|  | /* | 
|  | *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "video/encoder_overshoot_detector.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <string> | 
|  |  | 
|  | #include "system_wrappers/include/metrics.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  | // The buffer level for media-rate utilization is allowed to go below zero, | 
|  | // down to | 
|  | // -(`kMaxMediaUnderrunFrames` / `target_framerate_fps_`) * `target_bitrate_`. | 
|  | static constexpr double kMaxMediaUnderrunFrames = 5.0; | 
|  | }  // namespace | 
|  |  | 
|  | EncoderOvershootDetector::EncoderOvershootDetector(int64_t window_size_ms, | 
|  | VideoCodecType codec, | 
|  | bool is_screenshare) | 
|  | : window_size_ms_(window_size_ms), | 
|  | time_last_update_ms_(-1), | 
|  | sum_network_utilization_factors_(0.0), | 
|  | sum_media_utilization_factors_(0.0), | 
|  | target_bitrate_(DataRate::Zero()), | 
|  | target_framerate_fps_(0), | 
|  | network_buffer_level_bits_(0), | 
|  | media_buffer_level_bits_(0), | 
|  | codec_(codec), | 
|  | is_screenshare_(is_screenshare), | 
|  | frame_count_(0), | 
|  | sum_diff_kbps_squared_(0), | 
|  | sum_overshoot_percent_(0) {} | 
|  |  | 
|  | EncoderOvershootDetector::~EncoderOvershootDetector() { | 
|  | UpdateHistograms(); | 
|  | } | 
|  |  | 
|  | void EncoderOvershootDetector::SetTargetRate(DataRate target_bitrate, | 
|  | double target_framerate_fps, | 
|  | int64_t time_ms) { | 
|  | // First leak bits according to the previous target rate. | 
|  | if (target_bitrate_ != DataRate::Zero()) { | 
|  | LeakBits(time_ms); | 
|  | } else if (target_bitrate != DataRate::Zero()) { | 
|  | // Stream was just enabled, reset state. | 
|  | time_last_update_ms_ = time_ms; | 
|  | utilization_factors_.clear(); | 
|  | sum_network_utilization_factors_ = 0.0; | 
|  | sum_media_utilization_factors_ = 0.0; | 
|  | network_buffer_level_bits_ = 0; | 
|  | media_buffer_level_bits_ = 0; | 
|  | } | 
|  |  | 
|  | target_bitrate_ = target_bitrate; | 
|  | target_framerate_fps_ = target_framerate_fps; | 
|  | } | 
|  |  | 
|  | void EncoderOvershootDetector::OnEncodedFrame(size_t bytes, int64_t time_ms) { | 
|  | // Leak bits from the virtual pacer buffer, according to the current target | 
|  | // bitrate. | 
|  | LeakBits(time_ms); | 
|  |  | 
|  | const int64_t frame_size_bits = bytes * 8; | 
|  | // Ideal size of a frame given the current rates. | 
|  | const int64_t ideal_frame_size_bits = IdealFrameSizeBits(); | 
|  | if (ideal_frame_size_bits == 0) { | 
|  | // Frame without updated bitrate and/or framerate, ignore it. | 
|  | return; | 
|  | } | 
|  |  | 
|  | const double network_utilization_factor = | 
|  | HandleEncodedFrame(frame_size_bits, ideal_frame_size_bits, time_ms, | 
|  | &network_buffer_level_bits_); | 
|  | const double media_utilization_factor = | 
|  | HandleEncodedFrame(frame_size_bits, ideal_frame_size_bits, time_ms, | 
|  | &media_buffer_level_bits_); | 
|  |  | 
|  | sum_network_utilization_factors_ += network_utilization_factor; | 
|  | sum_media_utilization_factors_ += media_utilization_factor; | 
|  |  | 
|  | // Calculate the bitrate diff in kbps | 
|  | int64_t diff_kbits = (frame_size_bits - ideal_frame_size_bits) / 1000; | 
|  | sum_diff_kbps_squared_ += diff_kbits * diff_kbits; | 
|  | sum_overshoot_percent_ += diff_kbits * 100 * 1000 / ideal_frame_size_bits; | 
|  | ++frame_count_; | 
|  |  | 
|  | utilization_factors_.emplace_back(network_utilization_factor, | 
|  | media_utilization_factor, time_ms); | 
|  | } | 
|  |  | 
|  | double EncoderOvershootDetector::HandleEncodedFrame( | 
|  | size_t frame_size_bits, | 
|  | int64_t ideal_frame_size_bits, | 
|  | int64_t time_ms, | 
|  | int64_t* buffer_level_bits) const { | 
|  | // Add new frame to the buffer level. If doing so exceeds the ideal buffer | 
