blob: f1a3a664f0ac0d1ea0cdcb606b56c992f97e3d9c [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/signal_classifier.h"
#include <array>
#include <functional>
#include <limits>
#include "api/function_view.h"
#include "modules/audio_processing/agc2/agc2_testing_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/gunit.h"
#include "rtc_base/random.h"
namespace webrtc {
namespace {
constexpr int kNumIterations = 100;
// Runs the signal classifier on audio generated by 'sample_generator'
// for kNumIterations. Returns the number of frames classified as noise.
float RunClassifier(rtc::FunctionView<float()> sample_generator,
int sample_rate_hz) {
ApmDataDumper data_dumper(0);
SignalClassifier classifier(&data_dumper);
std::array<float, 480> signal;
classifier.Initialize(sample_rate_hz);
const size_t samples_per_channel = rtc::CheckedDivExact(sample_rate_hz, 100);
int number_of_noise_frames = 0;
for (int i = 0; i < kNumIterations; ++i) {
for (size_t j = 0; j < samples_per_channel; ++j) {
signal[j] = sample_generator();
}
number_of_noise_frames +=
classifier.Analyze({&signal[0], samples_per_channel}) ==
SignalClassifier::SignalType::kStationary;
}
return number_of_noise_frames;
}
class SignalClassifierParametrization : public ::testing::TestWithParam<int> {
protected:
int sample_rate_hz() const { return GetParam(); }
};
// White random noise is stationary, but does not trigger the detector
// every frame due to the randomness.
TEST_P(SignalClassifierParametrization, WhiteNoise) {
test::WhiteNoiseGenerator gen(/*min_amplitude=*/test::kMinS16,
/*max_amplitude=*/test::kMaxS16);
const int number_of_noise_frames = RunClassifier(gen, sample_rate_hz());
EXPECT_GT(number_of_noise_frames, kNumIterations / 2);
}
// Sine curves are (very) stationary. They trigger the detector all
// the time. Except for a few initial frames.
TEST_P(SignalClassifierParametrization, SineTone) {
test::SineGenerator gen(/*amplitude=*/test::kMaxS16, /*frequency_hz=*/600.0f,
sample_rate_hz());
const int number_of_noise_frames = RunClassifier(gen, sample_rate_hz());
EXPECT_GE(number_of_noise_frames, kNumIterations - 5);
}
// Pulses are transient if they are far enough apart. They shouldn't
// trigger the noise detector.
TEST_P(SignalClassifierParametrization, PulseTone) {
test::PulseGenerator gen(/*pulse_amplitude=*/test::kMaxS16,
/*no_pulse_amplitude=*/10.0f, /*frequency_hz=*/20.0f,
sample_rate_hz());
const int number_of_noise_frames = RunClassifier(gen, sample_rate_hz());
EXPECT_EQ(number_of_noise_frames, 0);
}
INSTANTIATE_TEST_SUITE_P(GainController2SignalClassifier,
SignalClassifierParametrization,
::testing::Values(8000, 16000, 32000, 48000));
} // namespace
} // namespace webrtc