blob: 1432e3182ff10cd9bb3fded28586656dcc606354 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/codecs/red/audio_encoder_copy_red.h"
#include <string.h>
#include <utility>
#include <vector>
#include "rtc_base/byte_order.h"
#include "rtc_base/checks.h"
namespace webrtc {
// RED packets must be less than 1024 bytes to fit the 10 bit block length.
static constexpr const int kRedMaxPacketSize = 1 << 10;
// The typical MTU is 1200 bytes.
static constexpr const size_t kAudioMaxRtpPacketLen = 1200;
AudioEncoderCopyRed::Config::Config() = default;
AudioEncoderCopyRed::Config::Config(Config&&) = default;
AudioEncoderCopyRed::Config::~Config() = default;
AudioEncoderCopyRed::AudioEncoderCopyRed(Config&& config)
: speech_encoder_(std::move(config.speech_encoder)),
max_packet_length_(kAudioMaxRtpPacketLen),
red_payload_type_(config.payload_type) {
RTC_CHECK(speech_encoder_) << "Speech encoder not provided.";
}
AudioEncoderCopyRed::~AudioEncoderCopyRed() = default;
int AudioEncoderCopyRed::SampleRateHz() const {
return speech_encoder_->SampleRateHz();
}
size_t AudioEncoderCopyRed::NumChannels() const {
return speech_encoder_->NumChannels();
}
int AudioEncoderCopyRed::RtpTimestampRateHz() const {
return speech_encoder_->RtpTimestampRateHz();
}
size_t AudioEncoderCopyRed::Num10MsFramesInNextPacket() const {
return speech_encoder_->Num10MsFramesInNextPacket();
}
size_t AudioEncoderCopyRed::Max10MsFramesInAPacket() const {
return speech_encoder_->Max10MsFramesInAPacket();
}
int AudioEncoderCopyRed::GetTargetBitrate() const {
return speech_encoder_->GetTargetBitrate();
}
size_t AudioEncoderCopyRed::CalculateHeaderLength(size_t encoded_bytes) const {
size_t header_size = 1;
size_t bytes_available = max_packet_length_ - encoded_bytes;
if (secondary_info_.encoded_bytes > 0 &&
secondary_info_.encoded_bytes < bytes_available) {
header_size += 4;
bytes_available -= secondary_info_.encoded_bytes;
}
if (tertiary_info_.encoded_bytes > 0 &&
tertiary_info_.encoded_bytes < bytes_available) {
header_size += 4;
}
return header_size > 1 ? header_size : 0;
}
AudioEncoder::EncodedInfo AudioEncoderCopyRed::EncodeImpl(
uint32_t rtp_timestamp,
rtc::ArrayView<const int16_t> audio,
rtc::Buffer* encoded) {
rtc::Buffer primary_encoded;
EncodedInfo info =
speech_encoder_->Encode(rtp_timestamp, audio, &primary_encoded);
RTC_CHECK(info.redundant.empty()) << "Cannot use nested redundant encoders.";
RTC_DCHECK_EQ(primary_encoded.size(), info.encoded_bytes);
if (info.encoded_bytes == 0 || info.encoded_bytes > kRedMaxPacketSize) {
return info;
}
RTC_DCHECK_GT(max_packet_length_, info.encoded_bytes);
// Allocate room for RFC 2198 header if there is redundant data.
// Otherwise this will send the primary payload type without
// wrapping in RED.
const size_t header_length_bytes = CalculateHeaderLength(info.encoded_bytes);
encoded->SetSize(header_length_bytes);
size_t header_offset = 0;
size_t bytes_available = max_packet_length_ - info.encoded_bytes;
if (tertiary_info_.encoded_bytes > 0 &&
tertiary_info_.encoded_bytes + secondary_info_.encoded_bytes <
bytes_available) {
encoded->AppendData(tertiary_encoded_);
const uint32_t timestamp_delta =
info.encoded_timestamp - tertiary_info_.encoded_timestamp;
encoded->data()[header_offset] = tertiary_info_.payload_type | 0x80;
rtc::SetBE16(static_cast<uint8_t*>(encoded->data()) + header_offset + 1,
(timestamp_delta << 2) | (tertiary_info_.encoded_bytes >> 8));
encoded->data()[header_offset + 3] = tertiary_info_.encoded_bytes & 0xff;
header_offset += 4;
bytes_available -= tertiary_info_.encoded_bytes;
}
if (secondary_info_.encoded_bytes > 0 &&
secondary_info_.encoded_bytes < bytes_available) {
encoded->AppendData(secondary_encoded_);
const uint32_t timestamp_delta =
info.encoded_timestamp - secondary_info_.encoded_timestamp;
encoded->data()[header_offset] = secondary_info_.payload_type | 0x80;
rtc::SetBE16(static_cast<uint8_t*>(encoded->data()) + header_offset + 1,
(timestamp_delta << 2) | (secondary_info_.encoded_bytes >> 8));
encoded->data()[header_offset + 3] = secondary_info_.encoded_bytes & 0xff;
header_offset += 4;
bytes_available -= secondary_info_.encoded_bytes;
}
encoded->AppendData(primary_encoded);
if (header_length_bytes > 0) {
RTC_DCHECK_EQ(header_offset, header_length_bytes - 1);
encoded->data()[header_offset] = info.payload_type;
}
// |info| will be implicitly cast to an EncodedInfoLeaf struct, effectively
// discarding the (empty) vector of redundant information. This is
// intentional.
info.redundant.push_back(info);
RTC_DCHECK_EQ(info.redundant.size(), 1);
RTC_DCHECK_EQ(info.speech, info.redundant[0].speech);
if (secondary_info_.encoded_bytes > 0) {
info.redundant.push_back(secondary_info_);
RTC_DCHECK_EQ(info.redundant.size(), 2);
}
if (tertiary_info_.encoded_bytes > 0) {
info.redundant.push_back(tertiary_info_);
RTC_DCHECK_EQ(info.redundant.size(),
2 + (secondary_info_.encoded_bytes > 0 ? 1 : 0));
}
// Save secondary to tertiary.
tertiary_encoded_.SetData(secondary_encoded_);
tertiary_info_ = secondary_info_;
// Save primary to secondary.
secondary_encoded_.SetData(primary_encoded);
secondary_info_ = info;
// Update main EncodedInfo.
if (header_length_bytes > 0) {
info.payload_type = red_payload_type_;
}
info.encoded_bytes = encoded->size();
return info;
}
void AudioEncoderCopyRed::Reset() {
speech_encoder_->Reset();
secondary_encoded_.Clear();
secondary_info_.encoded_bytes = 0;
}
bool AudioEncoderCopyRed::SetFec(bool enable) {
return speech_encoder_->SetFec(enable);
}
bool AudioEncoderCopyRed::SetDtx(bool enable) {
return speech_encoder_->SetDtx(enable);
}
bool AudioEncoderCopyRed::SetApplication(Application application) {
return speech_encoder_->SetApplication(application);
}
void AudioEncoderCopyRed::SetMaxPlaybackRate(int frequency_hz) {
speech_encoder_->SetMaxPlaybackRate(frequency_hz);
}
rtc::ArrayView<std::unique_ptr<AudioEncoder>>
AudioEncoderCopyRed::ReclaimContainedEncoders() {
return rtc::ArrayView<std::unique_ptr<AudioEncoder>>(&speech_encoder_, 1);
}
void AudioEncoderCopyRed::OnReceivedUplinkPacketLossFraction(
float uplink_packet_loss_fraction) {
speech_encoder_->OnReceivedUplinkPacketLossFraction(
uplink_packet_loss_fraction);
}
void AudioEncoderCopyRed::OnReceivedUplinkBandwidth(
int target_audio_bitrate_bps,
absl::optional<int64_t> bwe_period_ms) {
speech_encoder_->OnReceivedUplinkBandwidth(target_audio_bitrate_bps,
bwe_period_ms);
}
absl::optional<std::pair<TimeDelta, TimeDelta>>
AudioEncoderCopyRed::GetFrameLengthRange() const {
return speech_encoder_->GetFrameLengthRange();
}
void AudioEncoderCopyRed::OnReceivedOverhead(size_t overhead_bytes_per_packet) {
max_packet_length_ = kAudioMaxRtpPacketLen - overhead_bytes_per_packet;
return speech_encoder_->OnReceivedOverhead(overhead_bytes_per_packet);
}
} // namespace webrtc