|  | /* | 
|  | *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "audio/utility/channel_mixing_matrix.h" | 
|  |  | 
|  | #include <stddef.h> | 
|  |  | 
|  | #include <algorithm> | 
|  |  | 
|  | #include "audio/utility/channel_mixer.h" | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/logging.h" | 
|  | #include "system_wrappers/include/field_trial.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Selects the default usage of VoIP channel mapping adjustments. | 
|  | bool UseChannelMappingAdjustmentsByDefault() { | 
|  | return !field_trial::IsEnabled( | 
|  | "WebRTC-VoIPChannelRemixingAdjustmentKillSwitch"); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | static void ValidateLayout(ChannelLayout layout) { | 
|  | RTC_CHECK_NE(layout, CHANNEL_LAYOUT_NONE); | 
|  | RTC_CHECK_LE(layout, CHANNEL_LAYOUT_MAX); | 
|  | RTC_CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED); | 
|  | RTC_CHECK_NE(layout, CHANNEL_LAYOUT_DISCRETE); | 
|  | RTC_CHECK_NE(layout, CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC); | 
|  |  | 
|  | // Verify there's at least one channel.  Should always be true here by virtue | 
|  | // of not being one of the invalid layouts, but lets double check to be sure. | 
|  | int channel_count = ChannelLayoutToChannelCount(layout); | 
|  | RTC_DCHECK_GT(channel_count, 0); | 
|  |  | 
|  | // If we have more than one channel, verify a symmetric layout for sanity. | 
|  | // The unit test will verify all possible layouts, so this can be a DCHECK. | 
|  | // Symmetry allows simplifying the matrix building code by allowing us to | 
|  | // assume that if one channel of a pair exists, the other will too. | 
|  | if (channel_count > 1) { | 
|  | // Assert that LEFT exists if and only if RIGHT exists, and so on. | 
|  | RTC_DCHECK_EQ(ChannelOrder(layout, LEFT) >= 0, | 
|  | ChannelOrder(layout, RIGHT) >= 0); | 
|  | RTC_DCHECK_EQ(ChannelOrder(layout, SIDE_LEFT) >= 0, | 
|  | ChannelOrder(layout, SIDE_RIGHT) >= 0); | 
|  | RTC_DCHECK_EQ(ChannelOrder(layout, BACK_LEFT) >= 0, | 
|  | ChannelOrder(layout, BACK_RIGHT) >= 0); | 
|  | RTC_DCHECK_EQ(ChannelOrder(layout, LEFT_OF_CENTER) >= 0, | 
|  | ChannelOrder(layout, RIGHT_OF_CENTER) >= 0); | 
|  | } else { | 
|  | RTC_DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO); | 
|  | } | 
|  | } | 
|  |  | 
|  | ChannelMixingMatrix::ChannelMixingMatrix(ChannelLayout input_layout, | 
|  | int input_channels, | 
|  | ChannelLayout output_layout, | 
|  | int output_channels) | 
|  | : use_voip_channel_mapping_adjustments_( | 
|  | UseChannelMappingAdjustmentsByDefault()), | 
|  | input_layout_(input_layout), | 
|  | input_channels_(input_channels), | 
|  | output_layout_(output_layout), | 
|  | output_channels_(output_channels) { | 
|  | // Stereo down mix should never be the output layout. | 
|  | RTC_CHECK_NE(output_layout, CHANNEL_LAYOUT_STEREO_DOWNMIX); | 
|  |  | 
|  | // Verify that the layouts are supported | 
|  | if (input_layout != CHANNEL_LAYOUT_DISCRETE) | 
|  | ValidateLayout(input_layout); | 
|  | if (output_layout != CHANNEL_LAYOUT_DISCRETE) | 
|  | ValidateLayout(output_layout); | 
|  |  | 
|  | // Special case for 5.0, 5.1 with back channels when upmixed to 7.0, 7.1, | 
|  | // which should map the back LR to side LR. | 
|  | if (input_layout_ == CHANNEL_LAYOUT_5_0_BACK && | 
|  | output_layout_ == CHANNEL_LAYOUT_7_0) { | 
|  | input_layout_ = CHANNEL_LAYOUT_5_0; | 
|  | } else if (input_layout_ == CHANNEL_LAYOUT_5_1_BACK && | 
|  | output_layout_ == CHANNEL_LAYOUT_7_1) { | 
|  | input_layout_ = CHANNEL_LAYOUT_5_1; | 
|  | } | 
|  | } | 
|  |  | 
|  | ChannelMixingMatrix::~ChannelMixingMatrix() = default; | 
|  |  | 
|  | bool ChannelMixingMatrix::CreateTransformationMatrix( | 
|  | std::vector<std::vector<float>>* matrix) { | 
|  | matrix_ = matrix; | 
|  |  | 
|  | // Size out the initial matrix. | 
|  | matrix_->reserve(output_channels_); | 
|  | for (int output_ch = 0; output_ch < output_channels_; ++output_ch) | 
|  | matrix_->push_back(std::vector<float>(input_channels_, 0)); | 
|  |  | 
|  | // First check for discrete case. | 
|  | if (input_layout_ == CHANNEL_LAYOUT_DISCRETE || | 
|  | output_layout_ == CHANNEL_LAYOUT_DISCRETE) { | 
|  | // If the number of input channels is more than output channels, then | 
|  | // copy as many as we can then drop the remaining input channels. | 
|  | // If the number of input channels is less than output channels, then | 
|  | // copy them all, then zero out the remaining output channels. | 
|  | int passthrough_channels = std::min(input_channels_, output_channels_); | 
|  | for (int i = 0; i < passthrough_channels; ++i) | 
|  | (*matrix_)[i][i] = 1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If specified, use adjusted channel mapping for the VoIP scenario. | 
|  | if (use_voip_channel_mapping_adjustments_ && | 
|  | input_layout_ == CHANNEL_LAYOUT_MONO && | 
|  | ChannelLayoutToChannelCount(output_layout_) >= 2) { | 
|  | // Only place the mono input in the front left and right channels. | 
|  | (*matrix_)[0][0] = 1.f; | 
|  | (*matrix_)[1][0] = 1.f; | 
|  |  | 
|  | for (size_t output_ch = 2; output_ch < matrix_->size(); ++output_ch) { | 
|  | (*matrix_)[output_ch][0] = 0.f; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Route matching channels and figure out which ones aren't accounted for. | 
|  | for (Channels ch = LEFT; ch < CHANNELS_MAX + 1; | 
|  | ch = static_cast<Channels>(ch + 1)) { | 
|  | int input_ch_index = ChannelOrder(input_layout_, ch); | 
|  | if (input_ch_index < 0) | 
|  | continue; | 
|  |  | 
|  | int output_ch_index = ChannelOrder(output_layout_, ch); | 
|  | if (output_ch_index < 0) { | 
|  | unaccounted_inputs_.push_back(ch); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | RTC_DCHECK_LT(static_cast<size_t>(output_ch_index), matrix_->size()); | 
|  | RTC_DCHECK_LT(static_cast<size_t>(input_ch_index), | 
|  | (*matrix_)[output_ch_index].size()); | 
|  | (*matrix_)[output_ch_index][input_ch_index] = 1; | 
|  | } | 
|  |  | 
|  | // If all input channels are accounted for, there's nothing left to do. | 
|  | if (unaccounted_inputs_.empty()) { | 
|  | // Since all output channels map directly to inputs we can optimize. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Mix front LR into center. | 
|  | if (IsUnaccounted(LEFT)) { | 
|  | // When down mixing to mono from stereo, we need to be careful of full scale | 
|  | // stereo mixes.  Scaling by 1 / sqrt(2) here will likely lead to clipping | 
|  | // so we use 1 / 2 instead. | 
|  | float scale = | 
|  | (output_layout_ == CHANNEL_LAYOUT_MONO && input_channels_ == 2) | 
|  | ? 0.5 | 
|  | : ChannelMixer::kHalfPower; | 
|  | Mix(LEFT, CENTER, scale); | 
|  | Mix(RIGHT, CENTER, scale); | 
|  | } | 
|  |  | 
|  | // Mix center into front LR. | 
|  | if (IsUnaccounted(CENTER)) { | 
|  | // When up mixing from mono, just do a copy to front LR. | 
|  | float scale = | 
|  | (input_layout_ == CHANNEL_LAYOUT_MONO) ? 1 : ChannelMixer::kHalfPower; | 
|  | MixWithoutAccounting(CENTER, LEFT, scale); | 
|  | Mix(CENTER, RIGHT, scale); | 
|  | } | 
|  |  | 
|  | // Mix back LR into: side LR || back center || front LR || front center. | 
|  | if (IsUnaccounted(BACK_LEFT)) { | 
|  | if (HasOutputChannel(SIDE_LEFT)) { | 
|  | // If the input has side LR, mix back LR into side LR, but instead if the | 
|  | // input doesn't have side LR (but output does) copy back LR to side LR. | 
|  | float scale = HasInputChannel(SIDE_LEFT) ? ChannelMixer::kHalfPower : 1; | 
|  | Mix(BACK_LEFT, SIDE_LEFT, scale); | 
|  | Mix(BACK_RIGHT, SIDE_RIGHT, scale); | 
|  | } else if (HasOutputChannel(BACK_CENTER)) { | 
|  | // Mix back LR into back center. | 
|  | Mix(BACK_LEFT, BACK_CENTER, ChannelMixer::kHalfPower); | 
|  | Mix(BACK_RIGHT, BACK_CENTER, ChannelMixer::kHalfPower); | 
|  | } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { | 
|  | // Mix back LR into front LR. | 
|  | Mix(BACK_LEFT, LEFT, ChannelMixer::kHalfPower); | 
|  | Mix(BACK_RIGHT, RIGHT, ChannelMixer::kHalfPower); | 
|  | } else { | 
|  | // Mix back LR into front center. | 
|  | Mix(BACK_LEFT, CENTER, ChannelMixer::kHalfPower); | 
|  | Mix(BACK_RIGHT, CENTER, ChannelMixer::kHalfPower); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Mix side LR into: back LR || back center || front LR || front center. | 
|  | if (IsUnaccounted(SIDE_LEFT)) { | 
|  | if (HasOutputChannel(BACK_LEFT)) { | 
|  | // If the input has back LR, mix side LR into back LR, but instead if the | 
|  | // input doesn't have back LR (but output does) copy side LR to back LR. | 
|  | float scale = HasInputChannel(BACK_LEFT) ? ChannelMixer::kHalfPower : 1; | 
|  | Mix(SIDE_LEFT, BACK_LEFT, scale); | 
|  | Mix(SIDE_RIGHT, BACK_RIGHT, scale); | 
|  | } else if (HasOutputChannel(BACK_CENTER)) { | 
|  | // Mix side LR into back center. | 
|  | Mix(SIDE_LEFT, BACK_CENTER, ChannelMixer::kHalfPower); | 
|  | Mix(SIDE_RIGHT, BACK_CENTER, ChannelMixer::kHalfPower); | 
|  | } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { | 
|  | // Mix side LR into front LR. | 
|  | Mix(SIDE_LEFT, LEFT, ChannelMixer::kHalfPower); | 
|  | Mix(SIDE_RIGHT, RIGHT, ChannelMixer::kHalfPower); | 
|  | } else { | 
|  | // Mix side LR into front center. | 
|  | Mix(SIDE_LEFT, CENTER, ChannelMixer::kHalfPower); | 
|  | Mix(SIDE_RIGHT, CENTER, ChannelMixer::kHalfPower); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Mix back center into: back LR || side LR || front LR || front center. | 
|  | if (IsUnaccounted(BACK_CENTER)) { | 
|  | if (HasOutputChannel(BACK_LEFT)) { | 
|  | // Mix back center into back LR. | 
|  | MixWithoutAccounting(BACK_CENTER, BACK_LEFT, ChannelMixer::kHalfPower); | 
|  | Mix(BACK_CENTER, BACK_RIGHT, ChannelMixer::kHalfPower); | 
|  | } else if (HasOutputChannel(SIDE_LEFT)) { | 
|  | // Mix back center into side LR. | 
|  | MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, ChannelMixer::kHalfPower); | 
|  | Mix(BACK_CENTER, SIDE_RIGHT, ChannelMixer::kHalfPower); | 
|  | } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { | 
|  | // Mix back center into front LR. | 
|  | // TODO(dalecurtis): Not sure about these values? | 
|  | MixWithoutAccounting(BACK_CENTER, LEFT, ChannelMixer::kHalfPower); | 
|  | Mix(BACK_CENTER, RIGHT, ChannelMixer::kHalfPower); | 
|  | } else { | 
|  | // Mix back center into front center. | 
|  | // TODO(dalecurtis): Not sure about these values? | 
|  | Mix(BACK_CENTER, CENTER, ChannelMixer::kHalfPower); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Mix LR of center into: front LR || front center. | 
|  | if (IsUnaccounted(LEFT_OF_CENTER)) { | 
|  | if (HasOutputChannel(LEFT)) { | 
|  | // Mix LR of center into front LR. | 
|  | Mix(LEFT_OF_CENTER, LEFT, ChannelMixer::kHalfPower); | 
|  | Mix(RIGHT_OF_CENTER, RIGHT, ChannelMixer::kHalfPower); | 
|  | } else { | 
|  | // Mix LR of center into front center. | 
|  | Mix(LEFT_OF_CENTER, CENTER, ChannelMixer::kHalfPower); | 
|  | Mix(RIGHT_OF_CENTER, CENTER, ChannelMixer::kHalfPower); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Mix LFE into: front center || front LR. | 
|  | if (IsUnaccounted(LFE)) { | 
|  | if (!HasOutputChannel(CENTER)) { | 
|  | // Mix LFE into front LR. | 
|  | MixWithoutAccounting(LFE, LEFT, ChannelMixer::kHalfPower); | 
|  | Mix(LFE, RIGHT, ChannelMixer::kHalfPower); | 
|  | } else { | 
|  | // Mix LFE into front center. | 
|  | Mix(LFE, CENTER, ChannelMixer::kHalfPower); | 
|  | } | 
|  | } | 
|  |  | 
|  | // All channels should now be accounted for. | 
|  | RTC_DCHECK(unaccounted_inputs_.empty()); | 
|  |  | 
|  | // See if the output `matrix_` is simply a remapping matrix.  If each input | 
|  | // channel maps to a single output channel we can simply remap.  Doing this | 
|  | // programmatically is less fragile than logic checks on channel mappings. | 
|  | for (int output_ch = 0; output_ch < output_channels_; ++output_ch) { | 
|  | int input_mappings = 0; | 
|  | for (int input_ch = 0; input_ch < input_channels_; ++input_ch) { | 
|  | // We can only remap if each row contains a single scale of 1.  I.e., each | 
|  | // output channel is mapped from a single unscaled input channel. | 
|  | if ((*matrix_)[output_ch][input_ch] != 1 || ++input_mappings > 1) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we've gotten here, `matrix_` is simply a remapping. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void ChannelMixingMatrix::AccountFor(Channels ch) { | 
|  | unaccounted_inputs_.erase( | 
|  | std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch)); | 
|  | } | 
|  |  | 
|  | bool ChannelMixingMatrix::IsUnaccounted(Channels ch) const { | 
|  | return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(), | 
|  | ch) != unaccounted_inputs_.end(); | 
|  | } | 
|  |  | 
|  | bool ChannelMixingMatrix::HasInputChannel(Channels ch) const { | 
|  | return ChannelOrder(input_layout_, ch) >= 0; | 
|  | } | 
|  |  | 
|  | bool ChannelMixingMatrix::HasOutputChannel(Channels ch) const { | 
|  | return ChannelOrder(output_layout_, ch) >= 0; | 
|  | } | 
|  |  | 
|  | void ChannelMixingMatrix::Mix(Channels input_ch, | 
|  | Channels output_ch, | 
|  | float scale) { | 
|  | MixWithoutAccounting(input_ch, output_ch, scale); | 
|  | AccountFor(input_ch); | 
|  | } | 
|  |  | 
|  | void ChannelMixingMatrix::MixWithoutAccounting(Channels input_ch, | 
|  | Channels output_ch, | 
|  | float scale) { | 
|  | int input_ch_index = ChannelOrder(input_layout_, input_ch); | 
|  | int output_ch_index = ChannelOrder(output_layout_, output_ch); | 
|  |  | 
|  | RTC_DCHECK(IsUnaccounted(input_ch)); | 
|  | RTC_DCHECK_GE(input_ch_index, 0); | 
|  | RTC_DCHECK_GE(output_ch_index, 0); | 
|  |  | 
|  | RTC_DCHECK_EQ((*matrix_)[output_ch_index][input_ch_index], 0); | 
|  | (*matrix_)[output_ch_index][input_ch_index] = scale; | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |