blob: 8bd933be5d9c98487426143d88595b5985fc025f [file] [log] [blame]
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include <ostream>
#include <string>
#include "absl/types/optional.h"
#include "api/transport/rtp/dependency_descriptor.h"
#include "modules/video_coding/svc/create_scalability_structure.h"
#include "modules/video_coding/svc/scalability_structure_test_helpers.h"
#include "modules/video_coding/svc/scalable_video_controller.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
using ::testing::AllOf;
using ::testing::Contains;
using ::testing::Each;
using ::testing::Field;
using ::testing::Ge;
using ::testing::IsEmpty;
using ::testing::Le;
using ::testing::Lt;
using ::testing::Not;
using ::testing::SizeIs;
using ::testing::TestWithParam;
using ::testing::Values;
struct SvcTestParam {
friend std::ostream& operator<<(std::ostream& os, const SvcTestParam& param) {
return os << param.name;
}
std::string name;
int num_temporal_units;
};
class ScalabilityStructureTest : public TestWithParam<SvcTestParam> {};
TEST_P(ScalabilityStructureTest,
NumberOfDecodeTargetsAndChainsAreInRangeAndConsistent) {
FrameDependencyStructure structure =
CreateScalabilityStructure(GetParam().name)->DependencyStructure();
EXPECT_GT(structure.num_decode_targets, 0);
EXPECT_LE(structure.num_decode_targets,
DependencyDescriptor::kMaxDecodeTargets);
EXPECT_GE(structure.num_chains, 0);
EXPECT_LE(structure.num_chains, structure.num_decode_targets);
if (structure.num_chains == 0) {
EXPECT_THAT(structure.decode_target_protected_by_chain, IsEmpty());
} else {
EXPECT_THAT(structure.decode_target_protected_by_chain,
AllOf(SizeIs(structure.num_decode_targets), Each(Ge(0)),
Each(Lt(structure.num_chains))));
}
EXPECT_THAT(structure.templates,
SizeIs(Lt(size_t{DependencyDescriptor::kMaxTemplates})));
}
TEST_P(ScalabilityStructureTest, TemplatesAreSortedByLayerId) {
FrameDependencyStructure structure =
CreateScalabilityStructure(GetParam().name)->DependencyStructure();
ASSERT_THAT(structure.templates, Not(IsEmpty()));
const auto& first_templates = structure.templates.front();
EXPECT_EQ(first_templates.spatial_id, 0);
EXPECT_EQ(first_templates.temporal_id, 0);
for (size_t i = 1; i < structure.templates.size(); ++i) {
const auto& prev_template = structure.templates[i - 1];
const auto& next_template = structure.templates[i];
if (next_template.spatial_id == prev_template.spatial_id &&
next_template.temporal_id == prev_template.temporal_id) {
// Same layer, next_layer_idc == 0
} else if (next_template.spatial_id == prev_template.spatial_id &&
next_template.temporal_id == prev_template.temporal_id + 1) {
// Next temporal layer, next_layer_idc == 1
} else if (next_template.spatial_id == prev_template.spatial_id + 1 &&
next_template.temporal_id == 0) {
// Next spatial layer, next_layer_idc == 2
} else {
// everything else is invalid.
ADD_FAILURE() << "Invalid templates order. Template #" << i
<< " with layer (" << next_template.spatial_id << ","
<< next_template.temporal_id
<< ") follows template with layer ("
<< prev_template.spatial_id << ","
<< prev_template.temporal_id << ").";
}
}
}
TEST_P(ScalabilityStructureTest, TemplatesMatchNumberOfDecodeTargetsAndChains) {
FrameDependencyStructure structure =
CreateScalabilityStructure(GetParam().name)->DependencyStructure();
EXPECT_THAT(
structure.templates,
Each(AllOf(Field(&FrameDependencyTemplate::decode_target_indications,
SizeIs(structure.num_decode_targets)),
Field(&FrameDependencyTemplate::chain_diffs,
SizeIs(structure.num_chains)))));
}
TEST_P(ScalabilityStructureTest, FrameInfoMatchesFrameDependencyStructure) {
std::unique_ptr<ScalableVideoController> svc_controller =
CreateScalabilityStructure(GetParam().name);
FrameDependencyStructure structure = svc_controller->DependencyStructure();
std::vector<GenericFrameInfo> frame_infos =
ScalabilityStructureWrapper(*svc_controller)
.GenerateFrames(GetParam().num_temporal_units);
for (size_t frame_id = 0; frame_id < frame_infos.size(); ++frame_id) {
const auto& frame = frame_infos[frame_id];
EXPECT_GE(frame.spatial_id, 0) << " for frame " << frame_id;
EXPECT_GE(frame.temporal_id, 0) << " for frame " << frame_id;
EXPECT_THAT(frame.decode_target_indications,
SizeIs(structure.num_decode_targets))
<< " for frame " << frame_id;
EXPECT_THAT(frame.part_of_chain, SizeIs(structure.num_chains))
<< " for frame " << frame_id;
}
}
TEST_P(ScalabilityStructureTest, ThereIsAPerfectTemplateForEachFrame) {
std::unique_ptr<ScalableVideoController> svc_controller =
CreateScalabilityStructure(GetParam().name);
FrameDependencyStructure structure = svc_controller->DependencyStructure();
std::vector<GenericFrameInfo> frame_infos =
ScalabilityStructureWrapper(*svc_controller)
.GenerateFrames(GetParam().num_temporal_units);
for (size_t frame_id = 0; frame_id < frame_infos.size(); ++frame_id) {
EXPECT_THAT(structure.templates, Contains(frame_infos[frame_id]))
<< " for frame " << frame_id;
}
}
TEST_P(ScalabilityStructureTest, FrameDependsOnSameOrLowerLayer) {
std::unique_ptr<ScalableVideoController> svc_controller =
CreateScalabilityStructure(GetParam().name);
std::vector<GenericFrameInfo> frame_infos =
ScalabilityStructureWrapper(*svc_controller)
.GenerateFrames(GetParam().num_temporal_units);
int64_t num_frames = frame_infos.size();
for (int64_t frame_id = 0; frame_id < num_frames; ++frame_id) {
const auto& frame = frame_infos[frame_id];
for (int frame_diff : frame.frame_diffs) {
int64_t base_frame_id = frame_id - frame_diff;
const auto& base_frame = frame_infos[base_frame_id];
EXPECT_GE(frame.spatial_id, base_frame.spatial_id)
<< "Frame " << frame_id << " depends on frame " << base_frame_id;
EXPECT_GE(frame.temporal_id, base_frame.temporal_id)
<< "Frame " << frame_id << " depends on frame " << base_frame_id;
}
}
}
TEST_P(ScalabilityStructureTest, NoFrameDependsOnDiscardableOrNotPresent) {
std::unique_ptr<ScalableVideoController> svc_controller =
CreateScalabilityStructure(GetParam().name);
std::vector<GenericFrameInfo> frame_infos =
ScalabilityStructureWrapper(*svc_controller)
.GenerateFrames(GetParam().num_temporal_units);
int64_t num_frames = frame_infos.size();
FrameDependencyStructure structure = svc_controller->DependencyStructure();
for (int dt = 0; dt < structure.num_decode_targets; ++dt) {
for (int64_t frame_id = 0; frame_id < num_frames; ++frame_id) {
const auto& frame = frame_infos[frame_id];
if (frame.decode_target_indications[dt] ==
DecodeTargetIndication::kNotPresent) {
continue;
}
for (int frame_diff : frame.frame_diffs) {
int64_t base_frame_id = frame_id - frame_diff;
const auto& base_frame = frame_infos[base_frame_id];
EXPECT_NE(base_frame.decode_target_indications[dt],
DecodeTargetIndication::kNotPresent)
<< "Frame " << frame_id << " depends on frame " << base_frame_id
<< " that is not part of decode target#" << dt;
EXPECT_NE(base_frame.decode_target_indications[dt],
DecodeTargetIndication::kDiscardable)
<< "Frame " << frame_id << " depends on frame " << base_frame_id
<< " that is discardable for decode target#" << dt;
}
}
}
}
TEST_P(ScalabilityStructureTest, NoFrameDependsThroughSwitchIndication) {
std::unique_ptr<ScalableVideoController> svc_controller =
CreateScalabilityStructure(GetParam().name);
FrameDependencyStructure structure = svc_controller->DependencyStructure();
std::vector<GenericFrameInfo> frame_infos =
ScalabilityStructureWrapper(*svc_controller)
.GenerateFrames(GetParam().num_temporal_units);
int64_t num_frames = frame_infos.size();
std::vector<std::set<int64_t>> full_deps(num_frames);
// For each frame calculate set of all frames it depends on, both directly and
// indirectly.
for (int64_t frame_id = 0; frame_id < num_frames; ++frame_id) {
std::set<int64_t> all_base_frames;
for (int frame_diff : frame_infos[frame_id].frame_diffs) {
int64_t base_frame_id = frame_id - frame_diff;
all_base_frames.insert(base_frame_id);
const auto& indirect = full_deps[base_frame_id];
all_base_frames.insert(indirect.begin(), indirect.end());
}
full_deps[frame_id] = std::move(all_base_frames);
}
// Now check the switch indication: frames after the switch indication mustn't
// depend on any addition frames before the switch indications.
for (int dt = 0; dt < structure.num_decode_targets; ++dt) {
for (int64_t switch_frame_id = 0; switch_frame_id < num_frames;
++switch_frame_id) {
if (frame_infos[switch_frame_id].decode_target_indications[dt] !=
DecodeTargetIndication::kSwitch) {
continue;
}
for (int64_t later_frame_id = switch_frame_id + 1;
later_frame_id < num_frames; ++later_frame_id) {
if (frame_infos[later_frame_id].decode_target_indications[dt] ==
DecodeTargetIndication::kNotPresent) {
continue;
}
for (int frame_diff : frame_infos[later_frame_id].frame_diffs) {
int64_t early_frame_id = later_frame_id - frame_diff;
if (early_frame_id < switch_frame_id) {
EXPECT_THAT(full_deps[switch_frame_id], Contains(early_frame_id))
<< "For decode target #" << dt << " frame " << later_frame_id
<< " depends on the frame " << early_frame_id
<< " that switch indication frame " << switch_frame_id
<< " doesn't directly on indirectly depend on.";
}
}
}
}
}
}
TEST_P(ScalabilityStructureTest, ProduceNoFrameForDisabledLayers) {
std::unique_ptr<ScalableVideoController> svc_controller =
CreateScalabilityStructure(GetParam().name);
ScalableVideoController::StreamLayersConfig structure =
svc_controller->StreamConfig();
VideoBitrateAllocation all_bitrates;
for (int sid = 0; sid < structure.num_spatial_layers; ++sid) {
for (int tid = 0; tid < structure.num_temporal_layers; ++tid) {
all_bitrates.SetBitrate(sid, tid, 100'000);
}
}
svc_controller->OnRatesUpdated(all_bitrates);
ScalabilityStructureWrapper wrapper(*svc_controller);
std::vector<GenericFrameInfo> frames =
wrapper.GenerateFrames(GetParam().num_temporal_units);
for (int sid = 0; sid < structure.num_spatial_layers; ++sid) {
for (int tid = 0; tid < structure.num_temporal_layers; ++tid) {
// When all layers were enabled, expect there was a frame for each layer.
EXPECT_THAT(frames,
Contains(AllOf(Field(&GenericFrameInfo::spatial_id, sid),
Field(&GenericFrameInfo::temporal_id, tid))))
<< "For layer (" << sid << "," << tid << ")";
// Restore bitrates for all layers before disabling single layer.
VideoBitrateAllocation bitrates = all_bitrates;
bitrates.SetBitrate(sid, tid, 0);
svc_controller->OnRatesUpdated(bitrates);
// With layer (sid, tid) disabled, expect no frames are produced for it.
EXPECT_THAT(
wrapper.GenerateFrames(GetParam().num_temporal_units),
Not(Contains(AllOf(Field(&GenericFrameInfo::spatial_id, sid),
Field(&GenericFrameInfo::temporal_id, tid)))))
<< "For layer (" << sid << "," << tid << ")";
}
}
}
INSTANTIATE_TEST_SUITE_P(
Svc,
ScalabilityStructureTest,
Values(SvcTestParam{"NONE", /*num_temporal_units=*/3},
SvcTestParam{"L1T2", /*num_temporal_units=*/4},
SvcTestParam{"L1T3", /*num_temporal_units=*/8},
SvcTestParam{"L2T1", /*num_temporal_units=*/3},
SvcTestParam{"L2T1_KEY", /*num_temporal_units=*/3},
SvcTestParam{"L3T1", /*num_temporal_units=*/3},
SvcTestParam{"L3T3", /*num_temporal_units=*/8},
SvcTestParam{"S2T1", /*num_temporal_units=*/3},
SvcTestParam{"S3T3", /*num_temporal_units=*/8},
SvcTestParam{"L2T2", /*num_temporal_units=*/4},
SvcTestParam{"L2T2_KEY", /*num_temporal_units=*/4},
SvcTestParam{"L2T2_KEY_SHIFT", /*num_temporal_units=*/4},
SvcTestParam{"L2T3_KEY", /*num_temporal_units=*/8},
SvcTestParam{"L3T3_KEY", /*num_temporal_units=*/8}),
[](const testing::TestParamInfo<SvcTestParam>& info) {
return info.param.name;
});
} // namespace
} // namespace webrtc