|  | /* | 
|  | *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "modules/congestion_controller/goog_cc/delay_based_bwe.h" | 
|  |  | 
|  | #include <cstdint> | 
|  |  | 
|  | #include "api/transport/bandwidth_usage.h" | 
|  | #include "api/transport/network_types.h" | 
|  | #include "api/units/data_rate.h" | 
|  | #include "api/units/time_delta.h" | 
|  | #include "modules/congestion_controller/goog_cc/delay_based_bwe_unittest_helper.h" | 
|  | #include "system_wrappers/include/clock.h" | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | namespace { | 
|  | constexpr int kNumProbesCluster0 = 5; | 
|  | constexpr int kNumProbesCluster1 = 8; | 
|  | const PacedPacketInfo kPacingInfo0(0, kNumProbesCluster0, 2000); | 
|  | const PacedPacketInfo kPacingInfo1(1, kNumProbesCluster1, 4000); | 
|  | constexpr float kTargetUtilizationFraction = 0.95f; | 
|  | }  // namespace | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, ProbeDetection) { | 
|  | int64_t now_ms = clock_.TimeInMilliseconds(); | 
|  |  | 
|  | // First burst sent at 8 * 1000 / 10 = 800 kbps. | 
|  | for (int i = 0; i < kNumProbesCluster0; ++i) { | 
|  | clock_.AdvanceTimeMilliseconds(10); | 
|  | now_ms = clock_.TimeInMilliseconds(); | 
|  | IncomingFeedback(now_ms, now_ms, 1000, kPacingInfo0); | 
|  | } | 
|  | EXPECT_TRUE(bitrate_observer_.updated()); | 
|  |  | 
|  | // Second burst sent at 8 * 1000 / 5 = 1600 kbps. | 
|  | for (int i = 0; i < kNumProbesCluster1; ++i) { | 
|  | clock_.AdvanceTimeMilliseconds(5); | 
|  | now_ms = clock_.TimeInMilliseconds(); | 
|  | IncomingFeedback(now_ms, now_ms, 1000, kPacingInfo1); | 
|  | } | 
|  |  | 
|  | EXPECT_TRUE(bitrate_observer_.updated()); | 
|  | EXPECT_GT(bitrate_observer_.latest_bitrate(), 1500000u); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, ProbeDetectionNonPacedPackets) { | 
|  | int64_t now_ms = clock_.TimeInMilliseconds(); | 
|  | // First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet | 
|  | // not being paced which could mess things up. | 
|  | for (int i = 0; i < kNumProbesCluster0; ++i) { | 
|  | clock_.AdvanceTimeMilliseconds(5); | 
|  | now_ms = clock_.TimeInMilliseconds(); | 
|  | IncomingFeedback(now_ms, now_ms, 1000, kPacingInfo0); | 
|  | // Non-paced packet, arriving 5 ms after. | 
|  | clock_.AdvanceTimeMilliseconds(5); | 
|  | IncomingFeedback(now_ms, now_ms, 100, PacedPacketInfo()); | 
|  | } | 
|  |  | 
|  | EXPECT_TRUE(bitrate_observer_.updated()); | 
|  | EXPECT_GT(bitrate_observer_.latest_bitrate(), 800000u); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, ProbeDetectionFasterArrival) { | 
|  | int64_t now_ms = clock_.TimeInMilliseconds(); | 
|  | // First burst sent at 8 * 1000 / 10 = 800 kbps. | 
|  | // Arriving at 8 * 1000 / 5 = 1600 kbps. | 
|  | int64_t send_time_ms = 0; | 
|  | for (int i = 0; i < kNumProbesCluster0; ++i) { | 
|  | clock_.AdvanceTimeMilliseconds(1); | 
|  | send_time_ms += 10; | 
|  | now_ms = clock_.TimeInMilliseconds(); | 
|  | IncomingFeedback(now_ms, send_time_ms, 1000, kPacingInfo0); | 
|  | } | 
|  |  | 
|  | EXPECT_FALSE(bitrate_observer_.updated()); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrival) { | 
|  | int64_t now_ms = clock_.TimeInMilliseconds(); | 
|  | // First burst sent at 8 * 1000 / 5 = 1600 kbps. | 
|  | // Arriving at 8 * 1000 / 7 = 1142 kbps. | 
|  | // Since the receive rate is significantly below the send rate, we expect to | 
|  | // use 95% of the estimated capacity. | 
|  | int64_t send_time_ms = 0; | 
|  | for (int i = 0; i < kNumProbesCluster1; ++i) { | 
|  | clock_.AdvanceTimeMilliseconds(7); | 
|  | send_time_ms += 5; | 
|  | now_ms = clock_.TimeInMilliseconds(); | 
|  | IncomingFeedback(now_ms, send_time_ms, 1000, kPacingInfo1); | 
|  | } | 
|  |  | 
|  | EXPECT_TRUE(bitrate_observer_.updated()); | 
|  | EXPECT_NEAR(bitrate_observer_.latest_bitrate(), | 
|  | kTargetUtilizationFraction * 1140000u, 10000u); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrivalHighBitrate) { | 
|  | int64_t now_ms = clock_.TimeInMilliseconds(); | 
|  | // Burst sent at 8 * 1000 / 1 = 8000 kbps. | 
|  | // Arriving at 8 * 1000 / 2 = 4000 kbps. | 
|  | // Since the receive rate is significantly below the send rate, we expect to | 
|  | // use 95% of the estimated capacity. | 
|  | int64_t send_time_ms = 0; | 
|  | for (int i = 0; i < kNumProbesCluster1; ++i) { | 
|  | clock_.AdvanceTimeMilliseconds(2); | 
|  | send_time_ms += 1; | 
|  | now_ms = clock_.TimeInMilliseconds(); | 
|  | IncomingFeedback(now_ms, send_time_ms, 1000, kPacingInfo1); | 
|  | } | 
|  |  | 
|  | EXPECT_TRUE(bitrate_observer_.updated()); | 
|  | EXPECT_NEAR(bitrate_observer_.latest_bitrate(), | 
|  | kTargetUtilizationFraction * 4000000u, 10000u); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, GetExpectedBwePeriodMs) { | 
|  | auto default_interval = bitrate_estimator_->GetExpectedBwePeriod(); | 
|  | EXPECT_GT(default_interval.ms(), 0); | 
|  | CapacityDropTestHelper(1, true, 533, 0); | 
|  | auto interval = bitrate_estimator_->GetExpectedBwePeriod(); | 
|  | EXPECT_GT(interval.ms(), 0); | 
|  | EXPECT_NE(interval.ms(), default_interval.ms()); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, InitialBehavior) { | 
|  | InitialBehaviorTestHelper(730000); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, InitializeResult) { | 
|  | DelayBasedBwe::Result result; | 
|  | EXPECT_EQ(result.delay_detector_state, BandwidthUsage::kBwNormal); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, RateIncreaseReordering) { | 
|  | RateIncreaseReorderingTestHelper(730000); | 
|  | } | 
|  | TEST_F(DelayBasedBweTest, RateIncreaseRtpTimestamps) { | 
|  | RateIncreaseRtpTimestampsTestHelper(617); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, CapacityDropOneStream) { | 
|  | CapacityDropTestHelper(1, false, 500, 0); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, CapacityDropPosOffsetChange) { | 
|  | CapacityDropTestHelper(1, false, 867, 30000); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, CapacityDropNegOffsetChange) { | 
|  | CapacityDropTestHelper(1, false, 933, -30000); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, CapacityDropOneStreamWrap) { | 
|  | CapacityDropTestHelper(1, true, 533, 0); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, TestTimestampGrouping) { | 
|  | TestTimestampGroupingTestHelper(); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, TestShortTimeoutAndWrap) { | 
|  | // Simulate a client leaving and rejoining the call after 35 seconds. This | 
|  | // will make abs send time wrap, so if streams aren't timed out properly | 
|  | // the next 30 seconds of packets will be out of order. | 
|  | TestWrappingHelper(35); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, TestLongTimeoutAndWrap) { | 
|  | // Simulate a client leaving and rejoining the call after some multiple of | 
|  | // 64 seconds later. This will cause a zero difference in abs send times due | 
|  | // to the wrap, but a big difference in arrival time, if streams aren't | 
|  | // properly timed out. | 
|  | TestWrappingHelper(10 * 64); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, TestInitialOveruse) { | 
|  | const DataRate kStartBitrate = DataRate::KilobitsPerSec(300); | 
|  | const DataRate kInitialCapacity = DataRate::KilobitsPerSec(200); | 
|  | const uint32_t kDummySsrc = 0; | 
|  | // High FPS to ensure that we send a lot of packets in a short time. | 
|  | const int kFps = 90; | 
|  |  | 
|  | stream_generator_->AddStream(new test::RtpStream(kFps, kStartBitrate.bps())); | 
|  | stream_generator_->set_capacity_bps(kInitialCapacity.bps()); | 
|  |  | 
|  | // Needed to initialize the AimdRateControl. | 
|  | bitrate_estimator_->SetStartBitrate(kStartBitrate); | 
|  |  | 
|  | // Produce 40 frames (in 1/3 second) and give them to the estimator. | 
|  | int64_t bitrate_bps = kStartBitrate.bps(); | 
|  | bool seen_overuse = false; | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | bool overuse = GenerateAndProcessFrame(kDummySsrc, bitrate_bps); | 
|  | if (overuse) { | 
|  | EXPECT_TRUE(bitrate_observer_.updated()); | 
|  | EXPECT_LE(bitrate_observer_.latest_bitrate(), kInitialCapacity.bps()); | 
|  | EXPECT_GT(bitrate_observer_.latest_bitrate(), | 
|  | 0.8 * kInitialCapacity.bps()); | 
|  | bitrate_bps = bitrate_observer_.latest_bitrate(); | 
|  | seen_overuse = true; | 
|  | break; | 
|  | } else if (bitrate_observer_.updated()) { | 
|  | bitrate_bps = bitrate_observer_.latest_bitrate(); | 
|  | bitrate_observer_.Reset(); | 
|  | } | 
|  | } | 
|  | EXPECT_TRUE(seen_overuse); | 
|  | EXPECT_LE(bitrate_observer_.latest_bitrate(), kInitialCapacity.bps()); | 
|  | EXPECT_GT(bitrate_observer_.latest_bitrate(), 0.8 * kInitialCapacity.bps()); | 
|  | } | 
|  |  | 
|  | TEST_F(DelayBasedBweTest, TestTimestampPrecisionHandling) { | 
|  | // This test does some basic checks to make sure that timestamps with higher | 
|  | // than millisecond precision are handled properly and do not cause any | 
|  | // problems in the estimator. Specifically, previously reported in | 
|  | // webrtc:14023 and described in more details there, the rounding to the | 
|  | // nearest milliseconds caused discrepancy in the accumulated delay. This lead | 
|  | // to false-positive overuse detection. | 
|  | // Technical details of the test: | 
|  | // Send times(ms): 0.000,  9.725, 20.000, 29.725, 40.000, 49.725, ... | 
|  | // Recv times(ms): 0.500, 10.000, 20.500, 30.000, 40.500, 50.000, ... | 
|  | // Send deltas(ms):   9.750,  10.250,  9.750, 10.250,  9.750, ... | 
|  | // Recv deltas(ms):   9.500,  10.500,  9.500, 10.500,  9.500, ... | 
|  | // There is no delay building up between the send times and the receive times, | 
|  | // therefore this case should never lead to an overuse detection. However, if | 
|  | // the time deltas were accidentally rounded to the nearest milliseconds, then | 
|  | // all the send deltas would be equal to 10ms while some recv deltas would | 
|  | // round up to 11ms which would lead in a false illusion of delay build up. | 
|  | uint32_t last_bitrate = bitrate_observer_.latest_bitrate(); | 
|  | for (int i = 0; i < 1000; ++i) { | 
|  | clock_.AdvanceTimeMicroseconds(500); | 
|  | IncomingFeedback(clock_.CurrentTime(), | 
|  | clock_.CurrentTime() - TimeDelta::Micros(500), 1000, | 
|  | PacedPacketInfo()); | 
|  | clock_.AdvanceTimeMicroseconds(9500); | 
|  | IncomingFeedback(clock_.CurrentTime(), | 
|  | clock_.CurrentTime() - TimeDelta::Micros(250), 1000, | 
|  | PacedPacketInfo()); | 
|  | clock_.AdvanceTimeMicroseconds(10000); | 
|  |  | 
|  | // The bitrate should never decrease in this test. | 
|  | EXPECT_LE(last_bitrate, bitrate_observer_.latest_bitrate()); | 
|  | last_bitrate = bitrate_observer_.latest_bitrate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |