|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "modules/audio_device/audio_device_buffer.h" | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  |  | 
|  | #include "common_audio/signal_processing/include/signal_processing_library.h" | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/logging.h" | 
|  | #include "rtc_base/time_utils.h" | 
|  | #include "rtc_base/trace_event.h" | 
|  | #include "system_wrappers/include/metrics.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | static const char kTimerQueueName[] = "AudioDeviceBufferTimer"; | 
|  |  | 
|  | // Time between two sucessive calls to LogStats(). | 
|  | static const size_t kTimerIntervalInSeconds = 10; | 
|  | static const size_t kTimerIntervalInMilliseconds = | 
|  | kTimerIntervalInSeconds * rtc::kNumMillisecsPerSec; | 
|  | // Min time required to qualify an audio session as a "call". If playout or | 
|  | // recording has been active for less than this time we will not store any | 
|  | // logs or UMA stats but instead consider the call as too short. | 
|  | static const size_t kMinValidCallTimeTimeInSeconds = 10; | 
|  | static const size_t kMinValidCallTimeTimeInMilliseconds = | 
|  | kMinValidCallTimeTimeInSeconds * rtc::kNumMillisecsPerSec; | 
|  | #ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE | 
|  | static const double k2Pi = 6.28318530717959; | 
|  | #endif | 
|  |  | 
|  | AudioDeviceBuffer::AudioDeviceBuffer(TaskQueueFactory* task_queue_factory, | 
|  | bool create_detached) | 
|  | : task_queue_(task_queue_factory->CreateTaskQueue( | 
|  | kTimerQueueName, | 
|  | TaskQueueFactory::Priority::NORMAL)), | 
|  | audio_transport_cb_(nullptr), | 
|  | rec_sample_rate_(0), | 
|  | play_sample_rate_(0), | 
|  | rec_channels_(0), | 
|  | play_channels_(0), | 
|  | playing_(false), | 
|  | recording_(false), | 
|  | typing_status_(false), | 
|  | play_delay_ms_(0), | 
|  | rec_delay_ms_(0), | 
|  | num_stat_reports_(0), | 
|  | last_timer_task_time_(0), | 
|  | rec_stat_count_(0), | 
|  | play_stat_count_(0), | 
|  | play_start_time_(0), | 
|  | only_silence_recorded_(true), | 
|  | log_stats_(false) { | 
|  | RTC_LOG(LS_INFO) << "AudioDeviceBuffer::ctor"; | 
|  | #ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE | 
|  | phase_ = 0.0; | 
|  | RTC_LOG(LS_WARNING) << "AUDIO_DEVICE_PLAYS_SINUS_TONE is defined!"; | 
|  | #endif | 
|  | if (create_detached) { | 
|  | main_thread_checker_.Detach(); | 
|  | } | 
|  | } | 
|  |  | 
|  | AudioDeviceBuffer::~AudioDeviceBuffer() { | 
|  | RTC_DCHECK_RUN_ON(&main_thread_checker_); | 
|  | RTC_DCHECK(!playing_); | 
|  | RTC_DCHECK(!recording_); | 
|  | RTC_LOG(LS_INFO) << "AudioDeviceBuffer::~dtor"; | 
|  |  | 
|  | // Delete and and thus stop task queue before deleting other members to avoid | 
|  | // race with running tasks. Even though !playing_ and !recording_ called | 
|  | // StopPeriodicLogging, such stop is asynchronous and may race with the | 
|  | // AudioDeviceBuffer destructor. In particular there might be regular LogStats | 
|  | // that attempts to repost task to the task_queue_. | 
|  | // Thus task_queue_ should be deleted before pointer to it is invalidated. | 
|  | // std::unique_ptr destructor does the same two operations in reverse order as | 
|  | // it doesn't expect member would be used after its destruction has started. | 
|  | task_queue_.get_deleter()(task_queue_.get()); | 
|  | task_queue_.release(); | 
|  | } | 
|  |  | 
|  | int32_t AudioDeviceBuffer::RegisterAudioCallback( | 
|  | AudioTransport* audio_callback) { | 
|  | RTC_DCHECK_RUN_ON(&main_thread_checker_); | 
|  | RTC_DLOG(LS_INFO) << __FUNCTION__; | 
|  | if (playing_ || recording_) { | 
|  | RTC_LOG(LS_ERROR) << "Failed to set audio transport since media was active"; | 
|  | return -1; | 
|  | } | 
|  | audio_transport_cb_ = audio_callback; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::StartPlayout() { | 
|  | RTC_DCHECK_RUN_ON(&main_thread_checker_); | 
|  | // TODO(henrika): allow for usage of DCHECK(!playing_) here instead. Today the | 
|  | // ADM allows calling Start(), Start() by ignoring the second call but it | 
|  | // makes more sense to only allow one call. | 
|  | if (playing_) { | 
|  | return; | 
|  | } | 
|  | RTC_DLOG(LS_INFO) << __FUNCTION__; | 
|  | // Clear members tracking playout stats and do it on the task queue. | 
|  | task_queue_->PostTask([this] { ResetPlayStats(); }); | 
|  | // Start a periodic timer based on task queue if not already done by the | 
|  | // recording side. | 
|  | if (!recording_) { | 
|  | StartPeriodicLogging(); | 
|  | } | 
|  | const int64_t now_time = rtc::TimeMillis(); | 
|  | // Clear members that are only touched on the main (creating) thread. | 
|  | play_start_time_ = now_time; | 
|  | playing_ = true; | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::StartRecording() { | 
|  | RTC_DCHECK_RUN_ON(&main_thread_checker_); | 
|  | if (recording_) { | 
|  | return; | 
|  | } | 
|  | RTC_DLOG(LS_INFO) << __FUNCTION__; | 
|  | // Clear members tracking recording stats and do it on the task queue. | 
|  | task_queue_->PostTask([this] { ResetRecStats(); }); | 
|  | // Start a periodic timer based on task queue if not already done by the | 
|  | // playout side. | 
|  | if (!playing_) { | 
|  | StartPeriodicLogging(); | 
|  | } | 
|  | // Clear members that will be touched on the main (creating) thread. | 
|  | rec_start_time_ = rtc::TimeMillis(); | 
|  | recording_ = true; | 
|  | // And finally a member which can be modified on the native audio thread. | 
|  | // It is safe to do so since we know by design that the owning ADM has not | 
|  | // yet started the native audio recording. | 
|  | only_silence_recorded_ = true; | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::StopPlayout() { | 
|  | RTC_DCHECK_RUN_ON(&main_thread_checker_); | 
|  | if (!playing_) { | 
|  | return; | 
|  | } | 
|  | RTC_DLOG(LS_INFO) << __FUNCTION__; | 
|  | playing_ = false; | 
|  | // Stop periodic logging if no more media is active. | 
|  | if (!recording_) { | 
|  | StopPeriodicLogging(); | 
|  | } | 
|  | RTC_LOG(LS_INFO) << "total playout time: " | 
|  | << rtc::TimeSince(play_start_time_); | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::StopRecording() { | 
|  | RTC_DCHECK_RUN_ON(&main_thread_checker_); | 
|  | if (!recording_) { | 
|  | return; | 
|  | } | 
|  | RTC_DLOG(LS_INFO) << __FUNCTION__; | 
|  | recording_ = false; | 
|  | // Stop periodic logging if no more media is active. | 
|  | if (!playing_) { | 
|  | StopPeriodicLogging(); | 
|  | } | 
|  | // Add UMA histogram to keep track of the case when only zeros have been | 
|  | // recorded. Measurements (max of absolute level) are taken twice per second, | 
|  | // which means that if e.g 10 seconds of audio has been recorded, a total of | 
|  | // 20 level estimates must all be identical to zero to trigger the histogram. | 
|  | // `only_silence_recorded_` can only be cleared on the native audio thread | 
|  | // that drives audio capture but we know by design that the audio has stopped | 
|  | // when this method is called, hence there should not be aby conflicts. Also, | 
|  | // the fact that `only_silence_recorded_` can be affected during the complete | 
|  | // call makes chances of conflicts with potentially one last callback very | 
|  | // small. | 
|  | const size_t time_since_start = rtc::TimeSince(rec_start_time_); | 
|  | if (time_since_start > kMinValidCallTimeTimeInMilliseconds) { | 
|  | const int only_zeros = static_cast<int>(only_silence_recorded_); | 
|  | RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.RecordedOnlyZeros", only_zeros); | 
|  | RTC_LOG(LS_INFO) << "HISTOGRAM(WebRTC.Audio.RecordedOnlyZeros): " | 
|  | << only_zeros; | 
|  | } | 
|  | RTC_LOG(LS_INFO) << "total recording time: " << time_since_start; | 
|  | } | 
|  |  | 
|  | int32_t AudioDeviceBuffer::SetRecordingSampleRate(uint32_t fsHz) { | 
|  | RTC_LOG(LS_INFO) << "SetRecordingSampleRate(" << fsHz << ")"; | 
|  | rec_sample_rate_ = fsHz; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int32_t AudioDeviceBuffer::SetPlayoutSampleRate(uint32_t fsHz) { | 
|  | RTC_LOG(LS_INFO) << "SetPlayoutSampleRate(" << fsHz << ")"; | 
|  | play_sample_rate_ = fsHz; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint32_t AudioDeviceBuffer::RecordingSampleRate() const { | 
|  | return rec_sample_rate_; | 
|  | } | 
|  |  | 
|  | uint32_t AudioDeviceBuffer::PlayoutSampleRate() const { | 
|  | return play_sample_rate_; | 
|  | } | 
|  |  | 
|  | int32_t AudioDeviceBuffer::SetRecordingChannels(size_t channels) { | 
|  | RTC_LOG(LS_INFO) << "SetRecordingChannels(" << channels << ")"; | 
|  | rec_channels_ = channels; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int32_t AudioDeviceBuffer::SetPlayoutChannels(size_t channels) { | 
|  | RTC_LOG(LS_INFO) << "SetPlayoutChannels(" << channels << ")"; | 
|  | play_channels_ = channels; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t AudioDeviceBuffer::RecordingChannels() const { | 
|  | return rec_channels_; | 
|  | } | 
|  |  | 
|  | size_t AudioDeviceBuffer::PlayoutChannels() const { | 
|  | return play_channels_; | 
|  | } | 
|  |  | 
|  | int32_t AudioDeviceBuffer::SetTypingStatus(bool typing_status) { | 
|  | typing_status_ = typing_status; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::SetVQEData(int play_delay_ms, int rec_delay_ms) { | 
|  | play_delay_ms_ = play_delay_ms; | 
|  | rec_delay_ms_ = rec_delay_ms; | 
|  | } | 
|  |  | 
|  | int32_t AudioDeviceBuffer::SetRecordedBuffer(const void* audio_buffer, | 
|  | size_t samples_per_channel) { | 
|  | return SetRecordedBuffer(audio_buffer, samples_per_channel, std::nullopt); | 
|  | } | 
|  |  | 
|  | int32_t AudioDeviceBuffer::SetRecordedBuffer( | 
|  | const void* audio_buffer, | 
|  | size_t samples_per_channel, | 
|  | std::optional<int64_t> capture_timestamp_ns) { | 
|  | // Copy the complete input buffer to the local buffer. | 
|  | const size_t old_size = rec_buffer_.size(); | 
|  | rec_buffer_.SetData(static_cast<const int16_t*>(audio_buffer), | 
|  | rec_channels_ * samples_per_channel); | 
|  | // Keep track of the size of the recording buffer. Only updated when the | 
|  | // size changes, which is a rare event. | 
|  | if (old_size != rec_buffer_.size()) { | 
|  | RTC_LOG(LS_INFO) << "Size of recording buffer: " << rec_buffer_.size(); | 
|  | } | 
|  |  | 
|  | if (capture_timestamp_ns) { | 
|  | int64_t align_offsync_estimation_time = rtc::TimeMicros(); | 
|  | if (align_offsync_estimation_time - TimestampAligner::kMinFrameIntervalUs > | 
|  | align_offsync_estimation_time_) { | 
|  | align_offsync_estimation_time_ = align_offsync_estimation_time; | 
|  | capture_timestamp_ns_ = | 
|  | rtc::kNumNanosecsPerMicrosec * | 
|  | timestamp_aligner_.TranslateTimestamp( | 
|  | *capture_timestamp_ns / rtc::kNumNanosecsPerMicrosec, | 
|  | align_offsync_estimation_time); | 
|  | } else { | 
|  | // The Timestamp aligner is designed to prevent timestamps that are too | 
|  | // similar, and produces warnings if it is called to often. We do not care | 
|  | // about that here, so we do this workaround. If we where to call the | 
