| /* |
| * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/remote_bitrate_estimator/aimd_rate_control.h" |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cmath> |
| |
| #include "rtc_base/checks.h" |
| #include "rtc_base/safe_minmax.h" |
| |
| #include "modules/remote_bitrate_estimator/overuse_detector.h" |
| #include "modules/remote_bitrate_estimator/include/bwe_defines.h" |
| #include "modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h" |
| #include "modules/remote_bitrate_estimator/test/bwe_test_logging.h" |
| |
| namespace webrtc { |
| |
| static const int64_t kDefaultRttMs = 200; |
| static const int64_t kMaxFeedbackIntervalMs = 1000; |
| |
| AimdRateControl::AimdRateControl() |
| : min_configured_bitrate_bps_(congestion_controller::GetMinBitrateBps()), |
| max_configured_bitrate_bps_(30000000), |
| current_bitrate_bps_(max_configured_bitrate_bps_), |
| avg_max_bitrate_kbps_(-1.0f), |
| var_max_bitrate_kbps_(0.4f), |
| rate_control_state_(kRcHold), |
| rate_control_region_(kRcMaxUnknown), |
| time_last_bitrate_change_(-1), |
| time_first_incoming_estimate_(-1), |
| bitrate_is_initialized_(false), |
| beta_(0.85f), |
| rtt_(kDefaultRttMs), |
| in_experiment_(!AdaptiveThresholdExperimentIsDisabled()) {} |
| |
| AimdRateControl::~AimdRateControl() {} |
| |
| void AimdRateControl::SetStartBitrate(int start_bitrate_bps) { |
| current_bitrate_bps_ = start_bitrate_bps; |
| bitrate_is_initialized_ = true; |
| } |
| |
| void AimdRateControl::SetMinBitrate(int min_bitrate_bps) { |
| min_configured_bitrate_bps_ = min_bitrate_bps; |
| current_bitrate_bps_ = std::max<int>(min_bitrate_bps, current_bitrate_bps_); |
| } |
| |
| bool AimdRateControl::ValidEstimate() const { |
| return bitrate_is_initialized_; |
| } |
| |
| int64_t AimdRateControl::GetFeedbackInterval() const { |
| // Estimate how often we can send RTCP if we allocate up to 5% of bandwidth |
| // to feedback. |
| static const int kRtcpSize = 80; |
| const int64_t interval = static_cast<int64_t>( |
| kRtcpSize * 8.0 * 1000.0 / (0.05 * current_bitrate_bps_) + 0.5); |
| const int64_t kMinFeedbackIntervalMs = 200; |
| return rtc::SafeClamp(interval, kMinFeedbackIntervalMs, |
| kMaxFeedbackIntervalMs); |
| } |
| |
| bool AimdRateControl::TimeToReduceFurther(int64_t time_now, |
| uint32_t incoming_bitrate_bps) const { |
| const int64_t bitrate_reduction_interval = |
| std::max<int64_t>(std::min<int64_t>(rtt_, 200), 10); |
| if (time_now - time_last_bitrate_change_ >= bitrate_reduction_interval) { |
| return true; |
| } |
| if (ValidEstimate()) { |
| // TODO(terelius/holmer): Investigate consequences of increasing |
| // the threshold to 0.95 * LatestEstimate(). |
| const uint32_t threshold = static_cast<uint32_t> (0.5 * LatestEstimate()); |
| return incoming_bitrate_bps < threshold; |
| } |
| return false; |
| } |
| |
| uint32_t AimdRateControl::LatestEstimate() const { |
| return current_bitrate_bps_; |
| } |
| |
| void AimdRateControl::SetRtt(int64_t rtt) { |
| rtt_ = rtt; |
| } |
| |
| uint32_t AimdRateControl::Update(const RateControlInput* input, |
| int64_t now_ms) { |
| RTC_CHECK(input); |
| |
| // Set the initial bit rate value to what we're receiving the first half |
| // second. |
| if (!bitrate_is_initialized_) { |
| const int64_t kInitializationTimeMs = 5000; |
| RTC_DCHECK_LE(kBitrateWindowMs, kInitializationTimeMs); |
| if (time_first_incoming_estimate_ < 0) { |
| if (input->incoming_bitrate) |
| time_first_incoming_estimate_ = now_ms; |
| } else if (now_ms - time_first_incoming_estimate_ > kInitializationTimeMs && |
| input->incoming_bitrate) { |
| current_bitrate_bps_ = *input->incoming_bitrate; |
| bitrate_is_initialized_ = true; |
| } |
| } |
| |
| current_bitrate_bps_ = ChangeBitrate(current_bitrate_bps_, *input, now_ms); |
| return current_bitrate_bps_; |
| } |
| |
| void AimdRateControl::SetEstimate(int bitrate_bps, int64_t now_ms) { |
| bitrate_is_initialized_ = true; |
| current_bitrate_bps_ = ClampBitrate(bitrate_bps, bitrate_bps); |
| time_last_bitrate_change_ = now_ms; |
| } |
| |
| int AimdRateControl::GetNearMaxIncreaseRateBps() const { |
| RTC_DCHECK_GT(current_bitrate_bps_, 0); |
| double bits_per_frame = static_cast<double>(current_bitrate_bps_) / 30.0; |
| double packets_per_frame = std::ceil(bits_per_frame / (8.0 * 1200.0)); |
| double avg_packet_size_bits = bits_per_frame / packets_per_frame; |
| |
| // Approximate the over-use estimator delay to 100 ms. |
| const int64_t response_time = in_experiment_ ? (rtt_ + 100) * 2 : rtt_ + 100; |
| constexpr double kMinIncreaseRateBps = 4000; |
| return static_cast<int>(std::max( |
| kMinIncreaseRateBps, (avg_packet_size_bits * 1000) / response_time)); |
| } |
| |
| int AimdRateControl::GetExpectedBandwidthPeriodMs() const { |
| constexpr int kMinPeriodMs = 500; |
| constexpr int kMaxPeriodMs = 50000; |
| |
| int increase_rate = GetNearMaxIncreaseRateBps(); |
| if (!last_decrease_) |
| return kMinPeriodMs; |
| |
| return std::min(kMaxPeriodMs, |
| std::max<int>(1000 * static_cast<int64_t>(*last_decrease_) / |
| increase_rate, |
| kMinPeriodMs)); |
| } |
| |
| uint32_t AimdRateControl::ChangeBitrate(uint32_t new_bitrate_bps, |
| const RateControlInput& input, |
| int64_t now_ms) { |
| uint32_t incoming_bitrate_bps = |
| input.incoming_bitrate.value_or(current_bitrate_bps_); |
| |
| // An over-use should always trigger us to reduce the bitrate, even though |
| // we have not yet established our first estimate. By acting on the over-use, |
| // we will end up with a valid estimate. |
| if (!bitrate_is_initialized_ && |
| input.bw_state != BandwidthUsage::kBwOverusing) |
| return current_bitrate_bps_; |
| |
| ChangeState(input, now_ms); |
| // Calculated here because it's used in multiple places. |
| const float incoming_bitrate_kbps = incoming_bitrate_bps / 1000.0f; |
| // Calculate the max bit rate std dev given the normalized |
| // variance and the current incoming bit rate. |
| const float std_max_bit_rate = sqrt(var_max_bitrate_kbps_ * |
| avg_max_bitrate_kbps_); |
| switch (rate_control_state_) { |
| case kRcHold: |
| break; |
| |
| case kRcIncrease: |
| if (avg_max_bitrate_kbps_ >= 0 && |
| incoming_bitrate_kbps > |
| avg_max_bitrate_kbps_ + 3 * std_max_bit_rate) { |
| ChangeRegion(kRcMaxUnknown); |
| avg_max_bitrate_kbps_ = -1.0; |
| } |
| if (rate_control_region_ == kRcNearMax) { |
| uint32_t additive_increase_bps = |
| AdditiveRateIncrease(now_ms, time_last_bitrate_change_); |
| new_bitrate_bps += additive_increase_bps; |
| } else { |
| uint32_t multiplicative_increase_bps = MultiplicativeRateIncrease( |
| now_ms, time_last_bitrate_change_, new_bitrate_bps); |
| new_bitrate_bps += multiplicative_increase_bps; |
| } |
| |
| time_last_bitrate_change_ = now_ms; |
| break; |
| |
| case kRcDecrease: |
| // Set bit rate to something slightly lower than max |
| // to get rid of any self-induced delay. |
| new_bitrate_bps = |
| static_cast<uint32_t>(beta_ * incoming_bitrate_bps + 0.5); |
| if (new_bitrate_bps > current_bitrate_bps_) { |
| // Avoid increasing the rate when over-using. |
| if (rate_control_region_ != kRcMaxUnknown) { |
| new_bitrate_bps = static_cast<uint32_t>( |
| beta_ * avg_max_bitrate_kbps_ * 1000 + 0.5f); |
| } |
| new_bitrate_bps = std::min(new_bitrate_bps, current_bitrate_bps_); |
| } |
| ChangeRegion(kRcNearMax); |
| |
| if (bitrate_is_initialized_ && |
| incoming_bitrate_bps < current_bitrate_bps_) { |
| constexpr float kDegradationFactor = 0.9f; |
| if (new_bitrate_bps < |
| kDegradationFactor * beta_ * current_bitrate_bps_) { |
| // If bitrate decreases more than a normal back off after overuse, it |
| // indicates a real network degradation. We do not let such a decrease |
| // to determine the bandwidth estimation period. |
| last_decrease_ = rtc::Optional<int>(); |
| } else { |
| last_decrease_ = rtc::Optional<int>( |
| current_bitrate_bps_ - new_bitrate_bps); |
| } |
| } |
| if (incoming_bitrate_kbps < |
| avg_max_bitrate_kbps_ - 3 * std_max_bit_rate) { |
| avg_max_bitrate_kbps_ = -1.0f; |
| } |
| |
| bitrate_is_initialized_ = true; |
| UpdateMaxBitRateEstimate(incoming_bitrate_kbps); |
| // Stay on hold until the pipes are cleared. |
| rate_control_state_ = kRcHold; |
| time_last_bitrate_change_ = now_ms; |
| break; |
| |
| default: |
| assert(false); |
| } |
| return ClampBitrate(new_bitrate_bps, incoming_bitrate_bps); |
| } |
| |
| uint32_t AimdRateControl::ClampBitrate(uint32_t new_bitrate_bps, |
| uint32_t incoming_bitrate_bps) const { |
| // Don't change the bit rate if the send side is too far off. |
| // We allow a bit more lag at very low rates to not too easily get stuck if |
| // the encoder produces uneven outputs. |
| const uint32_t max_bitrate_bps = |
| static_cast<uint32_t>(1.5f * incoming_bitrate_bps) + 10000; |
| if (new_bitrate_bps > current_bitrate_bps_ && |
| new_bitrate_bps > max_bitrate_bps) { |
| new_bitrate_bps = std::max(current_bitrate_bps_, max_bitrate_bps); |
| } |
| new_bitrate_bps = std::max(new_bitrate_bps, min_configured_bitrate_bps_); |
| return new_bitrate_bps; |
| } |
| |
| uint32_t AimdRateControl::MultiplicativeRateIncrease( |
| int64_t now_ms, int64_t last_ms, uint32_t current_bitrate_bps) const { |
| double alpha = 1.08; |
| if (last_ms > -1) { |
| auto time_since_last_update_ms = |
| rtc::SafeMin<int64_t>(now_ms - last_ms, 1000); |
| alpha = pow(alpha, time_since_last_update_ms / 1000.0); |
| } |
| uint32_t multiplicative_increase_bps = std::max( |
| current_bitrate_bps * (alpha - 1.0), 1000.0); |
| return multiplicative_increase_bps; |
| } |
| |
| uint32_t AimdRateControl::AdditiveRateIncrease(int64_t now_ms, |
| int64_t last_ms) const { |
| return static_cast<uint32_t>((now_ms - last_ms) * |
| GetNearMaxIncreaseRateBps() / 1000); |
| } |
| |
| void AimdRateControl::UpdateMaxBitRateEstimate(float incoming_bitrate_kbps) { |
| const float alpha = 0.05f; |
| if (avg_max_bitrate_kbps_ == -1.0f) { |
| avg_max_bitrate_kbps_ = incoming_bitrate_kbps; |
| } else { |
| avg_max_bitrate_kbps_ = (1 - alpha) * avg_max_bitrate_kbps_ + |
| alpha * incoming_bitrate_kbps; |
| } |
| // Estimate the max bit rate variance and normalize the variance |
| // with the average max bit rate. |
| const float norm = std::max(avg_max_bitrate_kbps_, 1.0f); |
| var_max_bitrate_kbps_ = (1 - alpha) * var_max_bitrate_kbps_ + |
| alpha * (avg_max_bitrate_kbps_ - incoming_bitrate_kbps) * |
| (avg_max_bitrate_kbps_ - incoming_bitrate_kbps) / norm; |
| // 0.4 ~= 14 kbit/s at 500 kbit/s |
| if (var_max_bitrate_kbps_ < 0.4f) { |
| var_max_bitrate_kbps_ = 0.4f; |
| } |
| // 2.5f ~= 35 kbit/s at 500 kbit/s |
| if (var_max_bitrate_kbps_ > 2.5f) { |
| var_max_bitrate_kbps_ = 2.5f; |
| } |
| } |
| |
| void AimdRateControl::ChangeState(const RateControlInput& input, |
| int64_t now_ms) { |
| switch (input.bw_state) { |
| case BandwidthUsage::kBwNormal: |
| if (rate_control_state_ == kRcHold) { |
| time_last_bitrate_change_ = now_ms; |
| rate_control_state_ = kRcIncrease; |
| } |
| break; |
| case BandwidthUsage::kBwOverusing: |
| if (rate_control_state_ != kRcDecrease) { |
| rate_control_state_ = kRcDecrease; |
| } |
| break; |
| case BandwidthUsage::kBwUnderusing: |
| rate_control_state_ = kRcHold; |
| break; |
| default: |
| assert(false); |
| } |
| } |
| |
| void AimdRateControl::ChangeRegion(RateControlRegion region) { |
| rate_control_region_ = region; |
| } |
| |
| } // namespace webrtc |