| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/erl_estimator.h" |
| |
| #include <algorithm> |
| #include <numeric> |
| |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| constexpr float kMinErl = 0.01f; |
| constexpr float kMaxErl = 1000.f; |
| |
| } // namespace |
| |
| ErlEstimator::ErlEstimator(size_t startup_phase_length_blocks_) |
| : startup_phase_length_blocks__(startup_phase_length_blocks_) { |
| erl_.fill(kMaxErl); |
| hold_counters_.fill(0); |
| erl_time_domain_ = kMaxErl; |
| hold_counter_time_domain_ = 0; |
| } |
| |
| ErlEstimator::~ErlEstimator() = default; |
| |
| void ErlEstimator::Reset() { |
| blocks_since_reset_ = 0; |
| } |
| |
| void ErlEstimator::Update( |
| const std::vector<bool>& converged_filters, |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> render_spectra, |
| rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> |
| capture_spectra) { |
| const size_t num_capture_channels = converged_filters.size(); |
| RTC_DCHECK_EQ(capture_spectra.size(), num_capture_channels); |
| |
| // Corresponds to WGN of power -46 dBFS. |
| constexpr float kX2Min = 44015068.0f; |
| |
| const auto first_converged_iter = |
| std::find(converged_filters.begin(), converged_filters.end(), true); |
| const bool any_filter_converged = |
| first_converged_iter != converged_filters.end(); |
| |
| if (++blocks_since_reset_ < startup_phase_length_blocks__ || |
| !any_filter_converged) { |
| return; |
| } |
| |
| // Use the maximum spectrum across capture and the maximum across render. |
| std::array<float, kFftLengthBy2Plus1> max_capture_spectrum_data; |
| std::array<float, kFftLengthBy2Plus1> max_capture_spectrum = |
| capture_spectra[/*channel=*/0]; |
| if (num_capture_channels > 1) { |
| // Initialize using the first channel with a converged filter. |
| const size_t first_converged = |
| std::distance(converged_filters.begin(), first_converged_iter); |
| RTC_DCHECK_GE(first_converged, 0); |
| RTC_DCHECK_LT(first_converged, num_capture_channels); |
| max_capture_spectrum_data = capture_spectra[first_converged]; |
| |
| for (size_t ch = first_converged + 1; ch < num_capture_channels; ++ch) { |
| if (!converged_filters[ch]) { |
| continue; |
| } |
| for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { |
| max_capture_spectrum_data[k] = |
| std::max(max_capture_spectrum_data[k], capture_spectra[ch][k]); |
| } |
| } |
| max_capture_spectrum = max_capture_spectrum_data; |
| } |
| |
| const size_t num_render_channels = render_spectra.size(); |
| std::array<float, kFftLengthBy2Plus1> max_render_spectrum_data; |
| rtc::ArrayView<const float, kFftLengthBy2Plus1> max_render_spectrum = |
| render_spectra[/*channel=*/0]; |
| if (num_render_channels > 1) { |
| std::copy(render_spectra[0].begin(), render_spectra[0].end(), |
| max_render_spectrum_data.begin()); |
| for (size_t ch = 1; ch < num_render_channels; ++ch) { |
| for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { |
| max_render_spectrum_data[k] = |
| std::max(max_render_spectrum_data[k], render_spectra[ch][k]); |
| } |
| } |
| max_render_spectrum = max_render_spectrum_data; |
| } |
| |
| const auto& X2 = max_render_spectrum; |
| const auto& Y2 = max_capture_spectrum; |
| |
| // Update the estimates in a maximum statistics manner. |
| for (size_t k = 1; k < kFftLengthBy2; ++k) { |
| if (X2[k] > kX2Min) { |
| const float new_erl = Y2[k] / X2[k]; |
| if (new_erl < erl_[k]) { |
| hold_counters_[k - 1] = 1000; |
| erl_[k] += 0.1f * (new_erl - erl_[k]); |
| erl_[k] = std::max(erl_[k], kMinErl); |
| } |
| } |
| } |
| |
| std::for_each(hold_counters_.begin(), hold_counters_.end(), |
| [](int& a) { --a; }); |
| std::transform(hold_counters_.begin(), hold_counters_.end(), erl_.begin() + 1, |
| erl_.begin() + 1, [](int a, float b) { |
| return a > 0 ? b : std::min(kMaxErl, 2.f * b); |
| }); |
| |
| erl_[0] = erl_[1]; |
| erl_[kFftLengthBy2] = erl_[kFftLengthBy2 - 1]; |
| |
| // Compute ERL over all frequency bins. |
| const float X2_sum = std::accumulate(X2.begin(), X2.end(), 0.0f); |
| |
| if (X2_sum > kX2Min * X2.size()) { |
| const float Y2_sum = std::accumulate(Y2.begin(), Y2.end(), 0.0f); |
| const float new_erl = Y2_sum / X2_sum; |
| if (new_erl < erl_time_domain_) { |
| hold_counter_time_domain_ = 1000; |
| erl_time_domain_ += 0.1f * (new_erl - erl_time_domain_); |
| erl_time_domain_ = std::max(erl_time_domain_, kMinErl); |
| } |
| } |
| |
| --hold_counter_time_domain_; |
| erl_time_domain_ = (hold_counter_time_domain_ > 0) |
| ? erl_time_domain_ |
| : std::min(kMaxErl, 2.f * erl_time_domain_); |
| } |
| |
| } // namespace webrtc |