|  | // aligner within a millisecond, we instead call this, that do not update | 
|  | // the clock offset estimation. This get us timestamps without generating | 
|  | // warnings, but could generate two timestamps within a millisecond. | 
|  | capture_timestamp_ns_ = | 
|  | rtc::kNumNanosecsPerMicrosec * | 
|  | timestamp_aligner_.TranslateTimestamp(*capture_timestamp_ns / | 
|  | rtc::kNumNanosecsPerMicrosec); | 
|  | } | 
|  | } | 
|  | // Derive a new level value twice per second and check if it is non-zero. | 
|  | int16_t max_abs = 0; | 
|  | RTC_DCHECK_LT(rec_stat_count_, 50); | 
|  | if (++rec_stat_count_ >= 50) { | 
|  | // Returns the largest absolute value in a signed 16-bit vector. | 
|  | max_abs = WebRtcSpl_MaxAbsValueW16(rec_buffer_.data(), rec_buffer_.size()); | 
|  | rec_stat_count_ = 0; | 
|  | // Set `only_silence_recorded_` to false as soon as at least one detection | 
|  | // of a non-zero audio packet is found. It can only be restored to true | 
|  | // again by restarting the call. | 
|  | if (max_abs > 0) { | 
|  | only_silence_recorded_ = false; | 
|  | } | 
|  | } | 
|  | // Update recording stats which is used as base for periodic logging of the | 
|  | // audio input state. | 
|  | UpdateRecStats(max_abs, samples_per_channel); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int32_t AudioDeviceBuffer::DeliverRecordedData() { | 
|  | if (!audio_transport_cb_) { | 
|  | RTC_LOG(LS_WARNING) << "Invalid audio transport"; | 
|  | return 0; | 
|  | } | 
|  | const size_t frames = rec_buffer_.size() / rec_channels_; | 
|  | const size_t bytes_per_frame = rec_channels_ * sizeof(int16_t); | 
|  | uint32_t new_mic_level_dummy = 0; | 
|  | uint32_t total_delay_ms = play_delay_ms_ + rec_delay_ms_; | 
|  | int32_t res = audio_transport_cb_->RecordedDataIsAvailable( | 
|  | rec_buffer_.data(), frames, bytes_per_frame, rec_channels_, | 
|  | rec_sample_rate_, total_delay_ms, 0, 0, typing_status_, | 
|  | new_mic_level_dummy, capture_timestamp_ns_); | 
|  | if (res == -1) { | 
|  | RTC_LOG(LS_ERROR) << "RecordedDataIsAvailable() failed"; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int32_t AudioDeviceBuffer::RequestPlayoutData(size_t samples_per_channel) { | 
|  | TRACE_EVENT1("webrtc", "AudioDeviceBuffer::RequestPlayoutData", | 
|  | "samples_per_channel", samples_per_channel); | 
|  |  | 
|  | // The consumer can change the requested size on the fly and we therefore | 
|  | // resize the buffer accordingly. Also takes place at the first call to this | 
|  | // method. | 
|  | const size_t total_samples = play_channels_ * samples_per_channel; | 
|  | if (play_buffer_.size() != total_samples) { | 
|  | play_buffer_.SetSize(total_samples); | 
|  | RTC_LOG(LS_INFO) << "Size of playout buffer: " << play_buffer_.size(); | 
|  | } | 
|  |  | 
|  | size_t num_samples_out(0); | 
|  | // It is currently supported to start playout without a valid audio | 
|  | // transport object. Leads to warning and silence. | 
|  | if (!audio_transport_cb_) { | 
|  | RTC_LOG(LS_WARNING) << "Invalid audio transport"; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Retrieve new 16-bit PCM audio data using the audio transport instance. | 
|  | int64_t elapsed_time_ms = -1; | 
|  | int64_t ntp_time_ms = -1; | 
|  | const size_t bytes_per_frame = play_channels_ * sizeof(int16_t); | 
|  | uint32_t res = audio_transport_cb_->NeedMorePlayData( | 
|  | samples_per_channel, bytes_per_frame, play_channels_, play_sample_rate_, | 
|  | play_buffer_.data(), num_samples_out, &elapsed_time_ms, &ntp_time_ms); | 
|  | if (res != 0) { | 
|  | RTC_LOG(LS_ERROR) << "NeedMorePlayData() failed"; | 
|  | } | 
|  |  | 
|  | // Derive a new level value twice per second. | 
|  | int16_t max_abs = 0; | 
|  | RTC_DCHECK_LT(play_stat_count_, 50); | 
|  | if (++play_stat_count_ >= 50) { | 
|  | // Returns the largest absolute value in a signed 16-bit vector. | 
|  | max_abs = | 
|  | WebRtcSpl_MaxAbsValueW16(play_buffer_.data(), play_buffer_.size()); | 
|  | play_stat_count_ = 0; | 
|  | } | 
|  | // Update playout stats which is used as base for periodic logging of the | 
|  | // audio output state. | 
|  | UpdatePlayStats(max_abs, num_samples_out / play_channels_); | 
|  | return static_cast<int32_t>(num_samples_out / play_channels_); | 
|  | } | 
|  |  | 
|  | int32_t AudioDeviceBuffer::GetPlayoutData(void* audio_buffer) { | 
|  | RTC_DCHECK_GT(play_buffer_.size(), 0); | 
|  | #ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE | 
|  | const double phase_increment = | 
|  | k2Pi * 440.0 / static_cast<double>(play_sample_rate_); | 
|  | int16_t* destination_r = reinterpret_cast<int16_t*>(audio_buffer); | 
|  | if (play_channels_ == 1) { | 
|  | for (size_t i = 0; i < play_buffer_.size(); ++i) { | 
|  | destination_r[i] = static_cast<int16_t>((sin(phase_) * (1 << 14))); | 
|  | phase_ += phase_increment; | 
|  | } | 
|  | } else if (play_channels_ == 2) { | 
|  | for (size_t i = 0; i < play_buffer_.size() / 2; ++i) { | 
|  | destination_r[2 * i] = destination_r[2 * i + 1] = | 
|  | static_cast<int16_t>((sin(phase_) * (1 << 14))); | 
|  | phase_ += phase_increment; | 
|  | } | 
|  | } | 
|  | #else | 
|  | memcpy(audio_buffer, play_buffer_.data(), | 
|  | play_buffer_.size() * sizeof(int16_t)); | 
|  | #endif | 
|  | // Return samples per channel or number of frames. | 
|  | return static_cast<int32_t>(play_buffer_.size() / play_channels_); | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::StartPeriodicLogging() { | 
|  | task_queue_->PostTask([this] { LogStats(AudioDeviceBuffer::LOG_START); }); | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::StopPeriodicLogging() { | 
|  | task_queue_->PostTask([this] { LogStats(AudioDeviceBuffer::LOG_STOP); }); | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::LogStats(LogState state) { | 
|  | RTC_DCHECK_RUN_ON(task_queue_.get()); | 
|  | int64_t now_time = rtc::TimeMillis(); | 
|  |  | 
|  | if (state == AudioDeviceBuffer::LOG_START) { | 
|  | // Reset counters at start. We will not add any logging in this state but | 
|  | // the timer will started by posting a new (delayed) task. | 
|  | num_stat_reports_ = 0; | 
|  | last_timer_task_time_ = now_time; | 
|  | log_stats_ = true; | 
|  | } else if (state == AudioDeviceBuffer::LOG_STOP) { | 
|  | // Stop logging and posting new tasks. | 
|  | log_stats_ = false; | 
|  | } else if (state == AudioDeviceBuffer::LOG_ACTIVE) { | 
|  | // Keep logging unless logging was disabled while task was posted. | 
|  | } | 
|  |  | 
|  | // Avoid adding more logs since we are in STOP mode. | 
|  | if (!log_stats_) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | int64_t next_callback_time = now_time + kTimerIntervalInMilliseconds; | 
|  | int64_t time_since_last = rtc::TimeDiff(now_time, last_timer_task_time_); | 
|  | last_timer_task_time_ = now_time; | 
|  |  | 
|  | Stats stats; | 
|  | { | 
|  | MutexLock lock(&lock_); | 
|  | stats = stats_; | 
|  | stats_.max_rec_level = 0; | 
|  | stats_.max_play_level = 0; | 
|  | } | 
|  |  | 
|  | // Cache current sample rate from atomic members. | 
|  | const uint32_t rec_sample_rate = rec_sample_rate_; | 
|  | const uint32_t play_sample_rate = play_sample_rate_; | 
|  |  | 
|  | // Log the latest statistics but skip the first two rounds just after state | 
|  | // was set to LOG_START to ensure that we have at least one full stable | 
|  | // 10-second interval for sample-rate estimation. Hence, first printed log | 
|  | // will be after ~20 seconds. | 
|  | if (++num_stat_reports_ > 2 && | 
|  | static_cast<size_t>(time_since_last) > kTimerIntervalInMilliseconds / 2) { | 
|  | uint32_t diff_samples = stats.rec_samples - last_stats_.rec_samples; | 
|  | float rate = diff_samples / (static_cast<float>(time_since_last) / 1000.0); | 
|  | uint32_t abs_diff_rate_in_percent = 0; | 
|  | if (rec_sample_rate > 0 && rate > 0) { | 
|  | abs_diff_rate_in_percent = static_cast<uint32_t>( | 
|  | 0.5f + | 
|  | ((100.0f * std::abs(rate - rec_sample_rate)) / rec_sample_rate)); | 
|  | RTC_HISTOGRAM_PERCENTAGE("WebRTC.Audio.RecordSampleRateOffsetInPercent", | 
|  | abs_diff_rate_in_percent); | 
|  | RTC_LOG(LS_INFO) << "[REC : " << time_since_last << "msec, " | 
|  | << rec_sample_rate / 1000 << "kHz] callbacks: " | 
|  | << stats.rec_callbacks - last_stats_.rec_callbacks | 
|  | << ", " | 
|  | "samples: " | 
|  | << diff_samples | 
|  | << ", " | 
|  | "rate: " | 
|  | << static_cast<int>(rate + 0.5) | 
|  | << ", " | 
|  | "rate diff: " | 
|  | << abs_diff_rate_in_percent | 
|  | << "%, " | 
|  | "level: " | 
|  | << stats.max_rec_level; | 
|  | } | 
|  |  | 
|  | diff_samples = stats.play_samples - last_stats_.play_samples; | 
|  | rate = diff_samples / (static_cast<float>(time_since_last) / 1000.0); | 
|  | abs_diff_rate_in_percent = 0; | 
|  | if (play_sample_rate > 0 && rate > 0) { | 
|  | abs_diff_rate_in_percent = static_cast<uint32_t>( | 
|  | 0.5f + | 
|  | ((100.0f * std::abs(rate - play_sample_rate)) / play_sample_rate)); | 
|  | RTC_HISTOGRAM_PERCENTAGE("WebRTC.Audio.PlayoutSampleRateOffsetInPercent", | 
|  | abs_diff_rate_in_percent); | 
|  | RTC_LOG(LS_INFO) << "[PLAY: " << time_since_last << "msec, " | 
|  | << play_sample_rate / 1000 << "kHz] callbacks: " | 
|  | << stats.play_callbacks - last_stats_.play_callbacks | 
|  | << ", " | 
|  | "samples: " | 
|  | << diff_samples | 
|  | << ", " | 
|  | "rate: " | 
|  | << static_cast<int>(rate + 0.5) | 
|  | << ", " | 
|  | "rate diff: " | 
|  | << abs_diff_rate_in_percent | 
|  | << "%, " | 
|  | "level: " | 
|  | << stats.max_play_level; | 
|  | } | 
|  | } | 
|  | last_stats_ = stats; | 
|  |  | 
|  | int64_t time_to_wait_ms = next_callback_time - rtc::TimeMillis(); | 
|  | RTC_DCHECK_GT(time_to_wait_ms, 0) << "Invalid timer interval"; | 
|  |  | 
|  | // Keep posting new (delayed) tasks until state is changed to kLogStop. | 
|  | task_queue_->PostDelayedTask( | 
|  | [this] { AudioDeviceBuffer::LogStats(AudioDeviceBuffer::LOG_ACTIVE); }, | 
|  | TimeDelta::Millis(time_to_wait_ms)); | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::ResetRecStats() { | 
|  | RTC_DCHECK_RUN_ON(task_queue_.get()); | 
|  | last_stats_.ResetRecStats(); | 
|  | MutexLock lock(&lock_); | 
|  | stats_.ResetRecStats(); | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::ResetPlayStats() { | 
|  | RTC_DCHECK_RUN_ON(task_queue_.get()); | 
|  | last_stats_.ResetPlayStats(); | 
|  | MutexLock lock(&lock_); | 
|  | stats_.ResetPlayStats(); | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::UpdateRecStats(int16_t max_abs, | 
|  | size_t samples_per_channel) { | 
|  | MutexLock lock(&lock_); | 
|  | ++stats_.rec_callbacks; | 
|  | stats_.rec_samples += samples_per_channel; | 
|  | if (max_abs > stats_.max_rec_level) { | 
|  | stats_.max_rec_level = max_abs; | 
|  | } | 
|  | } | 
|  |  | 
|  | void AudioDeviceBuffer::UpdatePlayStats(int16_t max_abs, | 
|  | size_t samples_per_channel) { | 
|  | MutexLock lock(&lock_); | 
|  | ++stats_.play_callbacks; | 
|  | stats_.play_samples += samples_per_channel; | 
|  | if (max_abs > stats_.max_play_level) { | 
|  | stats_.max_play_level = max_abs; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |