| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/rtc_tools/event_log_visualizer/analyzer.h" |
| |
| #include <algorithm> |
| #include <limits> |
| #include <map> |
| #include <sstream> |
| #include <string> |
| #include <utility> |
| |
| #include "webrtc/call/audio_receive_stream.h" |
| #include "webrtc/call/audio_send_stream.h" |
| #include "webrtc/call/call.h" |
| #include "webrtc/common_types.h" |
| #include "webrtc/modules/audio_coding/neteq/tools/audio_sink.h" |
| #include "webrtc/modules/audio_coding/neteq/tools/fake_decode_from_file.h" |
| #include "webrtc/modules/audio_coding/neteq/tools/neteq_delay_analyzer.h" |
| #include "webrtc/modules/audio_coding/neteq/tools/neteq_replacement_input.h" |
| #include "webrtc/modules/audio_coding/neteq/tools/neteq_test.h" |
| #include "webrtc/modules/audio_coding/neteq/tools/resample_input_audio_file.h" |
| #include "webrtc/modules/congestion_controller/include/congestion_controller.h" |
| #include "webrtc/modules/include/module_common_types.h" |
| #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h" |
| #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp_defines.h" |
| #include "webrtc/modules/rtp_rtcp/source/rtcp_packet/common_header.h" |
| #include "webrtc/modules/rtp_rtcp/source/rtcp_packet/receiver_report.h" |
| #include "webrtc/modules/rtp_rtcp/source/rtcp_packet/remb.h" |
| #include "webrtc/modules/rtp_rtcp/source/rtcp_packet/sender_report.h" |
| #include "webrtc/modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h" |
| #include "webrtc/modules/rtp_rtcp/source/rtp_header_extensions.h" |
| #include "webrtc/modules/rtp_rtcp/source/rtp_utility.h" |
| #include "webrtc/rtc_base/checks.h" |
| #include "webrtc/rtc_base/format_macros.h" |
| #include "webrtc/rtc_base/logging.h" |
| #include "webrtc/rtc_base/ptr_util.h" |
| #include "webrtc/rtc_base/rate_statistics.h" |
| #include "webrtc/video_receive_stream.h" |
| #include "webrtc/video_send_stream.h" |
| |
| namespace webrtc { |
| namespace plotting { |
| |
| namespace { |
| |
| void SortPacketFeedbackVector(std::vector<PacketFeedback>* vec) { |
| auto pred = [](const PacketFeedback& packet_feedback) { |
| return packet_feedback.arrival_time_ms == PacketFeedback::kNotReceived; |
| }; |
| vec->erase(std::remove_if(vec->begin(), vec->end(), pred), vec->end()); |
| std::sort(vec->begin(), vec->end(), PacketFeedbackComparator()); |
| } |
| |
| std::string SsrcToString(uint32_t ssrc) { |
| std::stringstream ss; |
| ss << "SSRC " << ssrc; |
| return ss.str(); |
| } |
| |
| // Checks whether an SSRC is contained in the list of desired SSRCs. |
| // Note that an empty SSRC list matches every SSRC. |
| bool MatchingSsrc(uint32_t ssrc, const std::vector<uint32_t>& desired_ssrc) { |
| if (desired_ssrc.size() == 0) |
| return true; |
| return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) != |
| desired_ssrc.end(); |
| } |
| |
| double AbsSendTimeToMicroseconds(int64_t abs_send_time) { |
| // The timestamp is a fixed point representation with 6 bits for seconds |
| // and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the |
| // time in seconds and then multiply by 1000000 to convert to microseconds. |
| static constexpr double kTimestampToMicroSec = |
| 1000000.0 / static_cast<double>(1ul << 18); |
| return abs_send_time * kTimestampToMicroSec; |
| } |
| |
| // Computes the difference |later| - |earlier| where |later| and |earlier| |
| // are counters that wrap at |modulus|. The difference is chosen to have the |
| // least absolute value. For example if |modulus| is 8, then the difference will |
| // be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will |
| // be in [-4, 4]. |
| int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) { |
| RTC_DCHECK_LE(1, modulus); |
| RTC_DCHECK_LT(later, modulus); |
| RTC_DCHECK_LT(earlier, modulus); |
| int64_t difference = |
| static_cast<int64_t>(later) - static_cast<int64_t>(earlier); |
| int64_t max_difference = modulus / 2; |
| int64_t min_difference = max_difference - modulus + 1; |
| if (difference > max_difference) { |
| difference -= modulus; |
| } |
| if (difference < min_difference) { |
| difference += modulus; |
| } |
| if (difference > max_difference / 2 || difference < min_difference / 2) { |
| LOG(LS_WARNING) << "Difference between" << later << " and " << earlier |
| << " expected to be in the range (" << min_difference / 2 |
| << "," << max_difference / 2 << ") but is " << difference |
| << ". Correct unwrapping is uncertain."; |
| } |
| return difference; |
| } |
| |
| // Return default values for header extensions, to use on streams without stored |
| // mapping data. Currently this only applies to audio streams, since the mapping |
| // is not stored in the event log. |
| // TODO(ivoc): Remove this once this mapping is stored in the event log for |
| // audio streams. Tracking bug: webrtc:6399 |
| webrtc::RtpHeaderExtensionMap GetDefaultHeaderExtensionMap() { |
| webrtc::RtpHeaderExtensionMap default_map; |
| default_map.Register<AudioLevel>(webrtc::RtpExtension::kAudioLevelDefaultId); |
| default_map.Register<AbsoluteSendTime>( |
| webrtc::RtpExtension::kAbsSendTimeDefaultId); |
| return default_map; |
| } |
| |
| constexpr float kLeftMargin = 0.01f; |
| constexpr float kRightMargin = 0.02f; |
| constexpr float kBottomMargin = 0.02f; |
| constexpr float kTopMargin = 0.05f; |
| |
| rtc::Optional<double> NetworkDelayDiff_AbsSendTime( |
| const LoggedRtpPacket& old_packet, |
| const LoggedRtpPacket& new_packet) { |
| if (old_packet.header.extension.hasAbsoluteSendTime && |
| new_packet.header.extension.hasAbsoluteSendTime) { |
| int64_t send_time_diff = WrappingDifference( |
| new_packet.header.extension.absoluteSendTime, |
| old_packet.header.extension.absoluteSendTime, 1ul << 24); |
| int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp; |
| double delay_change_us = |
| recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff); |
| return rtc::Optional<double>(delay_change_us / 1000); |
| } else { |
| return rtc::Optional<double>(); |
| } |
| } |
| |
| rtc::Optional<double> NetworkDelayDiff_CaptureTime( |
| const LoggedRtpPacket& old_packet, |
| const LoggedRtpPacket& new_packet) { |
| int64_t send_time_diff = WrappingDifference( |
| new_packet.header.timestamp, old_packet.header.timestamp, 1ull << 32); |
| int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp; |
| |
| const double kVideoSampleRate = 90000; |
| // TODO(terelius): We treat all streams as video for now, even though |
| // audio might be sampled at e.g. 16kHz, because it is really difficult to |
| // figure out the true sampling rate of a stream. The effect is that the |
| // delay will be scaled incorrectly for non-video streams. |
| |
| double delay_change = |
| static_cast<double>(recv_time_diff) / 1000 - |
| static_cast<double>(send_time_diff) / kVideoSampleRate * 1000; |
| if (delay_change < -10000 || 10000 < delay_change) { |
| LOG(LS_WARNING) << "Very large delay change. Timestamps correct?"; |
| LOG(LS_WARNING) << "Old capture time " << old_packet.header.timestamp |
| << ", received time " << old_packet.timestamp; |
| LOG(LS_WARNING) << "New capture time " << new_packet.header.timestamp |
| << ", received time " << new_packet.timestamp; |
| LOG(LS_WARNING) << "Receive time difference " << recv_time_diff << " = " |
| << static_cast<double>(recv_time_diff) / 1000000 << "s"; |
| LOG(LS_WARNING) << "Send time difference " << send_time_diff << " = " |
| << static_cast<double>(send_time_diff) / kVideoSampleRate |
| << "s"; |
| } |
| return rtc::Optional<double>(delay_change); |
| } |
| |
| // For each element in data, use |get_y()| to extract a y-coordinate and |
| // store the result in a TimeSeries. |
| template <typename DataType> |
| void ProcessPoints( |
| rtc::FunctionView<rtc::Optional<float>(const DataType&)> get_y, |
| const std::vector<DataType>& data, |
| uint64_t begin_time, |
| TimeSeries* result) { |
| for (size_t i = 0; i < data.size(); i++) { |
| float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000; |
| rtc::Optional<float> y = get_y(data[i]); |
| if (y) |
| result->points.emplace_back(x, *y); |
| } |
| } |
| |
| // For each pair of adjacent elements in |data|, use |get_y| to extract a |
| // y-coordinate and store the result in a TimeSeries. Note that the x-coordinate |
| // will be the time of the second element in the pair. |
| template <typename DataType, typename ResultType> |
| void ProcessPairs( |
| rtc::FunctionView<rtc::Optional<ResultType>(const DataType&, |
| const DataType&)> get_y, |
| const std::vector<DataType>& data, |
| uint64_t begin_time, |
| TimeSeries* result) { |
| for (size_t i = 1; i < data.size(); i++) { |
| float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000; |
| rtc::Optional<ResultType> y = get_y(data[i - 1], data[i]); |
| if (y) |
| result->points.emplace_back(x, static_cast<float>(*y)); |
| } |
| } |
| |
| // For each element in data, use |extract()| to extract a y-coordinate and |
| // store the result in a TimeSeries. |
| template <typename DataType, typename ResultType> |
| void AccumulatePoints( |
| rtc::FunctionView<rtc::Optional<ResultType>(const DataType&)> extract, |
| const std::vector<DataType>& data, |
| uint64_t begin_time, |
| TimeSeries* result) { |
| ResultType sum = 0; |
| for (size_t i = 0; i < data.size(); i++) { |
| float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000; |
| rtc::Optional<ResultType> y = extract(data[i]); |
| if (y) { |
| sum += *y; |
| result->points.emplace_back(x, static_cast<float>(sum)); |
| } |
| } |
| } |
| |
| // For each pair of adjacent elements in |data|, use |extract()| to extract a |
| // y-coordinate and store the result in a TimeSeries. Note that the x-coordinate |
| // will be the time of the second element in the pair. |
| template <typename DataType, typename ResultType> |
| void AccumulatePairs( |
| rtc::FunctionView<rtc::Optional<ResultType>(const DataType&, |
| const DataType&)> extract, |
| const std::vector<DataType>& data, |
| uint64_t begin_time, |
| TimeSeries* result) { |
| ResultType sum = 0; |
| for (size_t i = 1; i < data.size(); i++) { |
| float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000; |
| rtc::Optional<ResultType> y = extract(data[i - 1], data[i]); |
| if (y) |
| sum += *y; |
| result->points.emplace_back(x, static_cast<float>(sum)); |
| } |
| } |
| |
| // Calculates a moving average of |data| and stores the result in a TimeSeries. |
| // A data point is generated every |step| microseconds from |begin_time| |
| // to |end_time|. The value of each data point is the average of the data |
| // during the preceeding |window_duration_us| microseconds. |
| template <typename DataType, typename ResultType> |
| void MovingAverage( |
| rtc::FunctionView<rtc::Optional<ResultType>(const DataType&)> extract, |
| const std::vector<DataType>& data, |
| uint64_t begin_time, |
| uint64_t end_time, |
| uint64_t window_duration_us, |
| uint64_t step, |
| webrtc::plotting::TimeSeries* result) { |
| size_t window_index_begin = 0; |
| size_t window_index_end = 0; |
| ResultType sum_in_window = 0; |
| |
| for (uint64_t t = begin_time; t < end_time + step; t += step) { |
| while (window_index_end < data.size() && |
| data[window_index_end].timestamp < t) { |
| rtc::Optional<ResultType> value = extract(data[window_index_end]); |
| if (value) |
| sum_in_window += *value; |
| ++window_index_end; |
| } |
| while (window_index_begin < data.size() && |
| data[window_index_begin].timestamp < t - window_duration_us) { |
| rtc::Optional<ResultType> value = extract(data[window_index_begin]); |
| if (value) |
| sum_in_window -= *value; |
| ++window_index_begin; |
| } |
| float window_duration_s = static_cast<float>(window_duration_us) / 1000000; |
| float x = static_cast<float>(t - begin_time) / 1000000; |
| float y = sum_in_window / window_duration_s; |
| result->points.emplace_back(x, y); |
| } |
| } |
| |
| } // namespace |
| |
| EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log) |
| : parsed_log_(log), window_duration_(250000), step_(10000) { |
| uint64_t first_timestamp = std::numeric_limits<uint64_t>::max(); |
| uint64_t last_timestamp = std::numeric_limits<uint64_t>::min(); |
| |
| PacketDirection direction; |
| uint8_t header[IP_PACKET_SIZE]; |
| size_t header_length; |
| size_t total_length; |
| |
| uint8_t last_incoming_rtcp_packet[IP_PACKET_SIZE]; |
| uint8_t last_incoming_rtcp_packet_length = 0; |
| |
| // Make a default extension map for streams without configuration information. |
| // TODO(ivoc): Once configuration of audio streams is stored in the event log, |
| // this can be removed. Tracking bug: webrtc:6399 |
| RtpHeaderExtensionMap default_extension_map = GetDefaultHeaderExtensionMap(); |
| |
| rtc::Optional<uint64_t> last_log_start; |
| |
| for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { |
| ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); |
| if (event_type != ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT && |
| event_type != ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT && |
| event_type != ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT && |
| event_type != ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT && |
| event_type != ParsedRtcEventLog::LOG_START && |
| event_type != ParsedRtcEventLog::LOG_END) { |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| first_timestamp = std::min(first_timestamp, timestamp); |
| last_timestamp = std::max(last_timestamp, timestamp); |
| } |
| |
| switch (parsed_log_.GetEventType(i)) { |
| case ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT: { |
| rtclog::StreamConfig config = parsed_log_.GetVideoReceiveConfig(i); |
| StreamId stream(config.remote_ssrc, kIncomingPacket); |
| video_ssrcs_.insert(stream); |
| StreamId rtx_stream(config.rtx_ssrc, kIncomingPacket); |
| video_ssrcs_.insert(rtx_stream); |
| rtx_ssrcs_.insert(rtx_stream); |
| break; |
| } |
| case ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT: { |
| std::vector<rtclog::StreamConfig> configs = |
| parsed_log_.GetVideoSendConfig(i); |
| for (const auto& config : configs) { |
| StreamId stream(config.local_ssrc, kOutgoingPacket); |
| video_ssrcs_.insert(stream); |
| StreamId rtx_stream(config.rtx_ssrc, kOutgoingPacket); |
| video_ssrcs_.insert(rtx_stream); |
| rtx_ssrcs_.insert(rtx_stream); |
| } |
| break; |
| } |
| case ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT: { |
| rtclog::StreamConfig config = parsed_log_.GetAudioReceiveConfig(i); |
| StreamId stream(config.remote_ssrc, kIncomingPacket); |
| audio_ssrcs_.insert(stream); |
| break; |
| } |
| case ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT: { |
| rtclog::StreamConfig config = parsed_log_.GetAudioSendConfig(i); |
| StreamId stream(config.local_ssrc, kOutgoingPacket); |
| audio_ssrcs_.insert(stream); |
| break; |
| } |
| case ParsedRtcEventLog::RTP_EVENT: { |
| RtpHeaderExtensionMap* extension_map = parsed_log_.GetRtpHeader( |
| i, &direction, header, &header_length, &total_length); |
| RtpUtility::RtpHeaderParser rtp_parser(header, header_length); |
| RTPHeader parsed_header; |
| if (extension_map != nullptr) { |
| rtp_parser.Parse(&parsed_header, extension_map); |
| } else { |
| // Use the default extension map. |
| // TODO(ivoc): Once configuration of audio streams is stored in the |
| // event log, this can be removed. |
| // Tracking bug: webrtc:6399 |
| rtp_parser.Parse(&parsed_header, &default_extension_map); |
| } |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| StreamId stream(parsed_header.ssrc, direction); |
| rtp_packets_[stream].push_back( |
| LoggedRtpPacket(timestamp, parsed_header, total_length)); |
| break; |
| } |
| case ParsedRtcEventLog::RTCP_EVENT: { |
| uint8_t packet[IP_PACKET_SIZE]; |
| parsed_log_.GetRtcpPacket(i, &direction, packet, &total_length); |
| // Currently incoming RTCP packets are logged twice, both for audio and |
| // video. Only act on one of them. Compare against the previous parsed |
| // incoming RTCP packet. |
| if (direction == webrtc::kIncomingPacket) { |
| RTC_CHECK_LE(total_length, IP_PACKET_SIZE); |
| if (total_length == last_incoming_rtcp_packet_length && |
| memcmp(last_incoming_rtcp_packet, packet, total_length) == 0) { |
| continue; |
| } else { |
| memcpy(last_incoming_rtcp_packet, packet, total_length); |
| last_incoming_rtcp_packet_length = total_length; |
| } |
| } |
| rtcp::CommonHeader header; |
| const uint8_t* packet_end = packet + total_length; |
| for (const uint8_t* block = packet; block < packet_end; |
| block = header.NextPacket()) { |
| RTC_CHECK(header.Parse(block, packet_end - block)); |
| if (header.type() == rtcp::TransportFeedback::kPacketType && |
| header.fmt() == rtcp::TransportFeedback::kFeedbackMessageType) { |
| std::unique_ptr<rtcp::TransportFeedback> rtcp_packet( |
| rtc::MakeUnique<rtcp::TransportFeedback>()); |
| if (rtcp_packet->Parse(header)) { |
| uint32_t ssrc = rtcp_packet->sender_ssrc(); |
| StreamId stream(ssrc, direction); |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| rtcp_packets_[stream].push_back(LoggedRtcpPacket( |
| timestamp, kRtcpTransportFeedback, std::move(rtcp_packet))); |
| } |
| } else if (header.type() == rtcp::SenderReport::kPacketType) { |
| std::unique_ptr<rtcp::SenderReport> rtcp_packet( |
| rtc::MakeUnique<rtcp::SenderReport>()); |
| if (rtcp_packet->Parse(header)) { |
| uint32_t ssrc = rtcp_packet->sender_ssrc(); |
| StreamId stream(ssrc, direction); |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| rtcp_packets_[stream].push_back( |
| LoggedRtcpPacket(timestamp, kRtcpSr, std::move(rtcp_packet))); |
| } |
| } else if (header.type() == rtcp::ReceiverReport::kPacketType) { |
| std::unique_ptr<rtcp::ReceiverReport> rtcp_packet( |
| rtc::MakeUnique<rtcp::ReceiverReport>()); |
| if (rtcp_packet->Parse(header)) { |
| uint32_t ssrc = rtcp_packet->sender_ssrc(); |
| StreamId stream(ssrc, direction); |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| rtcp_packets_[stream].push_back( |
| LoggedRtcpPacket(timestamp, kRtcpRr, std::move(rtcp_packet))); |
| } |
| } else if (header.type() == rtcp::Remb::kPacketType && |
| header.fmt() == rtcp::Remb::kFeedbackMessageType) { |
| std::unique_ptr<rtcp::Remb> rtcp_packet( |
| rtc::MakeUnique<rtcp::Remb>()); |
| if (rtcp_packet->Parse(header)) { |
| uint32_t ssrc = rtcp_packet->sender_ssrc(); |
| StreamId stream(ssrc, direction); |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| rtcp_packets_[stream].push_back(LoggedRtcpPacket( |
| timestamp, kRtcpRemb, std::move(rtcp_packet))); |
| } |
| } |
| } |
| break; |
| } |
| case ParsedRtcEventLog::LOG_START: { |
| if (last_log_start) { |
| // A LOG_END event was missing. Use last_timestamp. |
| RTC_DCHECK_GE(last_timestamp, *last_log_start); |
| log_segments_.push_back( |
| std::make_pair(*last_log_start, last_timestamp)); |
| } |
| last_log_start = rtc::Optional<uint64_t>(parsed_log_.GetTimestamp(i)); |
| break; |
| } |
| case ParsedRtcEventLog::LOG_END: { |
| RTC_DCHECK(last_log_start); |
| log_segments_.push_back( |
| std::make_pair(*last_log_start, parsed_log_.GetTimestamp(i))); |
| last_log_start.reset(); |
| break; |
| } |
| case ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT: { |
| uint32_t this_ssrc; |
| parsed_log_.GetAudioPlayout(i, &this_ssrc); |
| audio_playout_events_[this_ssrc].push_back(parsed_log_.GetTimestamp(i)); |
| break; |
| } |
| case ParsedRtcEventLog::LOSS_BASED_BWE_UPDATE: { |
| LossBasedBweUpdate bwe_update; |
| bwe_update.timestamp = parsed_log_.GetTimestamp(i); |
| parsed_log_.GetLossBasedBweUpdate(i, &bwe_update.new_bitrate, |
| &bwe_update.fraction_loss, |
| &bwe_update.expected_packets); |
| bwe_loss_updates_.push_back(bwe_update); |
| break; |
| } |
| case ParsedRtcEventLog::DELAY_BASED_BWE_UPDATE: { |
| bwe_delay_updates_.push_back(parsed_log_.GetDelayBasedBweUpdate(i)); |
| break; |
| } |
| case ParsedRtcEventLog::AUDIO_NETWORK_ADAPTATION_EVENT: { |
| AudioNetworkAdaptationEvent ana_event; |
| ana_event.timestamp = parsed_log_.GetTimestamp(i); |
| parsed_log_.GetAudioNetworkAdaptation(i, &ana_event.config); |
| audio_network_adaptation_events_.push_back(ana_event); |
| break; |
| } |
| case ParsedRtcEventLog::BWE_PROBE_CLUSTER_CREATED_EVENT: { |
| bwe_probe_cluster_created_events_.push_back( |
| parsed_log_.GetBweProbeClusterCreated(i)); |
| break; |
| } |
| case ParsedRtcEventLog::BWE_PROBE_RESULT_EVENT: { |
| bwe_probe_result_events_.push_back(parsed_log_.GetBweProbeResult(i)); |
| break; |
| } |
| case ParsedRtcEventLog::UNKNOWN_EVENT: { |
| break; |
| } |
| } |
| } |
| |
| if (last_timestamp < first_timestamp) { |
| // No useful events in the log. |
| first_timestamp = last_timestamp = 0; |
| } |
| begin_time_ = first_timestamp; |
| end_time_ = last_timestamp; |
| call_duration_s_ = static_cast<float>(end_time_ - begin_time_) / 1000000; |
| if (last_log_start) { |
| // The log was missing the last LOG_END event. Fake it. |
| log_segments_.push_back(std::make_pair(*last_log_start, end_time_)); |
| } |
| } |
| |
| class BitrateObserver : public CongestionController::Observer, |
| public RemoteBitrateObserver { |
| public: |
| BitrateObserver() : last_bitrate_bps_(0), bitrate_updated_(false) {} |
| |
| // TODO(minyue): remove this when old OnNetworkChanged is deprecated. See |
| // https://bugs.chromium.org/p/webrtc/issues/detail?id=6796 |
| using CongestionController::Observer::OnNetworkChanged; |
| |
| void OnNetworkChanged(uint32_t bitrate_bps, |
| uint8_t fraction_loss, |
| int64_t rtt_ms, |
| int64_t probing_interval_ms) override { |
| last_bitrate_bps_ = bitrate_bps; |
| bitrate_updated_ = true; |
| } |
| |
| void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs, |
| uint32_t bitrate) override {} |
| |
| uint32_t last_bitrate_bps() const { return last_bitrate_bps_; } |
| bool GetAndResetBitrateUpdated() { |
| bool bitrate_updated = bitrate_updated_; |
| bitrate_updated_ = false; |
| return bitrate_updated; |
| } |
| |
| private: |
| uint32_t last_bitrate_bps_; |
| bool bitrate_updated_; |
| }; |
| |
| bool EventLogAnalyzer::IsRtxSsrc(StreamId stream_id) const { |
| return rtx_ssrcs_.count(stream_id) == 1; |
| } |
| |
| bool EventLogAnalyzer::IsVideoSsrc(StreamId stream_id) const { |
| return video_ssrcs_.count(stream_id) == 1; |
| } |
| |
| bool EventLogAnalyzer::IsAudioSsrc(StreamId stream_id) const { |
| return audio_ssrcs_.count(stream_id) == 1; |
| } |
| |
| std::string EventLogAnalyzer::GetStreamName(StreamId stream_id) const { |
| std::stringstream name; |
| if (IsAudioSsrc(stream_id)) { |
| name << "Audio "; |
| } else if (IsVideoSsrc(stream_id)) { |
| name << "Video "; |
| } else { |
| name << "Unknown "; |
| } |
| if (IsRtxSsrc(stream_id)) |
| name << "RTX "; |
| if (stream_id.GetDirection() == kIncomingPacket) { |
| name << "(In) "; |
| } else { |
| name << "(Out) "; |
| } |
| name << SsrcToString(stream_id.GetSsrc()); |
| return name.str(); |
| } |
| |
| void EventLogAnalyzer::CreatePacketGraph(PacketDirection desired_direction, |
| Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != desired_direction || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { |
| continue; |
| } |
| |
| TimeSeries time_series(GetStreamName(stream_id), BAR_GRAPH); |
| ProcessPoints<LoggedRtpPacket>( |
| [](const LoggedRtpPacket& packet) -> rtc::Optional<float> { |
| return rtc::Optional<float>(packet.total_length); |
| }, |
| packet_stream, begin_time_, &time_series); |
| plot->AppendTimeSeries(std::move(time_series)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Packet size (bytes)", kBottomMargin, |
| kTopMargin); |
| if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { |
| plot->SetTitle("Incoming RTP packets"); |
| } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { |
| plot->SetTitle("Outgoing RTP packets"); |
| } |
| } |
| |
| template <typename T> |
| void EventLogAnalyzer::CreateAccumulatedPacketsTimeSeries( |
| PacketDirection desired_direction, |
| Plot* plot, |
| const std::map<StreamId, std::vector<T>>& packets, |
| const std::string& label_prefix) { |
| for (auto& kv : packets) { |
| StreamId stream_id = kv.first; |
| const std::vector<T>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != desired_direction || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { |
| continue; |
| } |
| |
| std::string label = label_prefix + " " + GetStreamName(stream_id); |
| TimeSeries time_series(label, LINE_STEP_GRAPH); |
| for (size_t i = 0; i < packet_stream.size(); i++) { |
| float x = static_cast<float>(packet_stream[i].timestamp - begin_time_) / |
| 1000000; |
| time_series.points.emplace_back(x, i + 1); |
| } |
| |
| plot->AppendTimeSeries(std::move(time_series)); |
| } |
| } |
| |
| void EventLogAnalyzer::CreateAccumulatedPacketsGraph( |
| PacketDirection desired_direction, |
| Plot* plot) { |
| CreateAccumulatedPacketsTimeSeries(desired_direction, plot, rtp_packets_, |
| "RTP"); |
| CreateAccumulatedPacketsTimeSeries(desired_direction, plot, rtcp_packets_, |
| "RTCP"); |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Received Packets", kBottomMargin, kTopMargin); |
| if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { |
| plot->SetTitle("Accumulated Incoming RTP/RTCP packets"); |
| } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { |
| plot->SetTitle("Accumulated Outgoing RTP/RTCP packets"); |
| } |
| } |
| |
| // For each SSRC, plot the time between the consecutive playouts. |
| void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) { |
| std::map<uint32_t, TimeSeries> time_series; |
| std::map<uint32_t, uint64_t> last_playout; |
| |
| uint32_t ssrc; |
| |
| for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { |
| ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); |
| if (event_type == ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT) { |
| parsed_log_.GetAudioPlayout(i, &ssrc); |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| if (MatchingSsrc(ssrc, desired_ssrc_)) { |
| float x = static_cast<float>(timestamp - begin_time_) / 1000000; |
| float y = static_cast<float>(timestamp - last_playout[ssrc]) / 1000; |
| if (time_series[ssrc].points.size() == 0) { |
| // There were no previusly logged playout for this SSRC. |
| // Generate a point, but place it on the x-axis. |
| y = 0; |
| } |
| time_series[ssrc].points.push_back(TimeSeriesPoint(x, y)); |
| last_playout[ssrc] = timestamp; |
| } |
| } |
| } |
| |
| // Set labels and put in graph. |
| for (auto& kv : time_series) { |
| kv.second.label = SsrcToString(kv.first); |
| kv.second.style = BAR_GRAPH; |
| plot->AppendTimeSeries(std::move(kv.second)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Time since last playout (ms)", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Audio playout"); |
| } |
| |
| // For audio SSRCs, plot the audio level. |
| void EventLogAnalyzer::CreateAudioLevelGraph(Plot* plot) { |
| std::map<StreamId, TimeSeries> time_series; |
| |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // TODO(ivoc): When audio send/receive configs are stored in the event |
| // log, a check should be added here to only process audio |
| // streams. Tracking bug: webrtc:6399 |
| for (auto& packet : packet_stream) { |
| if (packet.header.extension.hasAudioLevel) { |
| float x = static_cast<float>(packet.timestamp - begin_time_) / 1000000; |
| // The audio level is stored in -dBov (so e.g. -10 dBov is stored as 10) |
| // Here we convert it to dBov. |
| float y = static_cast<float>(-packet.header.extension.audioLevel); |
| time_series[stream_id].points.emplace_back(TimeSeriesPoint(x, y)); |
| } |
| } |
| } |
| |
| for (auto& series : time_series) { |
| series.second.label = GetStreamName(series.first); |
| series.second.style = LINE_GRAPH; |
| plot->AppendTimeSeries(std::move(series.second)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetYAxis(-127, 0, "Audio level (dBov)", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Audio level"); |
| } |
| |
| // For each SSRC, plot the time between the consecutive playouts. |
| void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != kIncomingPacket || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { |
| continue; |
| } |
| |
| TimeSeries time_series(GetStreamName(stream_id), BAR_GRAPH); |
| ProcessPairs<LoggedRtpPacket, float>( |
| [](const LoggedRtpPacket& old_packet, |
| const LoggedRtpPacket& new_packet) { |
| int64_t diff = |
| WrappingDifference(new_packet.header.sequenceNumber, |
| old_packet.header.sequenceNumber, 1ul << 16); |
| return rtc::Optional<float>(diff); |
| }, |
| packet_stream, begin_time_, &time_series); |
| plot->AppendTimeSeries(std::move(time_series)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Difference since last packet", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Sequence number"); |
| } |
| |
| void EventLogAnalyzer::CreateIncomingPacketLossGraph(Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != kIncomingPacket || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_) || |
| packet_stream.size() == 0) { |
| continue; |
| } |
| |
| TimeSeries time_series(GetStreamName(stream_id), LINE_DOT_GRAPH); |
| const uint64_t kWindowUs = 1000000; |
| const uint64_t kStep = 1000000; |
| SequenceNumberUnwrapper unwrapper_; |
| SequenceNumberUnwrapper prior_unwrapper_; |
| size_t window_index_begin = 0; |
| size_t window_index_end = 0; |
| int64_t highest_seq_number = |
| unwrapper_.Unwrap(packet_stream[0].header.sequenceNumber) - 1; |
| int64_t highest_prior_seq_number = |
| prior_unwrapper_.Unwrap(packet_stream[0].header.sequenceNumber) - 1; |
| |
| for (uint64_t t = begin_time_; t < end_time_ + kStep; t += kStep) { |
| while (window_index_end < packet_stream.size() && |
| packet_stream[window_index_end].timestamp < t) { |
| int64_t sequence_number = unwrapper_.Unwrap( |
| packet_stream[window_index_end].header.sequenceNumber); |
| highest_seq_number = std::max(highest_seq_number, sequence_number); |
| ++window_index_end; |
| } |
| while (window_index_begin < packet_stream.size() && |
| packet_stream[window_index_begin].timestamp < t - kWindowUs) { |
| int64_t sequence_number = prior_unwrapper_.Unwrap( |
| packet_stream[window_index_begin].header.sequenceNumber); |
| highest_prior_seq_number = |
| std::max(highest_prior_seq_number, sequence_number); |
| ++window_index_begin; |
| } |
| float x = static_cast<float>(t - begin_time_) / 1000000; |
| int64_t expected_packets = highest_seq_number - highest_prior_seq_number; |
| if (expected_packets > 0) { |
| int64_t received_packets = window_index_end - window_index_begin; |
| int64_t lost_packets = expected_packets - received_packets; |
| float y = static_cast<float>(lost_packets) / expected_packets * 100; |
| time_series.points.emplace_back(x, y); |
| } |
| } |
| plot->AppendTimeSeries(std::move(time_series)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Estimated loss rate (%)", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Estimated incoming loss rate"); |
| } |
| |
| void EventLogAnalyzer::CreateDelayChangeGraph(Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != kIncomingPacket || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_) || |
| IsAudioSsrc(stream_id) || !IsVideoSsrc(stream_id) || |
| IsRtxSsrc(stream_id)) { |
| continue; |
| } |
| |
| TimeSeries capture_time_data(GetStreamName(stream_id) + " capture-time", |
| BAR_GRAPH); |
| ProcessPairs<LoggedRtpPacket, double>(NetworkDelayDiff_CaptureTime, |
| packet_stream, begin_time_, |
| &capture_time_data); |
| plot->AppendTimeSeries(std::move(capture_time_data)); |
| |
| TimeSeries send_time_data(GetStreamName(stream_id) + " abs-send-time", |
| BAR_GRAPH); |
| ProcessPairs<LoggedRtpPacket, double>(NetworkDelayDiff_AbsSendTime, |
| packet_stream, begin_time_, |
| &send_time_data); |
| plot->AppendTimeSeries(std::move(send_time_data)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Network latency change between consecutive packets"); |
| } |
| |
| void EventLogAnalyzer::CreateAccumulatedDelayChangeGraph(Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != kIncomingPacket || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_) || |
| IsAudioSsrc(stream_id) || !IsVideoSsrc(stream_id) || |
| IsRtxSsrc(stream_id)) { |
| continue; |
| } |
| |
| TimeSeries capture_time_data(GetStreamName(stream_id) + " capture-time", |
| LINE_GRAPH); |
| AccumulatePairs<LoggedRtpPacket, double>(NetworkDelayDiff_CaptureTime, |
| packet_stream, begin_time_, |
| &capture_time_data); |
| plot->AppendTimeSeries(std::move(capture_time_data)); |
| |
| TimeSeries send_time_data(GetStreamName(stream_id) + " abs-send-time", |
| LINE_GRAPH); |
| AccumulatePairs<LoggedRtpPacket, double>(NetworkDelayDiff_AbsSendTime, |
| packet_stream, begin_time_, |
| &send_time_data); |
| plot->AppendTimeSeries(std::move(send_time_data)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Accumulated network latency change"); |
| } |
| |
| // Plot the fraction of packets lost (as perceived by the loss-based BWE). |
| void EventLogAnalyzer::CreateFractionLossGraph(Plot* plot) { |
| TimeSeries time_series("Fraction lost", LINE_DOT_GRAPH); |
| for (auto& bwe_update : bwe_loss_updates_) { |
| float x = static_cast<float>(bwe_update.timestamp - begin_time_) / 1000000; |
| float y = static_cast<float>(bwe_update.fraction_loss) / 255 * 100; |
| time_series.points.emplace_back(x, y); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 10, "Percent lost packets", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Reported packet loss"); |
| plot->AppendTimeSeries(std::move(time_series)); |
| } |
| |
| // Plot the total bandwidth used by all RTP streams. |
| void EventLogAnalyzer::CreateTotalBitrateGraph( |
| PacketDirection desired_direction, |
| Plot* plot) { |
| struct TimestampSize { |
| TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {} |
| uint64_t timestamp; |
| size_t size; |
| }; |
| std::vector<TimestampSize> packets; |
| |
| PacketDirection direction; |
| size_t total_length; |
| |
| // Extract timestamps and sizes for the relevant packets. |
| for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { |
| ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); |
| if (event_type == ParsedRtcEventLog::RTP_EVENT) { |
| parsed_log_.GetRtpHeader(i, &direction, nullptr, nullptr, &total_length); |
| if (direction == desired_direction) { |
| uint64_t timestamp = parsed_log_.GetTimestamp(i); |
| packets.push_back(TimestampSize(timestamp, total_length)); |
| } |
| } |
| } |
| |
| size_t window_index_begin = 0; |
| size_t window_index_end = 0; |
| size_t bytes_in_window = 0; |
| |
| // Calculate a moving average of the bitrate and store in a TimeSeries. |
| TimeSeries bitrate_series("Bitrate", LINE_GRAPH); |
| for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) { |
| while (window_index_end < packets.size() && |
| packets[window_index_end].timestamp < time) { |
| bytes_in_window += packets[window_index_end].size; |
| ++window_index_end; |
| } |
| while (window_index_begin < packets.size() && |
| packets[window_index_begin].timestamp < time - window_duration_) { |
| RTC_DCHECK_LE(packets[window_index_begin].size, bytes_in_window); |
| bytes_in_window -= packets[window_index_begin].size; |
| ++window_index_begin; |
| } |
| float window_duration_in_seconds = |
| static_cast<float>(window_duration_) / 1000000; |
| float x = static_cast<float>(time - begin_time_) / 1000000; |
| float y = bytes_in_window * 8 / window_duration_in_seconds / 1000; |
| bitrate_series.points.emplace_back(x, y); |
| } |
| plot->AppendTimeSeries(std::move(bitrate_series)); |
| |
| // Overlay the send-side bandwidth estimate over the outgoing bitrate. |
| if (desired_direction == kOutgoingPacket) { |
| TimeSeries loss_series("Loss-based estimate", LINE_STEP_GRAPH); |
| for (auto& loss_update : bwe_loss_updates_) { |
| float x = |
| static_cast<float>(loss_update.timestamp - begin_time_) / 1000000; |
| float y = static_cast<float>(loss_update.new_bitrate) / 1000; |
| loss_series.points.emplace_back(x, y); |
| } |
| |
| TimeSeries delay_series("Delay-based estimate", LINE_STEP_GRAPH); |
| for (auto& delay_update : bwe_delay_updates_) { |
| float x = |
| static_cast<float>(delay_update.timestamp - begin_time_) / 1000000; |
| float y = static_cast<float>(delay_update.bitrate_bps) / 1000; |
| delay_series.points.emplace_back(x, y); |
| } |
| |
| TimeSeries created_series("Probe cluster created.", DOT_GRAPH); |
| for (auto& cluster : bwe_probe_cluster_created_events_) { |
| float x = static_cast<float>(cluster.timestamp - begin_time_) / 1000000; |
| float y = static_cast<float>(cluster.bitrate_bps) / 1000; |
| created_series.points.emplace_back(x, y); |
| } |
| |
| TimeSeries result_series("Probing results.", DOT_GRAPH); |
| for (auto& result : bwe_probe_result_events_) { |
| if (result.bitrate_bps) { |
| float x = static_cast<float>(result.timestamp - begin_time_) / 1000000; |
| float y = static_cast<float>(*result.bitrate_bps) / 1000; |
| result_series.points.emplace_back(x, y); |
| } |
| } |
| plot->AppendTimeSeries(std::move(loss_series)); |
| plot->AppendTimeSeries(std::move(delay_series)); |
| plot->AppendTimeSeries(std::move(created_series)); |
| plot->AppendTimeSeries(std::move(result_series)); |
| } |
| |
| // Overlay the incoming REMB over the outgoing bitrate |
| // and outgoing REMB over incoming bitrate. |
| PacketDirection remb_direction = |
| desired_direction == kOutgoingPacket ? kIncomingPacket : kOutgoingPacket; |
| TimeSeries remb_series("Remb", LINE_STEP_GRAPH); |
| std::multimap<uint64_t, const LoggedRtcpPacket*> remb_packets; |
| for (const auto& kv : rtcp_packets_) { |
| if (kv.first.GetDirection() == remb_direction) { |
| for (const LoggedRtcpPacket& rtcp_packet : kv.second) { |
| if (rtcp_packet.type == kRtcpRemb) { |
| remb_packets.insert( |
| std::make_pair(rtcp_packet.timestamp, &rtcp_packet)); |
| } |
| } |
| } |
| } |
| |
| for (const auto& kv : remb_packets) { |
| const LoggedRtcpPacket* const rtcp = kv.second; |
| const rtcp::Remb* const remb = static_cast<rtcp::Remb*>(rtcp->packet.get()); |
| float x = static_cast<float>(rtcp->timestamp - begin_time_) / 1000000; |
| float y = static_cast<float>(remb->bitrate_bps()) / 1000; |
| remb_series.points.emplace_back(x, y); |
| } |
| plot->AppendTimeSeriesIfNotEmpty(std::move(remb_series)); |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); |
| if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { |
| plot->SetTitle("Incoming RTP bitrate"); |
| } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { |
| plot->SetTitle("Outgoing RTP bitrate"); |
| } |
| } |
| |
| // For each SSRC, plot the bandwidth used by that stream. |
| void EventLogAnalyzer::CreateStreamBitrateGraph( |
| PacketDirection desired_direction, |
| Plot* plot) { |
| for (auto& kv : rtp_packets_) { |
| StreamId stream_id = kv.first; |
| const std::vector<LoggedRtpPacket>& packet_stream = kv.second; |
| // Filter on direction and SSRC. |
| if (stream_id.GetDirection() != desired_direction || |
| !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { |
| continue; |
| } |
| |
| TimeSeries time_series(GetStreamName(stream_id), LINE_GRAPH); |
| MovingAverage<LoggedRtpPacket, double>( |
| [](const LoggedRtpPacket& packet) { |
| return rtc::Optional<double>(packet.total_length * 8.0 / 1000.0); |
| }, |
| packet_stream, begin_time_, end_time_, window_duration_, step_, |
| &time_series); |
| plot->AppendTimeSeries(std::move(time_series)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); |
| if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { |
| plot->SetTitle("Incoming bitrate per stream"); |
| } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { |
| plot->SetTitle("Outgoing bitrate per stream"); |
| } |
| } |
| |
| void EventLogAnalyzer::CreateBweSimulationGraph(Plot* plot) { |
| std::multimap<uint64_t, const LoggedRtpPacket*> outgoing_rtp; |
| std::multimap<uint64_t, const LoggedRtcpPacket*> incoming_rtcp; |
| |
| for (const auto& kv : rtp_packets_) { |
| if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) { |
| for (const LoggedRtpPacket& rtp_packet : kv.second) |
| outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet)); |
| } |
| } |
| |
| for (const auto& kv : rtcp_packets_) { |
| if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) { |
| for (const LoggedRtcpPacket& rtcp_packet : kv.second) |
| incoming_rtcp.insert( |
| std::make_pair(rtcp_packet.timestamp, &rtcp_packet)); |
| } |
| } |
| |
| SimulatedClock clock(0); |
| BitrateObserver observer; |
| RtcEventLogNullImpl null_event_log; |
| PacketRouter packet_router; |
| CongestionController cc(&clock, &observer, &observer, &null_event_log, |
| &packet_router); |
| // TODO(holmer): Log the call config and use that here instead. |
| static const uint32_t kDefaultStartBitrateBps = 300000; |
| cc.SetBweBitrates(0, kDefaultStartBitrateBps, -1); |
| |
| TimeSeries time_series("Delay-based estimate", LINE_DOT_GRAPH); |
| TimeSeries acked_time_series("Acked bitrate", LINE_DOT_GRAPH); |
| |
| auto rtp_iterator = outgoing_rtp.begin(); |
| auto rtcp_iterator = incoming_rtcp.begin(); |
| |
| auto NextRtpTime = [&]() { |
| if (rtp_iterator != outgoing_rtp.end()) |
| return static_cast<int64_t>(rtp_iterator->first); |
| return std::numeric_limits<int64_t>::max(); |
| }; |
| |
| auto NextRtcpTime = [&]() { |
| if (rtcp_iterator != incoming_rtcp.end()) |
| return static_cast<int64_t>(rtcp_iterator->first); |
| return std::numeric_limits<int64_t>::max(); |
| }; |
| |
| auto NextProcessTime = [&]() { |
| if (rtcp_iterator != incoming_rtcp.end() || |
| rtp_iterator != outgoing_rtp.end()) { |
| return clock.TimeInMicroseconds() + |
| std::max<int64_t>(cc.TimeUntilNextProcess() * 1000, 0); |
| } |
| return std::numeric_limits<int64_t>::max(); |
| }; |
| |
| RateStatistics acked_bitrate(250, 8000); |
| |
| int64_t time_us = std::min(NextRtpTime(), NextRtcpTime()); |
| int64_t last_update_us = 0; |
| while (time_us != std::numeric_limits<int64_t>::max()) { |
| clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds()); |
| if (clock.TimeInMicroseconds() >= NextRtcpTime()) { |
| RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime()); |
| const LoggedRtcpPacket& rtcp = *rtcp_iterator->second; |
| if (rtcp.type == kRtcpTransportFeedback) { |
| cc.OnTransportFeedback( |
| *static_cast<rtcp::TransportFeedback*>(rtcp.packet.get())); |
| std::vector<PacketFeedback> feedback = cc.GetTransportFeedbackVector(); |
| SortPacketFeedbackVector(&feedback); |
| rtc::Optional<uint32_t> bitrate_bps; |
| if (!feedback.empty()) { |
| for (const PacketFeedback& packet : feedback) |
| acked_bitrate.Update(packet.payload_size, packet.arrival_time_ms); |
| bitrate_bps = acked_bitrate.Rate(feedback.back().arrival_time_ms); |
| } |
| uint32_t y = 0; |
| if (bitrate_bps) |
| y = *bitrate_bps / 1000; |
| float x = static_cast<float>(clock.TimeInMicroseconds() - begin_time_) / |
| 1000000; |
| acked_time_series.points.emplace_back(x, y); |
| } |
| ++rtcp_iterator; |
| } |
| if (clock.TimeInMicroseconds() >= NextRtpTime()) { |
| RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime()); |
| const LoggedRtpPacket& rtp = *rtp_iterator->second; |
| if (rtp.header.extension.hasTransportSequenceNumber) { |
| RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber); |
| cc.AddPacket(rtp.header.ssrc, |
| rtp.header.extension.transportSequenceNumber, |
| rtp.total_length, PacedPacketInfo()); |
| rtc::SentPacket sent_packet( |
| rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000); |
| cc.OnSentPacket(sent_packet); |
| } |
| ++rtp_iterator; |
| } |
| if (clock.TimeInMicroseconds() >= NextProcessTime()) { |
| RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextProcessTime()); |
| cc.Process(); |
| } |
| if (observer.GetAndResetBitrateUpdated() || |
| time_us - last_update_us >= 1e6) { |
| uint32_t y = observer.last_bitrate_bps() / 1000; |
| float x = static_cast<float>(clock.TimeInMicroseconds() - begin_time_) / |
| 1000000; |
| time_series.points.emplace_back(x, y); |
| last_update_us = time_us; |
| } |
| time_us = std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()}); |
| } |
| // Add the data set to the plot. |
| plot->AppendTimeSeries(std::move(time_series)); |
| plot->AppendTimeSeries(std::move(acked_time_series)); |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin); |
| plot->SetTitle("Simulated BWE behavior"); |
| } |
| |
| void EventLogAnalyzer::CreateNetworkDelayFeedbackGraph(Plot* plot) { |
| std::multimap<uint64_t, const LoggedRtpPacket*> outgoing_rtp; |
| std::multimap<uint64_t, const LoggedRtcpPacket*> incoming_rtcp; |
| |
| for (const auto& kv : rtp_packets_) { |
| if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) { |
| for (const LoggedRtpPacket& rtp_packet : kv.second) |
| outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet)); |
| } |
| } |
| |
| for (const auto& kv : rtcp_packets_) { |
| if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) { |
| for (const LoggedRtcpPacket& rtcp_packet : kv.second) |
| incoming_rtcp.insert( |
| std::make_pair(rtcp_packet.timestamp, &rtcp_packet)); |
| } |
| } |
| |
| SimulatedClock clock(0); |
| TransportFeedbackAdapter feedback_adapter(&clock); |
| |
| TimeSeries time_series("Network Delay Change", LINE_DOT_GRAPH); |
| int64_t estimated_base_delay_ms = std::numeric_limits<int64_t>::max(); |
| |
| auto rtp_iterator = outgoing_rtp.begin(); |
| auto rtcp_iterator = incoming_rtcp.begin(); |
| |
| auto NextRtpTime = [&]() { |
| if (rtp_iterator != outgoing_rtp.end()) |
| return static_cast<int64_t>(rtp_iterator->first); |
| return std::numeric_limits<int64_t>::max(); |
| }; |
| |
| auto NextRtcpTime = [&]() { |
| if (rtcp_iterator != incoming_rtcp.end()) |
| return static_cast<int64_t>(rtcp_iterator->first); |
| return std::numeric_limits<int64_t>::max(); |
| }; |
| |
| int64_t time_us = std::min(NextRtpTime(), NextRtcpTime()); |
| while (time_us != std::numeric_limits<int64_t>::max()) { |
| clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds()); |
| if (clock.TimeInMicroseconds() >= NextRtcpTime()) { |
| RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime()); |
| const LoggedRtcpPacket& rtcp = *rtcp_iterator->second; |
| if (rtcp.type == kRtcpTransportFeedback) { |
| feedback_adapter.OnTransportFeedback( |
| *static_cast<rtcp::TransportFeedback*>(rtcp.packet.get())); |
| std::vector<PacketFeedback> feedback = |
| feedback_adapter.GetTransportFeedbackVector(); |
| SortPacketFeedbackVector(&feedback); |
| for (const PacketFeedback& packet : feedback) { |
| int64_t y = packet.arrival_time_ms - packet.send_time_ms; |
| float x = |
| static_cast<float>(clock.TimeInMicroseconds() - begin_time_) / |
| 1000000; |
| estimated_base_delay_ms = std::min(y, estimated_base_delay_ms); |
| time_series.points.emplace_back(x, y); |
| } |
| } |
| ++rtcp_iterator; |
| } |
| if (clock.TimeInMicroseconds() >= NextRtpTime()) { |
| RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime()); |
| const LoggedRtpPacket& rtp = *rtp_iterator->second; |
| if (rtp.header.extension.hasTransportSequenceNumber) { |
| RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber); |
| feedback_adapter.AddPacket(rtp.header.ssrc, |
| rtp.header.extension.transportSequenceNumber, |
| rtp.total_length, PacedPacketInfo()); |
| feedback_adapter.OnSentPacket( |
| rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000); |
| } |
| ++rtp_iterator; |
| } |
| time_us = std::min(NextRtpTime(), NextRtcpTime()); |
| } |
| // We assume that the base network delay (w/o queues) is the min delay |
| // observed during the call. |
| for (TimeSeriesPoint& point : time_series.points) |
| point.y -= estimated_base_delay_ms; |
| // Add the data set to the plot. |
| plot->AppendTimeSeries(std::move(time_series)); |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 10, "Delay (ms)", kBottomMargin, kTopMargin); |
| plot->SetTitle("Network Delay Change."); |
| } |
| |
| std::vector<std::pair<int64_t, int64_t>> EventLogAnalyzer::GetFrameTimestamps() |
| const { |
| std::vector<std::pair<int64_t, int64_t>> timestamps; |
| size_t largest_stream_size = 0; |
| const std::vector<LoggedRtpPacket>* largest_video_stream = nullptr; |
| // Find the incoming video stream with the most number of packets that is |
| // not rtx. |
| for (const auto& kv : rtp_packets_) { |
| if (kv.first.GetDirection() == kIncomingPacket && |
| video_ssrcs_.find(kv.first) != video_ssrcs_.end() && |
| rtx_ssrcs_.find(kv.first) == rtx_ssrcs_.end() && |
| kv.second.size() > largest_stream_size) { |
| largest_stream_size = kv.second.size(); |
| largest_video_stream = &kv.second; |
| } |
| } |
| if (largest_video_stream == nullptr) { |
| for (auto& packet : *largest_video_stream) { |
| if (packet.header.markerBit) { |
| int64_t capture_ms = packet.header.timestamp / 90.0; |
| int64_t arrival_ms = packet.timestamp / 1000.0; |
| timestamps.push_back(std::make_pair(capture_ms, arrival_ms)); |
| } |
| } |
| } |
| return timestamps; |
| } |
| |
| void EventLogAnalyzer::CreateTimestampGraph(Plot* plot) { |
| for (const auto& kv : rtp_packets_) { |
| const std::vector<LoggedRtpPacket>& rtp_packets = kv.second; |
| StreamId stream_id = kv.first; |
| |
| { |
| TimeSeries timestamp_data(GetStreamName(stream_id) + " capture-time", |
| LINE_DOT_GRAPH); |
| for (LoggedRtpPacket packet : rtp_packets) { |
| float x = static_cast<float>(packet.timestamp - begin_time_) / 1000000; |
| float y = packet.header.timestamp; |
| timestamp_data.points.emplace_back(x, y); |
| } |
| plot->AppendTimeSeries(std::move(timestamp_data)); |
| } |
| |
| { |
| auto kv = rtcp_packets_.find(stream_id); |
| if (kv != rtcp_packets_.end()) { |
| const auto& packets = kv->second; |
| TimeSeries timestamp_data( |
| GetStreamName(stream_id) + " rtcp capture-time", LINE_DOT_GRAPH); |
| for (const LoggedRtcpPacket& rtcp : packets) { |
| if (rtcp.type != kRtcpSr) |
| continue; |
| rtcp::SenderReport* sr; |
| sr = static_cast<rtcp::SenderReport*>(rtcp.packet.get()); |
| float x = static_cast<float>(rtcp.timestamp - begin_time_) / 1000000; |
| float y = sr->rtp_timestamp(); |
| timestamp_data.points.emplace_back(x, y); |
| } |
| plot->AppendTimeSeries(std::move(timestamp_data)); |
| } |
| } |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Timestamp (90khz)", kBottomMargin, kTopMargin); |
| plot->SetTitle("Timestamps"); |
| } |
| |
| void EventLogAnalyzer::CreateAudioEncoderTargetBitrateGraph(Plot* plot) { |
| TimeSeries time_series("Audio encoder target bitrate", LINE_DOT_GRAPH); |
| ProcessPoints<AudioNetworkAdaptationEvent>( |
| [](const AudioNetworkAdaptationEvent& ana_event) -> rtc::Optional<float> { |
| if (ana_event.config.bitrate_bps) |
| return rtc::Optional<float>( |
| static_cast<float>(*ana_event.config.bitrate_bps)); |
| return rtc::Optional<float>(); |
| }, |
| audio_network_adaptation_events_, begin_time_, &time_series); |
| plot->AppendTimeSeries(std::move(time_series)); |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Bitrate (bps)", kBottomMargin, kTopMargin); |
| plot->SetTitle("Reported audio encoder target bitrate"); |
| } |
| |
| void EventLogAnalyzer::CreateAudioEncoderFrameLengthGraph(Plot* plot) { |
| TimeSeries time_series("Audio encoder frame length", LINE_DOT_GRAPH); |
| ProcessPoints<AudioNetworkAdaptationEvent>( |
| [](const AudioNetworkAdaptationEvent& ana_event) { |
| if (ana_event.config.frame_length_ms) |
| return rtc::Optional<float>( |
| static_cast<float>(*ana_event.config.frame_length_ms)); |
| return rtc::Optional<float>(); |
| }, |
| audio_network_adaptation_events_, begin_time_, &time_series); |
| plot->AppendTimeSeries(std::move(time_series)); |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Frame length (ms)", kBottomMargin, kTopMargin); |
| plot->SetTitle("Reported audio encoder frame length"); |
| } |
| |
| void EventLogAnalyzer::CreateAudioEncoderUplinkPacketLossFractionGraph( |
| Plot* plot) { |
| TimeSeries time_series("Audio encoder uplink packet loss fraction", |
| LINE_DOT_GRAPH); |
| ProcessPoints<AudioNetworkAdaptationEvent>( |
| [](const AudioNetworkAdaptationEvent& ana_event) { |
| if (ana_event.config.uplink_packet_loss_fraction) |
| return rtc::Optional<float>(static_cast<float>( |
| *ana_event.config.uplink_packet_loss_fraction)); |
| return rtc::Optional<float>(); |
| }, |
| audio_network_adaptation_events_, begin_time_, &time_series); |
| plot->AppendTimeSeries(std::move(time_series)); |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 10, "Percent lost packets", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("Reported audio encoder lost packets"); |
| } |
| |
| void EventLogAnalyzer::CreateAudioEncoderEnableFecGraph(Plot* plot) { |
| TimeSeries time_series("Audio encoder FEC", LINE_DOT_GRAPH); |
| ProcessPoints<AudioNetworkAdaptationEvent>( |
| [](const AudioNetworkAdaptationEvent& ana_event) { |
| if (ana_event.config.enable_fec) |
| return rtc::Optional<float>( |
| static_cast<float>(*ana_event.config.enable_fec)); |
| return rtc::Optional<float>(); |
| }, |
| audio_network_adaptation_events_, begin_time_, &time_series); |
| plot->AppendTimeSeries(std::move(time_series)); |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "FEC (false/true)", kBottomMargin, kTopMargin); |
| plot->SetTitle("Reported audio encoder FEC"); |
| } |
| |
| void EventLogAnalyzer::CreateAudioEncoderEnableDtxGraph(Plot* plot) { |
| TimeSeries time_series("Audio encoder DTX", LINE_DOT_GRAPH); |
| ProcessPoints<AudioNetworkAdaptationEvent>( |
| [](const AudioNetworkAdaptationEvent& ana_event) { |
| if (ana_event.config.enable_dtx) |
| return rtc::Optional<float>( |
| static_cast<float>(*ana_event.config.enable_dtx)); |
| return rtc::Optional<float>(); |
| }, |
| audio_network_adaptation_events_, begin_time_, &time_series); |
| plot->AppendTimeSeries(std::move(time_series)); |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "DTX (false/true)", kBottomMargin, kTopMargin); |
| plot->SetTitle("Reported audio encoder DTX"); |
| } |
| |
| void EventLogAnalyzer::CreateAudioEncoderNumChannelsGraph(Plot* plot) { |
| TimeSeries time_series("Audio encoder number of channels", LINE_DOT_GRAPH); |
| ProcessPoints<AudioNetworkAdaptationEvent>( |
| [](const AudioNetworkAdaptationEvent& ana_event) { |
| if (ana_event.config.num_channels) |
| return rtc::Optional<float>( |
| static_cast<float>(*ana_event.config.num_channels)); |
| return rtc::Optional<float>(); |
| }, |
| audio_network_adaptation_events_, begin_time_, &time_series); |
| plot->AppendTimeSeries(std::move(time_series)); |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetSuggestedYAxis(0, 1, "Number of channels (1 (mono)/2 (stereo))", |
| kBottomMargin, kTopMargin); |
| plot->SetTitle("Reported audio encoder number of channels"); |
| } |
| |
| class NetEqStreamInput : public test::NetEqInput { |
| public: |
| // Does not take any ownership, and all pointers must refer to valid objects |
| // that outlive the one constructed. |
| NetEqStreamInput(const std::vector<LoggedRtpPacket>* packet_stream, |
| const std::vector<uint64_t>* output_events_us, |
| rtc::Optional<uint64_t> end_time_us) |
| : packet_stream_(*packet_stream), |
| packet_stream_it_(packet_stream_.begin()), |
| output_events_us_it_(output_events_us->begin()), |
| output_events_us_end_(output_events_us->end()), |
| end_time_us_(end_time_us) { |
| RTC_DCHECK(packet_stream); |
| RTC_DCHECK(output_events_us); |
| } |
| |
| rtc::Optional<int64_t> NextPacketTime() const override { |
| if (packet_stream_it_ == packet_stream_.end()) { |
| return rtc::Optional<int64_t>(); |
| } |
| if (end_time_us_ && packet_stream_it_->timestamp > *end_time_us_) { |
| return rtc::Optional<int64_t>(); |
| } |
| // Convert from us to ms. |
| return rtc::Optional<int64_t>(packet_stream_it_->timestamp / 1000); |
| } |
| |
| rtc::Optional<int64_t> NextOutputEventTime() const override { |
| if (output_events_us_it_ == output_events_us_end_) { |
| return rtc::Optional<int64_t>(); |
| } |
| if (end_time_us_ && *output_events_us_it_ > *end_time_us_) { |
| return rtc::Optional<int64_t>(); |
| } |
| // Convert from us to ms. |
| return rtc::Optional<int64_t>( |
| rtc::checked_cast<int64_t>(*output_events_us_it_ / 1000)); |
| } |
| |
| std::unique_ptr<PacketData> PopPacket() override { |
| if (packet_stream_it_ == packet_stream_.end()) { |
| return std::unique_ptr<PacketData>(); |
| } |
| std::unique_ptr<PacketData> packet_data(new PacketData()); |
| packet_data->header = packet_stream_it_->header; |
| // Convert from us to ms. |
| packet_data->time_ms = packet_stream_it_->timestamp / 1000.0; |
| |
| // This is a header-only "dummy" packet. Set the payload to all zeros, with |
| // length according to the virtual length. |
| packet_data->payload.SetSize(packet_stream_it_->total_length); |
| std::fill_n(packet_data->payload.data(), packet_data->payload.size(), 0); |
| |
| ++packet_stream_it_; |
| return packet_data; |
| } |
| |
| void AdvanceOutputEvent() override { |
| if (output_events_us_it_ != output_events_us_end_) { |
| ++output_events_us_it_; |
| } |
| } |
| |
| bool ended() const override { return !NextEventTime(); } |
| |
| rtc::Optional<RTPHeader> NextHeader() const override { |
| if (packet_stream_it_ == packet_stream_.end()) { |
| return rtc::Optional<RTPHeader>(); |
| } |
| return rtc::Optional<RTPHeader>(packet_stream_it_->header); |
| } |
| |
| private: |
| const std::vector<LoggedRtpPacket>& packet_stream_; |
| std::vector<LoggedRtpPacket>::const_iterator packet_stream_it_; |
| std::vector<uint64_t>::const_iterator output_events_us_it_; |
| const std::vector<uint64_t>::const_iterator output_events_us_end_; |
| const rtc::Optional<uint64_t> end_time_us_; |
| }; |
| |
| namespace { |
| // Creates a NetEq test object and all necessary input and output helpers. Runs |
| // the test and returns the NetEqDelayAnalyzer object that was used to |
| // instrument the test. |
| std::unique_ptr<test::NetEqDelayAnalyzer> CreateNetEqTestAndRun( |
| const std::vector<LoggedRtpPacket>* packet_stream, |
| const std::vector<uint64_t>* output_events_us, |
| rtc::Optional<uint64_t> end_time_us, |
| const std::string& replacement_file_name, |
| int file_sample_rate_hz) { |
| std::unique_ptr<test::NetEqInput> input( |
| new NetEqStreamInput(packet_stream, output_events_us, end_time_us)); |
| |
| constexpr int kReplacementPt = 127; |
| std::set<uint8_t> cn_types; |
| std::set<uint8_t> forbidden_types; |
| input.reset(new test::NetEqReplacementInput(std::move(input), kReplacementPt, |
| cn_types, forbidden_types)); |
| |
| NetEq::Config config; |
| config.max_packets_in_buffer = 200; |
| config.enable_fast_accelerate = true; |
| |
| std::unique_ptr<test::VoidAudioSink> output(new test::VoidAudioSink()); |
| |
| test::NetEqTest::DecoderMap codecs; |
| |
| // Create a "replacement decoder" that produces the decoded audio by reading |
| // from a file rather than from the encoded payloads. |
| std::unique_ptr<test::ResampleInputAudioFile> replacement_file( |
| new test::ResampleInputAudioFile(replacement_file_name, |
| file_sample_rate_hz)); |
| replacement_file->set_output_rate_hz(48000); |
| std::unique_ptr<AudioDecoder> replacement_decoder( |
| new test::FakeDecodeFromFile(std::move(replacement_file), 48000, false)); |
| test::NetEqTest::ExtDecoderMap ext_codecs; |
| ext_codecs[kReplacementPt] = {replacement_decoder.get(), |
| NetEqDecoder::kDecoderArbitrary, |
| "replacement codec"}; |
| |
| std::unique_ptr<test::NetEqDelayAnalyzer> delay_cb( |
| new test::NetEqDelayAnalyzer); |
| test::DefaultNetEqTestErrorCallback error_cb; |
| test::NetEqTest::Callbacks callbacks; |
| callbacks.error_callback = &error_cb; |
| callbacks.post_insert_packet = delay_cb.get(); |
| callbacks.get_audio_callback = delay_cb.get(); |
| |
| test::NetEqTest test(config, codecs, ext_codecs, std::move(input), |
| std::move(output), callbacks); |
| test.Run(); |
| return delay_cb; |
| } |
| } // namespace |
| |
| // Plots the jitter buffer delay profile. This will plot only for the first |
| // incoming audio SSRC. If the stream contains more than one incoming audio |
| // SSRC, all but the first will be ignored. |
| void EventLogAnalyzer::CreateAudioJitterBufferGraph( |
| const std::string& replacement_file_name, |
| int file_sample_rate_hz, |
| Plot* plot) { |
| const auto& incoming_audio_kv = std::find_if( |
| rtp_packets_.begin(), rtp_packets_.end(), |
| [this](std::pair<StreamId, std::vector<LoggedRtpPacket>> kv) { |
| return kv.first.GetDirection() == kIncomingPacket && |
| this->IsAudioSsrc(kv.first); |
| }); |
| if (incoming_audio_kv == rtp_packets_.end()) { |
| // No incoming audio stream found. |
| return; |
| } |
| |
| const uint32_t ssrc = incoming_audio_kv->first.GetSsrc(); |
| |
| std::map<uint32_t, std::vector<uint64_t>>::const_iterator output_events_it = |
| audio_playout_events_.find(ssrc); |
| if (output_events_it == audio_playout_events_.end()) { |
| // Could not find output events with SSRC matching the input audio stream. |
| // Using the first available stream of output events. |
| output_events_it = audio_playout_events_.cbegin(); |
| } |
| |
| rtc::Optional<uint64_t> end_time_us = |
| log_segments_.empty() |
| ? rtc::Optional<uint64_t>() |
| : rtc::Optional<uint64_t>(log_segments_.front().second); |
| |
| auto delay_cb = CreateNetEqTestAndRun( |
| &incoming_audio_kv->second, &output_events_it->second, end_time_us, |
| replacement_file_name, file_sample_rate_hz); |
| |
| std::vector<float> send_times_s; |
| std::vector<float> arrival_delay_ms; |
| std::vector<float> corrected_arrival_delay_ms; |
| std::vector<rtc::Optional<float>> playout_delay_ms; |
| std::vector<rtc::Optional<float>> target_delay_ms; |
| delay_cb->CreateGraphs(&send_times_s, &arrival_delay_ms, |
| &corrected_arrival_delay_ms, &playout_delay_ms, |
| &target_delay_ms); |
| RTC_DCHECK_EQ(send_times_s.size(), arrival_delay_ms.size()); |
| RTC_DCHECK_EQ(send_times_s.size(), corrected_arrival_delay_ms.size()); |
| RTC_DCHECK_EQ(send_times_s.size(), playout_delay_ms.size()); |
| RTC_DCHECK_EQ(send_times_s.size(), target_delay_ms.size()); |
| |
| std::map<StreamId, TimeSeries> time_series_packet_arrival; |
| std::map<StreamId, TimeSeries> time_series_relative_packet_arrival; |
| std::map<StreamId, TimeSeries> time_series_play_time; |
| std::map<StreamId, TimeSeries> time_series_target_time; |
| float min_y_axis = 0.f; |
| float max_y_axis = 0.f; |
| const StreamId stream_id = incoming_audio_kv->first; |
| for (size_t i = 0; i < send_times_s.size(); ++i) { |
| time_series_packet_arrival[stream_id].points.emplace_back( |
| TimeSeriesPoint(send_times_s[i], arrival_delay_ms[i])); |
| time_series_relative_packet_arrival[stream_id].points.emplace_back( |
| TimeSeriesPoint(send_times_s[i], corrected_arrival_delay_ms[i])); |
| min_y_axis = std::min(min_y_axis, corrected_arrival_delay_ms[i]); |
| max_y_axis = std::max(max_y_axis, corrected_arrival_delay_ms[i]); |
| if (playout_delay_ms[i]) { |
| time_series_play_time[stream_id].points.emplace_back( |
| TimeSeriesPoint(send_times_s[i], *playout_delay_ms[i])); |
| min_y_axis = std::min(min_y_axis, *playout_delay_ms[i]); |
| max_y_axis = std::max(max_y_axis, *playout_delay_ms[i]); |
| } |
| if (target_delay_ms[i]) { |
| time_series_target_time[stream_id].points.emplace_back( |
| TimeSeriesPoint(send_times_s[i], *target_delay_ms[i])); |
| min_y_axis = std::min(min_y_axis, *target_delay_ms[i]); |
| max_y_axis = std::max(max_y_axis, *target_delay_ms[i]); |
| } |
| } |
| |
| // This code is adapted for a single stream. The creation of the streams above |
| // guarantee that no more than one steam is included. If multiple streams are |
| // to be plotted, they should likely be given distinct labels below. |
| RTC_DCHECK_EQ(time_series_relative_packet_arrival.size(), 1); |
| for (auto& series : time_series_relative_packet_arrival) { |
| series.second.label = "Relative packet arrival delay"; |
| series.second.style = LINE_GRAPH; |
| plot->AppendTimeSeries(std::move(series.second)); |
| } |
| RTC_DCHECK_EQ(time_series_play_time.size(), 1); |
| for (auto& series : time_series_play_time) { |
| series.second.label = "Playout delay"; |
| series.second.style = LINE_GRAPH; |
| plot->AppendTimeSeries(std::move(series.second)); |
| } |
| RTC_DCHECK_EQ(time_series_target_time.size(), 1); |
| for (auto& series : time_series_target_time) { |
| series.second.label = "Target delay"; |
| series.second.style = LINE_DOT_GRAPH; |
| plot->AppendTimeSeries(std::move(series.second)); |
| } |
| |
| plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); |
| plot->SetYAxis(min_y_axis, max_y_axis, "Relative delay (ms)", kBottomMargin, |
| kTopMargin); |
| plot->SetTitle("NetEq timing"); |
| } |
| } // namespace plotting |
| } // namespace webrtc |