidate.
EXPECT_EQ(1U, ports_.size()); // Only UDP port will be in ready state.
EXPECT_EQ(std::string(STUN_PORT_TYPE), candidates_[0].type());
EXPECT_EQ(
candidates_[0].related_address(),
rtc::EmptySocketAddressWithFamily(candidates_[0].address().family()));
}
// Host is not behind the NAT.
TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnlyAndNoNAT) {
AddInterface(kClientAddr);
allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
allocator().set_candidate_filter(CF_REFLEXIVE);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
// Host has a public address, both UDP and TCP candidates will be exposed.
EXPECT_EQ(2U, candidates_.size()); // Local UDP + TCP candidate.
EXPECT_EQ(2U, ports_.size()); // UDP and TCP ports will be in ready state.
for (const Candidate& candidate : candidates_) {
EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type());
}
}
// Test that we get the same ufrag and pwd for all candidates.
TEST_F(BasicPortAllocatorTest, TestEnableSharedUfrag) {
AddInterface(kClientAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(7U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "stun", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "local", "tcp", kClientAddr);
EXPECT_EQ(4U, ports_.size());
for (const Candidate& candidate : candidates_) {
EXPECT_EQ(kIceUfrag0, candidate.username());
EXPECT_EQ(kIcePwd0, candidate.password());
}
EXPECT_TRUE(candidate_allocation_done_);
}
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
// is allocated for udp and stun. Also verify there is only one candidate
// (local) if stun candidate is same as local candidate, which will be the case
// in a public network like the below test.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNat) {
AddInterface(kClientAddr);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(6U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(3U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
}
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
// is allocated for udp and stun. In this test we should expect both stun and
// local candidates as client behind a nat.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNat) {
AddInterface(kClientAddr);
ResetWithStunServerAndNat(kStunAddr);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
ASSERT_EQ(2U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "stun", "udp",
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0));
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(3U, candidates_.size());
}
// Test TURN port in shared socket mode with UDP and TCP TURN server addresses.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNatUsingTurn) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddInterface(kClientAddr);
allocator_.reset(new BasicPortAllocator(&network_manager_));
AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
allocator_->set_step_delay(kMinimumStepDelay);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
ASSERT_EQ(3U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0));
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0));
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(3U, candidates_.size());
}
// Test that if prune_turn_ports is set, TCP TURN port will not be used
// if UDP TurnPort is used, given that TCP TURN port becomes ready first.
TEST_F(BasicPortAllocatorTest,
TestUdpTurnPortPrunesTcpTurnPortWithTcpPortReadyFirst) {
// UDP has longer delay than TCP so that TCP TURN port becomes ready first.
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100);
TestUdpTurnPortPrunesTcpTurnPort();
}
// Test that if prune_turn_ports is set, TCP TURN port will not be used
// if UDP TurnPort is used, given that UDP TURN port becomes ready first.
TEST_F(BasicPortAllocatorTest,
TestUdpTurnPortPrunesTcpTurnPortsWithUdpPortReadyFirst) {
// UDP has shorter delay than TCP so that UDP TURN port becomes ready first.
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200);
TestUdpTurnPortPrunesTcpTurnPort();
}
// Tests that if prune_turn_ports is set, IPv4 TurnPort will not be used
// if IPv6 TurnPort is used, given that IPv4 TURN port becomes ready first.
TEST_F(BasicPortAllocatorTest,
TestIPv6TurnPortPrunesIPv4TurnPortWithIPv4PortReadyFirst) {
// IPv6 has longer delay than IPv4, so that IPv4 TURN port becomes ready
// first.
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 200);
TestIPv6TurnPortPrunesIPv4TurnPort();
}
// Tests that if prune_turn_ports is set, IPv4 TurnPort will not be used
// if IPv6 TurnPort is used, given that IPv6 TURN port becomes ready first.
TEST_F(BasicPortAllocatorTest,
TestIPv6TurnPortPrunesIPv4TurnPortWithIPv6PortReadyFirst) {
// IPv6 has longer delay than IPv4, so that IPv6 TURN port becomes ready
// first.
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 100);
TestIPv6TurnPortPrunesIPv4TurnPort();
}
// Tests that if prune_turn_ports is set, each network interface
// will has its own set of TurnPorts based on their priorities, in the default
// case where no transit delay is set.
TEST_F(BasicPortAllocatorTest, TestEachInterfaceHasItsOwnTurnPortsNoDelay) {
TestEachInterfaceHasItsOwnTurnPorts();
}
// Tests that if prune_turn_ports is set, each network interface
// will has its own set of TurnPorts based on their priorities, given that
// IPv4/TCP TURN port becomes ready first.
TEST_F(BasicPortAllocatorTest,
TestEachInterfaceHasItsOwnTurnPortsWithTcpIPv4ReadyFirst) {
// IPv6/UDP have longer delay than IPv4/TCP, so that IPv4/TCP TURN port
// becomes ready last.
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 10);
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntIPv6Addr, 20);
virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 300);
TestEachInterfaceHasItsOwnTurnPorts();
}
// Testing DNS resolve for the TURN server, this will test AllocationSequence
// handling the unresolved address signal from TurnPort.
// TODO(pthatcher): Make this test work with SIMULATED_WAIT. It
// appears that it doesn't currently because of the DNS look up not
// using the fake clock.
TEST_F(BasicPortAllocatorTestWithRealClock,
TestSharedSocketWithServerAddressResolve) {
// This test relies on a real query for "localhost", so it won't work on an
// IPv6-only machine.
MAYBE_SKIP_IPV4;
turn_server_.AddInternalSocket(rtc::SocketAddress("127.0.0.1", 3478),
PROTO_UDP);
AddInterface(kClientAddr);
allocator_.reset(new BasicPortAllocator(&network_manager_));
RelayServerConfig turn_server(RELAY_TURN);
RelayCredentials credentials(kTurnUsername, kTurnPassword);
turn_server.credentials = credentials;
turn_server.ports.push_back(
ProtocolAddress(rtc::SocketAddress("localhost", 3478), PROTO_UDP));
allocator_->AddTurnServer(turn_server);
allocator_->set_step_delay(kMinimumStepDelay);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
EXPECT_EQ_WAIT(2U, ports_.size(), kDefaultAllocationTimeout);
}
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
// is allocated for udp/stun/turn. In this test we should expect all local,
// stun and turn candidates.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurn) {
AddInterface(kClientAddr);
ResetWithStunServerAndNat(kStunAddr);
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
ASSERT_EQ(2U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "stun", "udp",
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0));
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0));
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(3U, candidates_.size());
// Local port will be created first and then TURN port.
EXPECT_EQ(2U, ports_[0]->Candidates().size());
EXPECT_EQ(1U, ports_[1]->Candidates().size());
}
// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled and the TURN
// server is also used as the STUN server, we should get 'local', 'stun', and
// 'relay' candidates.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAsStun) {
AddInterface(kClientAddr);
// Use an empty SocketAddress to add a NAT without STUN server.
ResetWithStunServerAndNat(SocketAddress());
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
// Must set the step delay to 0 to make sure the relay allocation phase is
// started before the STUN candidates are obtained, so that the STUN binding
// response is processed when both StunPort and TurnPort exist to reproduce
// webrtc issue 3537.
allocator_->set_step_delay(0);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
Candidate stun_candidate;
EXPECT_PRED5(FindCandidate, candidates_, "stun", "udp",
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0), &stun_candidate);
EXPECT_PRED5(HasCandidateWithRelatedAddr, candidates_, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
stun_candidate.address());
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(3U, candidates_.size());
// Local port will be created first and then TURN port.
EXPECT_EQ(2U, ports_[0]->Candidates().size());
EXPECT_EQ(1U, ports_[1]->Candidates().size());
}
// Test that when only a TCP TURN server is available, we do NOT use it as
// a UDP STUN server, as this could leak our IP address. Thus we should only
// expect two ports, a UDPPort and TurnPort.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnTcpOnly) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
AddInterface(kClientAddr);
ResetWithStunServerAndNat(rtc::SocketAddress());
AddTurnServers(rtc::SocketAddress(), kTurnTcpIntAddr);
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
ASSERT_EQ(2U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0));
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(2U, candidates_.size());
EXPECT_EQ(1U, ports_[0]->Candidates().size());
EXPECT_EQ(1U, ports_[1]->Candidates().size());
}
// Test that even when PORTALLOCATOR_ENABLE_SHARED_SOCKET is NOT enabled, the
// TURN server is used as the STUN server and we get 'local', 'stun', and
// 'relay' candidates.
// TODO(deadbeef): Remove this test when support for non-shared socket mode
// is removed.
TEST_F(BasicPortAllocatorTest, TestNonSharedSocketWithNatUsingTurnAsStun) {
AddInterface(kClientAddr);
// Use an empty SocketAddress to add a NAT without STUN server.
ResetWithStunServerAndNat(SocketAddress());
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
allocator_->set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_TCP);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
ASSERT_EQ(3U, ports_.size());
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
Candidate stun_candidate;
EXPECT_PRED5(FindCandidate, candidates_, "stun", "udp",
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0), &stun_candidate);
Candidate turn_candidate;
EXPECT_PRED5(FindCandidate, candidates_, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
&turn_candidate);
// Not using shared socket, so the STUN request's server reflexive address
// should be different than the TURN request's server reflexive address.
EXPECT_NE(turn_candidate.related_address(), stun_candidate.address());
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_EQ(3U, candidates_.size());
EXPECT_EQ(1U, ports_[0]->Candidates().size());
EXPECT_EQ(1U, ports_[1]->Candidates().size());
EXPECT_EQ(1U, ports_[2]->Candidates().size());
}
// Test that even when both a STUN and TURN server are configured, the TURN
// server is used as a STUN server and we get a 'stun' candidate.
TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAndStun) {
AddInterface(kClientAddr);
// Configure with STUN server but destroy it, so we can ensure that it's
// the TURN server actually being used as a STUN server.
ResetWithStunServerAndNat(kStunAddr);
stun_server_.reset();
AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
allocator_->set_flags(allocator().flags() |
PORTALLOCATOR_ENABLE_SHARED_SOCKET |
PORTALLOCATOR_DISABLE_TCP);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
Candidate stun_candidate;
EXPECT_PRED5(FindCandidate, candidates_, "stun", "udp",
rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0), &stun_candidate);
EXPECT_PRED5(HasCandidateWithRelatedAddr, candidates_, "relay", "udp",
rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
stun_candidate.address());
// Don't bother waiting for STUN timeout, since we already verified
// that we got a STUN candidate from the TURN server.
}
// This test verifies when PORTALLOCATOR_ENABLE_SHARED_SOCKET flag is enabled
// and fail to generate STUN candidate, local UDP candidate is generated
// properly.
TEST_F(BasicPortAllocatorTest, TestSharedSocketNoUdpAllowed) {
allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr);
AddInterface(kClientAddr);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(1U, candidates_.size());
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
// STUN timeout is 9.5sec. We need to wait to get candidate done signal.
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kStunTimeoutMs,
fake_clock);
EXPECT_EQ(1U, candidates_.size());
}
// Test that when the NetworkManager doesn't have permission to enumerate
// adapters, the PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION is specified
// automatically.
TEST_F(BasicPortAllocatorTest, TestNetworkPermissionBlocked) {
network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
rtc::IPAddress());
network_manager_.set_enumeration_permission(
rtc::NetworkManager::ENUMERATION_BLOCKED);
allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
EXPECT_EQ(0U,
allocator_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
EXPECT_EQ(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
session_->StartGettingPorts();
EXPECT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(1U, candidates_.size());
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kPrivateAddr);
EXPECT_NE(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
}
// This test verifies allocator can use IPv6 addresses along with IPv4.
TEST_F(BasicPortAllocatorTest, TestEnableIPv6Addresses) {
allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
PORTALLOCATOR_ENABLE_IPV6 |
PORTALLOCATOR_ENABLE_SHARED_SOCKET);
AddInterface(kClientIPv6Addr);
AddInterface(kClientAddr);
allocator_->set_step_delay(kMinimumStepDelay);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(4U, ports_.size(), kDefaultAllocationTimeout,
fake_clock);
EXPECT_EQ(4U, candidates_.size());
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientIPv6Addr);
EXPECT_PRED4(HasCandidate, candidates_, "local", "udp", kClientAddr);
EXPECT_PRED4(HasCandidate, candidates_, "local", "tcp", kClientIPv6Addr);
EXPECT_PRED4(HasCandidate, candidates_, "local", "tcp", kClientAddr);
EXPECT_EQ(4U, candidates_.size());
}
TEST_F(BasicPortAllocatorTest, TestStopGettingPorts) {
AddInterface(kClientAddr);
allocator_->set_step_delay(kDefaultStepDelay);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
EXPECT_EQ(2U, ports_.size());
session_->StopGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
// After stopping getting ports, adding a new interface will not start
// getting ports again.
allocator_->set_step_delay(kMinimumStepDelay);
candidates_.clear();
ports_.clear();
candidate_allocation_done_ = false;
network_manager_.AddInterface(kClientAddr2);
SIMULATED_WAIT(false, 1000, fake_clock);
EXPECT_EQ(0U, candidates_.size());
EXPECT_EQ(0U, ports_.size());
}
TEST_F(BasicPortAllocatorTest, TestClearGettingPorts) {
AddInterface(kClientAddr);
allocator_->set_step_delay(kDefaultStepDelay);
EXPECT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
session_->StartGettingPorts();
ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
EXPECT_EQ(2U, ports_.size());
session_->ClearGettingPorts();
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
// After clearing getting ports, adding a new interface will start getting
// ports again.
allocator_->set_step_delay(kMinimumStepDelay);
candidates_.clear();
ports_.clear();
candidate_allocation_done_ = false;
network_manager_.AddInterface(kClientAddr2);
ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
EXPECT_EQ(2U, ports_.size());
EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
kDefaultAllocationTimeout, fake_clock);
}
// Test that the ports and candidates are updated with new ufrag/pwd/etc. when
// a pooled session is taken out of the pool.
TEST_F(BasicPortAllocatorTest, TestTransportInformationUpdated) {
AddInterface(kClientAddr);
int pool_size = 1;
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), pool_size, false);
const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
ASSERT_NE(nullptr, peeked_session);
EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(),
kDefaultAllocationTimeout, fake_clock);
// Expect that when TakePooledSession is called,
// UpdateTransportInformationInternal will be called and the
// BasicPortAllocatorSession will update the ufrag/pwd of ports and
// candidates.
session_ =
allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
ASSERT_NE(nullptr, session_.get());
auto ready_ports = session_->ReadyPorts();
auto candidates = session_->ReadyCandidates();
EXPECT_FALSE(ready_ports.empty());
EXPECT_FALSE(candidates.empty());
for (const PortInterface* port_interface : ready_ports) {
const Port* port = static_cast<const Port*>(port_interface);
EXPECT_EQ(kContentName, port->content_name());
EXPECT_EQ(1, port->component());
EXPECT_EQ(kIceUfrag0, port->username_fragment());
EXPECT_EQ(kIcePwd0, port->password());
}
for (const Candidate& candidate : candidates) {
EXPECT_EQ(1, candidate.component());
EXPECT_EQ(kIceUfrag0, candidate.username());
EXPECT_EQ(kIcePwd0, candidate.password());
}
}
// Test that a new candidate filter takes effect even on already-gathered
// candidates.
TEST_F(BasicPortAllocatorTest, TestSetCandidateFilterAfterCandidatesGathered) {
AddInterface(kClientAddr);
int pool_size = 1;
allocator_->SetConfiguration(allocator_->stun_servers(),
allocator_->turn_servers(), pool_size, false);
const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
ASSERT_NE(nullptr, peeked_session);
EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(),
kDefaultAllocationTimeout, fake_clock);
size_t initial_candidates_size = peeked_session->ReadyCandidates().size();
size_t initial_ports_size = peeked_session->ReadyPorts().size();
allocator_->set_candidate_filter(CF_RELAY);
// Assume that when TakePooledSession is called, the candidate filter will be
// applied to the pooled session. This is tested by PortAllocatorTest.
session_ =
allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
ASSERT_NE(nullptr, session_.get());
auto candidates = session_->ReadyCandidates();
auto ports = session_->ReadyPorts();
// Sanity check that the number of candidates and ports decreased.
EXPECT_GT(initial_candidates_size, candidates.size());
EXPECT_GT(initial_ports_size, ports.size());
for (const PortInterface* port : ports) {
// Expect only relay ports.
EXPECT_EQ(RELAY_PORT_TYPE, port->Type());
}
for (const Candidate& candidate : candidates) {
// Expect only relay candidates now that the filter is applied.
EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidate.type());
// Expect that the raddr is emptied due to the CF_RELAY filter.
EXPECT_EQ(candidate.related_address(),
rtc::EmptySocketAddressWithFamily(candidate.address().family()));
}
}
} // namespace cricket