|  | // size, penalize this frame but cap overshoot to current buffer level rather | 
|  | // than size of this frame. This is done so that a single large frame is not | 
|  | // penalized if the encoder afterwards compensates by dropping frames and/or | 
|  | // reducing frame size. If however a large frame is followed by more data, | 
|  | // we cannot pace that next frame out within one frame space. | 
|  | const int64_t bitsum = frame_size_bits + *buffer_level_bits; | 
|  | int64_t overshoot_bits = 0; | 
|  | if (bitsum > ideal_frame_size_bits) { | 
|  | overshoot_bits = | 
|  | std::min(*buffer_level_bits, bitsum - ideal_frame_size_bits); | 
|  | } | 
|  |  | 
|  | // Add entry for the (over) utilization for this frame. Factor is capped | 
|  | // at 1.0 so that we don't risk overshooting on sudden changes. | 
|  | double utilization_factor; | 
|  | if (utilization_factors_.empty()) { | 
|  | // First frame, cannot estimate overshoot based on previous one so | 
|  | // for this particular frame, just like as size vs optimal size. | 
|  | utilization_factor = std::max( | 
|  | 1.0, static_cast<double>(frame_size_bits) / ideal_frame_size_bits); | 
|  | } else { | 
|  | utilization_factor = | 
|  | 1.0 + (static_cast<double>(overshoot_bits) / ideal_frame_size_bits); | 
|  | } | 
|  |  | 
|  | // Remove the overshot bits from the virtual buffer so we don't penalize | 
|  | // those bits multiple times. | 
|  | *buffer_level_bits -= overshoot_bits; | 
|  | *buffer_level_bits += frame_size_bits; | 
|  |  | 
|  | return utilization_factor; | 
|  | } | 
|  |  | 
|  | std::optional<double> EncoderOvershootDetector::GetNetworkRateUtilizationFactor( | 
|  | int64_t time_ms) { | 
|  | CullOldUpdates(time_ms); | 
|  |  | 
|  | // No data points within window, return. | 
|  | if (utilization_factors_.empty()) { | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | // TODO(sprang): Consider changing from arithmetic mean to some other | 
|  | // function such as 90th percentile. | 
|  | return sum_network_utilization_factors_ / utilization_factors_.size(); | 
|  | } | 
|  |  | 
|  | std::optional<double> EncoderOvershootDetector::GetMediaRateUtilizationFactor( | 
|  | int64_t time_ms) { | 
|  | CullOldUpdates(time_ms); | 
|  |  | 
|  | // No data points within window, return. | 
|  | if (utilization_factors_.empty()) { | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | return sum_media_utilization_factors_ / utilization_factors_.size(); | 
|  | } | 
|  |  | 
|  | void EncoderOvershootDetector::Reset() { | 
|  | UpdateHistograms(); | 
|  | sum_diff_kbps_squared_ = 0; | 
|  | frame_count_ = 0; | 
|  | sum_overshoot_percent_ = 0; | 
|  | time_last_update_ms_ = -1; | 
|  | utilization_factors_.clear(); | 
|  | target_bitrate_ = DataRate::Zero(); | 
|  | sum_network_utilization_factors_ = 0.0; | 
|  | sum_media_utilization_factors_ = 0.0; | 
|  | target_framerate_fps_ = 0.0; | 
|  | network_buffer_level_bits_ = 0; | 
|  | media_buffer_level_bits_ = 0; | 
|  | } | 
|  |  | 
|  | int64_t EncoderOvershootDetector::IdealFrameSizeBits() const { | 
|  | if (target_framerate_fps_ <= 0 || target_bitrate_ == DataRate::Zero()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Current ideal frame size, based on the current target bitrate. | 
|  | return static_cast<int64_t>( | 
|  | (target_bitrate_.bps() + target_framerate_fps_ / 2) / | 
|  | target_framerate_fps_); | 
|  | } | 
|  |  | 
|  | void EncoderOvershootDetector::LeakBits(int64_t time_ms) { | 
|  | if (time_last_update_ms_ != -1 && target_bitrate_ > DataRate::Zero()) { | 
|  | int64_t time_delta_ms = time_ms - time_last_update_ms_; | 
|  | // Leak bits according to the current target bitrate. | 
|  | const int64_t leaked_bits = (target_bitrate_.bps() * time_delta_ms) / 1000; | 
|  |  | 
|  | // Network buffer may not go below zero. | 
|  | network_buffer_level_bits_ = | 
|  | std::max<int64_t>(0, network_buffer_level_bits_ - leaked_bits); | 
|  |  | 
|  | // Media buffer my go down to minus `kMaxMediaUnderrunFrames` frames worth | 
|  | // of data. | 
|  | const double max_underrun_seconds = | 
|  | std::min(kMaxMediaUnderrunFrames, target_framerate_fps_) / | 
|  | target_framerate_fps_; | 
|  | media_buffer_level_bits_ = std::max<int64_t>( | 
|  | -max_underrun_seconds * target_bitrate_.bps<int64_t>(), | 
|  | media_buffer_level_bits_ - leaked_bits); | 
|  | } | 
|  | time_last_update_ms_ = time_ms; | 
|  | } | 
|  |  | 
|  | void EncoderOvershootDetector::CullOldUpdates(int64_t time_ms) { | 
|  | // Cull old data points. | 
|  | const int64_t cutoff_time_ms = time_ms - window_size_ms_; | 
|  | while (!utilization_factors_.empty() && | 
|  | utilization_factors_.front().update_time_ms < cutoff_time_ms) { | 
|  | // Make sure sum is never allowed to become negative due rounding errors. | 
|  | sum_network_utilization_factors_ = std::max( | 
|  | 0.0, sum_network_utilization_factors_ - | 
|  | utilization_factors_.front().network_utilization_factor); | 
|  | sum_media_utilization_factors_ = std::max( | 
|  | 0.0, sum_media_utilization_factors_ - | 
|  | utilization_factors_.front().media_utilization_factor); | 
|  | utilization_factors_.pop_front(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void EncoderOvershootDetector::UpdateHistograms() { | 
|  | if (frame_count_ == 0) | 
|  | return; | 
|  |  | 
|  | int64_t bitrate_rmse = std::sqrt(sum_diff_kbps_squared_ / frame_count_); | 
|  | int64_t average_overshoot_percent = sum_overshoot_percent_ / frame_count_; | 
|  | const std::string rmse_histogram_prefix = | 
|  | is_screenshare_ ? "WebRTC.Video.Screenshare.RMSEOfEncodingBitrateInKbps." | 
|  | : "WebRTC.Video.RMSEOfEncodingBitrateInKbps."; | 
|  | const std::string overshoot_histogram_prefix = | 
|  | is_screenshare_ ? "WebRTC.Video.Screenshare.EncodingBitrateOvershoot." | 
|  | : "WebRTC.Video.EncodingBitrateOvershoot."; | 
|  | // index = 1 represents screensharing histograms recording. | 
|  | // index = 0 represents normal video histograms recording. | 
|  | const int index = is_screenshare_ ? 1 : 0; | 
|  | switch (codec_) { | 
|  | case VideoCodecType::kVideoCodecAV1: | 
|  | RTC_HISTOGRAMS_COUNTS_10000(index, rmse_histogram_prefix + "Av1", | 
|  | bitrate_rmse); | 
|  | RTC_HISTOGRAMS_COUNTS_10000(index, overshoot_histogram_prefix + "Av1", | 
|  | average_overshoot_percent); | 
|  | break; | 
|  | case VideoCodecType::kVideoCodecVP9: | 
|  | RTC_HISTOGRAMS_COUNTS_10000(index, rmse_histogram_prefix + "Vp9", | 
|  | bitrate_rmse); | 
|  | RTC_HISTOGRAMS_COUNTS_10000(index, overshoot_histogram_prefix + "Vp9", | 
|  | average_overshoot_percent); | 
|  | break; | 
|  | case VideoCodecType::kVideoCodecVP8: | 
|  | RTC_HISTOGRAMS_COUNTS_10000(index, rmse_histogram_prefix + "Vp8", | 
|  | bitrate_rmse); | 
|  | RTC_HISTOGRAMS_COUNTS_10000(index, overshoot_histogram_prefix + "Vp8", | 
|  | average_overshoot_percent); | 
|  | break; | 
|  | case VideoCodecType::kVideoCodecH264: | 
|  | RTC_HISTOGRAMS_COUNTS_10000(index, rmse_histogram_prefix + "H264", | 
|  | bitrate_rmse); | 
|  | RTC_HISTOGRAMS_COUNTS_10000(index, overshoot_histogram_prefix + "H264", | 
|  | average_overshoot_percent); | 
|  | break; | 
|  | case VideoCodecType::kVideoCodecH265: | 
|  | RTC_HISTOGRAMS_COUNTS_10000(index, rmse_histogram_prefix + "H265", | 
|  | bitrate_rmse); | 
|  | RTC_HISTOGRAMS_COUNTS_10000(index, overshoot_histogram_prefix + "H265", | 
|  | average_overshoot_percent); | 
|  | break; | 
|  | case VideoCodecType::kVideoCodecGeneric: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |