| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_coding/neteq/neteq_impl.h" |
| |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #include "api/audio_codecs/builtin_audio_decoder_factory.h" |
| #include "api/neteq/default_neteq_controller_factory.h" |
| #include "api/neteq/neteq.h" |
| #include "api/neteq/neteq_controller.h" |
| #include "modules/audio_coding/neteq/accelerate.h" |
| #include "modules/audio_coding/neteq/decision_logic.h" |
| #include "modules/audio_coding/neteq/default_neteq_factory.h" |
| #include "modules/audio_coding/neteq/expand.h" |
| #include "modules/audio_coding/neteq/histogram.h" |
| #include "modules/audio_coding/neteq/mock/mock_decoder_database.h" |
| #include "modules/audio_coding/neteq/mock/mock_dtmf_buffer.h" |
| #include "modules/audio_coding/neteq/mock/mock_dtmf_tone_generator.h" |
| #include "modules/audio_coding/neteq/mock/mock_neteq_controller.h" |
| #include "modules/audio_coding/neteq/mock/mock_packet_buffer.h" |
| #include "modules/audio_coding/neteq/mock/mock_red_payload_splitter.h" |
| #include "modules/audio_coding/neteq/preemptive_expand.h" |
| #include "modules/audio_coding/neteq/statistics_calculator.h" |
| #include "modules/audio_coding/neteq/sync_buffer.h" |
| #include "modules/audio_coding/neteq/timestamp_scaler.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "system_wrappers/include/clock.h" |
| #include "test/audio_decoder_proxy_factory.h" |
| #include "test/function_audio_decoder_factory.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| #include "test/mock_audio_decoder.h" |
| #include "test/mock_audio_decoder_factory.h" |
| |
| using ::testing::_; |
| using ::testing::AtLeast; |
| using ::testing::DoAll; |
| using ::testing::ElementsAre; |
| using ::testing::InSequence; |
| using ::testing::Invoke; |
| using ::testing::IsEmpty; |
| using ::testing::IsNull; |
| using ::testing::Pointee; |
| using ::testing::Return; |
| using ::testing::ReturnNull; |
| using ::testing::SetArgPointee; |
| using ::testing::SetArrayArgument; |
| using ::testing::SizeIs; |
| using ::testing::WithArg; |
| |
| namespace webrtc { |
| |
| // This function is called when inserting a packet list into the mock packet |
| // buffer. The purpose is to delete all inserted packets properly, to avoid |
| // memory leaks in the test. |
| int DeletePacketsAndReturnOk(PacketList* packet_list) { |
| packet_list->clear(); |
| return PacketBuffer::kOK; |
| } |
| |
| class NetEqImplTest : public ::testing::Test { |
| protected: |
| NetEqImplTest() : clock_(0) { config_.sample_rate_hz = 8000; } |
| |
| void CreateInstance( |
| const rtc::scoped_refptr<AudioDecoderFactory>& decoder_factory) { |
| ASSERT_TRUE(decoder_factory); |
| NetEqImpl::Dependencies deps(config_, &clock_, decoder_factory, |
| DefaultNetEqControllerFactory()); |
| |
| // Get a local pointer to NetEq's TickTimer object. |
| tick_timer_ = deps.tick_timer.get(); |
| |
| if (use_mock_decoder_database_) { |
| std::unique_ptr<MockDecoderDatabase> mock(new MockDecoderDatabase); |
| mock_decoder_database_ = mock.get(); |
| EXPECT_CALL(*mock_decoder_database_, GetActiveCngDecoder()) |
| .WillOnce(ReturnNull()); |
| deps.decoder_database = std::move(mock); |
| } |
| decoder_database_ = deps.decoder_database.get(); |
| |
| if (use_mock_dtmf_buffer_) { |
| std::unique_ptr<MockDtmfBuffer> mock( |
| new MockDtmfBuffer(config_.sample_rate_hz)); |
| mock_dtmf_buffer_ = mock.get(); |
| deps.dtmf_buffer = std::move(mock); |
| } |
| dtmf_buffer_ = deps.dtmf_buffer.get(); |
| |
| if (use_mock_dtmf_tone_generator_) { |
| std::unique_ptr<MockDtmfToneGenerator> mock(new MockDtmfToneGenerator); |
| mock_dtmf_tone_generator_ = mock.get(); |
| deps.dtmf_tone_generator = std::move(mock); |
| } |
| dtmf_tone_generator_ = deps.dtmf_tone_generator.get(); |
| |
| if (use_mock_packet_buffer_) { |
| std::unique_ptr<MockPacketBuffer> mock( |
| new MockPacketBuffer(config_.max_packets_in_buffer, tick_timer_)); |
| mock_packet_buffer_ = mock.get(); |
| deps.packet_buffer = std::move(mock); |
| } |
| packet_buffer_ = deps.packet_buffer.get(); |
| |
| if (use_mock_neteq_controller_) { |
| std::unique_ptr<MockNetEqController> mock(new MockNetEqController()); |
| mock_neteq_controller_ = mock.get(); |
| deps.neteq_controller = std::move(mock); |
| } else { |
| deps.stats = std::make_unique<StatisticsCalculator>(); |
| NetEqController::Config controller_config; |
| controller_config.tick_timer = tick_timer_; |
| controller_config.base_min_delay_ms = config_.min_delay_ms; |
| controller_config.enable_rtx_handling = config_.enable_rtx_handling; |
| controller_config.allow_time_stretching = true; |
| controller_config.max_packets_in_buffer = config_.max_packets_in_buffer; |
| controller_config.clock = &clock_; |
| deps.neteq_controller = |
| std::make_unique<DecisionLogic>(std::move(controller_config)); |
| } |
| neteq_controller_ = deps.neteq_controller.get(); |
| |
| if (use_mock_payload_splitter_) { |
| std::unique_ptr<MockRedPayloadSplitter> mock(new MockRedPayloadSplitter); |
| mock_payload_splitter_ = mock.get(); |
| deps.red_payload_splitter = std::move(mock); |
| } |
| red_payload_splitter_ = deps.red_payload_splitter.get(); |
| |
| deps.timestamp_scaler = std::unique_ptr<TimestampScaler>( |
| new TimestampScaler(*deps.decoder_database.get())); |
| |
| neteq_.reset(new NetEqImpl(config_, std::move(deps))); |
| ASSERT_TRUE(neteq_ != NULL); |
| } |
| |
| void CreateInstance() { CreateInstance(CreateBuiltinAudioDecoderFactory()); } |
| |
| void UseNoMocks() { |
| ASSERT_TRUE(neteq_ == NULL) << "Must call UseNoMocks before CreateInstance"; |
| use_mock_decoder_database_ = false; |
| use_mock_neteq_controller_ = false; |
| use_mock_dtmf_buffer_ = false; |
| use_mock_dtmf_tone_generator_ = false; |
| use_mock_packet_buffer_ = false; |
| use_mock_payload_splitter_ = false; |
| } |
| |
| virtual ~NetEqImplTest() { |
| if (use_mock_decoder_database_) { |
| EXPECT_CALL(*mock_decoder_database_, Die()).Times(1); |
| } |
| if (use_mock_neteq_controller_) { |
| EXPECT_CALL(*mock_neteq_controller_, Die()).Times(1); |
| } |
| if (use_mock_dtmf_buffer_) { |
| EXPECT_CALL(*mock_dtmf_buffer_, Die()).Times(1); |
| } |
| if (use_mock_dtmf_tone_generator_) { |
| EXPECT_CALL(*mock_dtmf_tone_generator_, Die()).Times(1); |
| } |
| if (use_mock_packet_buffer_) { |
| EXPECT_CALL(*mock_packet_buffer_, Die()).Times(1); |
| } |
| } |
| |
| void TestDtmfPacket(int sample_rate_hz) { |
| const size_t kPayloadLength = 4; |
| const uint8_t kPayloadType = 110; |
| const int kSampleRateHz = 16000; |
| config_.sample_rate_hz = kSampleRateHz; |
| UseNoMocks(); |
| CreateInstance(); |
| // Event: 2, E bit, Volume: 17, Length: 4336. |
| uint8_t payload[kPayloadLength] = {0x02, 0x80 + 0x11, 0x10, 0xF0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_TRUE(neteq_->RegisterPayloadType( |
| kPayloadType, SdpAudioFormat("telephone-event", sample_rate_hz, 1))); |
| |
| // Insert first packet. |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| |
| // Pull audio once. |
| const size_t kMaxOutputSize = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_FALSE(muted); |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| // DTMF packets are immediately consumed by `InsertPacket()` and won't be |
| // returned by `GetAudio()`. |
| EXPECT_THAT(output.packet_infos_, IsEmpty()); |
| |
| // Verify first 64 samples of actual output. |
| const std::vector<int16_t> kOutput( |
| {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| -1578, -2816, -3460, -3403, -2709, -1594, -363, 671, 1269, 1328, |
| 908, 202, -513, -964, -955, -431, 504, 1617, 2602, 3164, |
| 3101, 2364, 1073, -511, -2047, -3198, -3721, -3525, -2688, -1440, |
| -99, 1015, 1663, 1744, 1319, 588, -171, -680, -747, -315, |
| 515, 1512, 2378, 2828, 2674, 1877, 568, -986, -2446, -3482, |
| -3864, -3516, -2534, -1163}); |
| ASSERT_GE(kMaxOutputSize, kOutput.size()); |
| EXPECT_TRUE(std::equal(kOutput.begin(), kOutput.end(), output.data())); |
| } |
| |
| std::unique_ptr<NetEqImpl> neteq_; |
| NetEq::Config config_; |
| SimulatedClock clock_; |
| TickTimer* tick_timer_ = nullptr; |
| MockDecoderDatabase* mock_decoder_database_ = nullptr; |
| DecoderDatabase* decoder_database_ = nullptr; |
| bool use_mock_decoder_database_ = true; |
| MockNetEqController* mock_neteq_controller_ = nullptr; |
| NetEqController* neteq_controller_ = nullptr; |
| bool use_mock_neteq_controller_ = true; |
| MockDtmfBuffer* mock_dtmf_buffer_ = nullptr; |
| DtmfBuffer* dtmf_buffer_ = nullptr; |
| bool use_mock_dtmf_buffer_ = true; |
| MockDtmfToneGenerator* mock_dtmf_tone_generator_ = nullptr; |
| DtmfToneGenerator* dtmf_tone_generator_ = nullptr; |
| bool use_mock_dtmf_tone_generator_ = true; |
| MockPacketBuffer* mock_packet_buffer_ = nullptr; |
| PacketBuffer* packet_buffer_ = nullptr; |
| bool use_mock_packet_buffer_ = true; |
| MockRedPayloadSplitter* mock_payload_splitter_ = nullptr; |
| RedPayloadSplitter* red_payload_splitter_ = nullptr; |
| bool use_mock_payload_splitter_ = true; |
| }; |
| |
| // This tests the interface class NetEq. |
| // TODO(hlundin): Move to separate file? |
| TEST(NetEq, CreateAndDestroy) { |
| NetEq::Config config; |
| SimulatedClock clock(0); |
| auto decoder_factory = CreateBuiltinAudioDecoderFactory(); |
| std::unique_ptr<NetEq> neteq = |
| DefaultNetEqFactory().CreateNetEq(config, decoder_factory, &clock); |
| } |
| |
| TEST_F(NetEqImplTest, RegisterPayloadType) { |
| CreateInstance(); |
| constexpr int rtp_payload_type = 0; |
| const SdpAudioFormat format("pcmu", 8000, 1); |
| EXPECT_CALL(*mock_decoder_database_, |
| RegisterPayload(rtp_payload_type, format)); |
| neteq_->RegisterPayloadType(rtp_payload_type, format); |
| } |
| |
| TEST_F(NetEqImplTest, RemovePayloadType) { |
| CreateInstance(); |
| uint8_t rtp_payload_type = 0; |
| EXPECT_CALL(*mock_decoder_database_, Remove(rtp_payload_type)) |
| .WillOnce(Return(DecoderDatabase::kDecoderNotFound)); |
| // Check that kOK is returned when database returns kDecoderNotFound, because |
| // removing a payload type that was never registered is not an error. |
| EXPECT_EQ(NetEq::kOK, neteq_->RemovePayloadType(rtp_payload_type)); |
| } |
| |
| TEST_F(NetEqImplTest, RemoveAllPayloadTypes) { |
| CreateInstance(); |
| EXPECT_CALL(*mock_decoder_database_, RemoveAll()).WillOnce(Return()); |
| neteq_->RemoveAllPayloadTypes(); |
| } |
| |
| TEST_F(NetEqImplTest, InsertPacket) { |
| using ::testing::AllOf; |
| using ::testing::Field; |
| CreateInstance(); |
| const size_t kPayloadLength = 100; |
| const uint8_t kPayloadType = 0; |
| const uint16_t kFirstSequenceNumber = 0x1234; |
| const uint32_t kFirstTimestamp = 0x12345678; |
| const uint32_t kSsrc = 0x87654321; |
| uint8_t payload[kPayloadLength] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = kFirstSequenceNumber; |
| rtp_header.timestamp = kFirstTimestamp; |
| rtp_header.ssrc = kSsrc; |
| Packet fake_packet; |
| fake_packet.payload_type = kPayloadType; |
| fake_packet.sequence_number = kFirstSequenceNumber; |
| fake_packet.timestamp = kFirstTimestamp; |
| |
| auto mock_decoder_factory = rtc::make_ref_counted<MockAudioDecoderFactory>(); |
| EXPECT_CALL(*mock_decoder_factory, MakeAudioDecoderMock(_, _, _)) |
| .WillOnce(Invoke([&](const SdpAudioFormat& format, |
| absl::optional<AudioCodecPairId> codec_pair_id, |
| std::unique_ptr<AudioDecoder>* dec) { |
| EXPECT_EQ("pcmu", format.name); |
| |
| std::unique_ptr<MockAudioDecoder> mock_decoder(new MockAudioDecoder); |
| EXPECT_CALL(*mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(*mock_decoder, SampleRateHz()).WillRepeatedly(Return(8000)); |
| EXPECT_CALL(*mock_decoder, Die()).Times(1); // Called when deleted. |
| |
| *dec = std::move(mock_decoder); |
| })); |
| DecoderDatabase::DecoderInfo info(SdpAudioFormat("pcmu", 8000, 1), |
| absl::nullopt, mock_decoder_factory); |
| |
| // Expectations for decoder database. |
| EXPECT_CALL(*mock_decoder_database_, GetDecoderInfo(kPayloadType)) |
| .WillRepeatedly(Return(&info)); |
| |
| // Expectations for packet buffer. |
| EXPECT_CALL(*mock_packet_buffer_, Empty()) |
| .WillOnce(Return(false)); // Called once after first packet is inserted. |
| EXPECT_CALL(*mock_packet_buffer_, Flush(_)).Times(1); |
| EXPECT_CALL(*mock_packet_buffer_, InsertPacketList(_, _, _, _, _, _, _, _)) |
| .Times(2) |
| .WillRepeatedly(DoAll(SetArgPointee<2>(kPayloadType), |
| WithArg<0>(Invoke(DeletePacketsAndReturnOk)))); |
| // SetArgPointee<2>(kPayloadType) means that the third argument (zero-based |
| // index) is a pointer, and the variable pointed to is set to kPayloadType. |
| // Also invoke the function DeletePacketsAndReturnOk to properly delete all |
| // packets in the list (to avoid memory leaks in the test). |
| EXPECT_CALL(*mock_packet_buffer_, PeekNextPacket()) |
| .Times(1) |
| .WillOnce(Return(&fake_packet)); |
| |
| // Expectations for DTMF buffer. |
| EXPECT_CALL(*mock_dtmf_buffer_, Flush()).Times(1); |
| |
| // Expectations for delay manager. |
| { |
| // All expectations within this block must be called in this specific order. |
| InSequence sequence; // Dummy variable. |
| // Expectations when the first packet is inserted. |
| EXPECT_CALL( |
| *mock_neteq_controller_, |
| PacketArrived( |
| /*fs_hz*/ 8000, |
| /*should_update_stats*/ _, |
| /*info*/ |
| AllOf( |
| Field(&NetEqController::PacketArrivedInfo::is_cng_or_dtmf, |
| false), |
| Field(&NetEqController::PacketArrivedInfo::main_sequence_number, |
| kFirstSequenceNumber), |
| Field(&NetEqController::PacketArrivedInfo::main_timestamp, |
| kFirstTimestamp)))); |
| EXPECT_CALL( |
| *mock_neteq_controller_, |
| PacketArrived( |
| /*fs_hz*/ 8000, |
| /*should_update_stats*/ _, |
| /*info*/ |
| AllOf( |
| Field(&NetEqController::PacketArrivedInfo::is_cng_or_dtmf, |
| false), |
| Field(&NetEqController::PacketArrivedInfo::main_sequence_number, |
| kFirstSequenceNumber + 1), |
| Field(&NetEqController::PacketArrivedInfo::main_timestamp, |
| kFirstTimestamp + 160)))); |
| } |
| |
| // Insert first packet. |
| neteq_->InsertPacket(rtp_header, payload); |
| |
| // Insert second packet. |
| rtp_header.timestamp += 160; |
| rtp_header.sequenceNumber += 1; |
| neteq_->InsertPacket(rtp_header, payload); |
| } |
| |
| TEST_F(NetEqImplTest, InsertPacketsUntilBufferIsFull) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const int kPayloadLengthSamples = 80; |
| const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; // PCM 16-bit. |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, |
| SdpAudioFormat("l16", 8000, 1))); |
| |
| // Insert packets. The buffer should not flush. |
| for (size_t i = 1; i <= config_.max_packets_in_buffer; ++i) { |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| rtp_header.timestamp += kPayloadLengthSamples; |
| rtp_header.sequenceNumber += 1; |
| EXPECT_EQ(i, packet_buffer_->NumPacketsInBuffer()); |
| } |
| |
| // Insert one more packet and make sure the buffer got flushed. That is, it |
| // should only hold one single packet. |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| EXPECT_EQ(1u, packet_buffer_->NumPacketsInBuffer()); |
| const Packet* test_packet = packet_buffer_->PeekNextPacket(); |
| EXPECT_EQ(rtp_header.timestamp, test_packet->timestamp); |
| EXPECT_EQ(rtp_header.sequenceNumber, test_packet->sequence_number); |
| } |
| |
| TEST_F(NetEqImplTest, TestDtmfPacketAVT) { |
| TestDtmfPacket(8000); |
| } |
| |
| TEST_F(NetEqImplTest, TestDtmfPacketAVT16kHz) { |
| TestDtmfPacket(16000); |
| } |
| |
| TEST_F(NetEqImplTest, TestDtmfPacketAVT32kHz) { |
| TestDtmfPacket(32000); |
| } |
| |
| TEST_F(NetEqImplTest, TestDtmfPacketAVT48kHz) { |
| TestDtmfPacket(48000); |
| } |
| |
| // This test verifies that timestamps propagate from the incoming packets |
| // through to the sync buffer and to the playout timestamp. |
| TEST_F(NetEqImplTest, VerifyTimestampPropagation) { |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const int kSampleRateHz = 8000; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = kPayloadLengthSamples; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| rtp_header.numCSRCs = 3; |
| rtp_header.arrOfCSRCs[0] = 43; |
| rtp_header.arrOfCSRCs[1] = 65; |
| rtp_header.arrOfCSRCs[2] = 17; |
| |
| // This is a dummy decoder that produces as many output samples as the input |
| // has bytes. The output is an increasing series, starting at 1 for the first |
| // sample, and then increasing by 1 for each sample. |
| class CountingSamplesDecoder : public AudioDecoder { |
| public: |
| CountingSamplesDecoder() : next_value_(1) {} |
| |
| // Produce as many samples as input bytes (`encoded_len`). |
| int DecodeInternal(const uint8_t* encoded, |
| size_t encoded_len, |
| int /* sample_rate_hz */, |
| int16_t* decoded, |
| SpeechType* speech_type) override { |
| for (size_t i = 0; i < encoded_len; ++i) { |
| decoded[i] = next_value_++; |
| } |
| *speech_type = kSpeech; |
| return rtc::checked_cast<int>(encoded_len); |
| } |
| |
| void Reset() override { next_value_ = 1; } |
| |
| int SampleRateHz() const override { return kSampleRateHz; } |
| |
| size_t Channels() const override { return 1; } |
| |
| uint16_t next_value() const { return next_value_; } |
| |
| private: |
| int16_t next_value_; |
| } decoder_; |
| |
| auto decoder_factory = |
| rtc::make_ref_counted<test::AudioDecoderProxyFactory>(&decoder_); |
| |
| UseNoMocks(); |
| CreateInstance(decoder_factory); |
| |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, |
| SdpAudioFormat("L16", 8000, 1))); |
| |
| // Insert one packet. |
| clock_.AdvanceTimeMilliseconds(123456); |
| Timestamp expected_receive_time = clock_.CurrentTime(); |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| |
| // Pull audio once. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_FALSE(muted); |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| // Verify |output.packet_infos_|. |
| ASSERT_THAT(output.packet_infos_, SizeIs(1)); |
| { |
| const auto& packet_info = output.packet_infos_[0]; |
| EXPECT_EQ(packet_info.ssrc(), rtp_header.ssrc); |
| EXPECT_THAT(packet_info.csrcs(), ElementsAre(43, 65, 17)); |
| EXPECT_EQ(packet_info.rtp_timestamp(), rtp_header.timestamp); |
| EXPECT_FALSE(packet_info.audio_level().has_value()); |
| EXPECT_EQ(packet_info.receive_time(), expected_receive_time); |
| } |
| |
| // Start with a simple check that the fake decoder is behaving as expected. |
| EXPECT_EQ(kPayloadLengthSamples, |
| static_cast<size_t>(decoder_.next_value() - 1)); |
| |
| // The value of the last of the output samples is the same as the number of |
| // samples played from the decoded packet. Thus, this number + the RTP |
| // timestamp should match the playout timestamp. |
| // Wrap the expected value in an absl::optional to compare them as such. |
| EXPECT_EQ( |
| absl::optional<uint32_t>(rtp_header.timestamp + |
| output.data()[output.samples_per_channel_ - 1]), |
| neteq_->GetPlayoutTimestamp()); |
| |
| // Check the timestamp for the last value in the sync buffer. This should |
| // be one full frame length ahead of the RTP timestamp. |
| const SyncBuffer* sync_buffer = neteq_->sync_buffer_for_test(); |
| ASSERT_TRUE(sync_buffer != NULL); |
| EXPECT_EQ(rtp_header.timestamp + kPayloadLengthSamples, |
| sync_buffer->end_timestamp()); |
| |
| // Check that the number of samples still to play from the sync buffer add |
| // up with what was already played out. |
| EXPECT_EQ( |
| kPayloadLengthSamples - output.data()[output.samples_per_channel_ - 1], |
| sync_buffer->FutureLength()); |
| } |
| |
| TEST_F(NetEqImplTest, ReorderedPacket) { |
| UseNoMocks(); |
| // Create a mock decoder object. |
| MockAudioDecoder mock_decoder; |
| |
| CreateInstance( |
| rtc::make_ref_counted<test::AudioDecoderProxyFactory>(&mock_decoder)); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const int kSampleRateHz = 8000; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = kPayloadLengthSamples; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| rtp_header.extension.hasAudioLevel = true; |
| rtp_header.extension.audioLevel = 42; |
| |
| EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return()); |
| EXPECT_CALL(mock_decoder, SampleRateHz()) |
| .WillRepeatedly(Return(kSampleRateHz)); |
| EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(mock_decoder, PacketDuration(_, kPayloadLengthBytes)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples))); |
| int16_t dummy_output[kPayloadLengthSamples] = {0}; |
| // The below expectation will make the mock decoder write |
| // `kPayloadLengthSamples` zeros to the output array, and mark it as speech. |
| EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(0), kPayloadLengthBytes, |
| kSampleRateHz, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, |
| SdpAudioFormat("L16", 8000, 1))); |
| |
| // Insert one packet. |
| clock_.AdvanceTimeMilliseconds(123456); |
| Timestamp expected_receive_time = clock_.CurrentTime(); |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| |
| // Pull audio once. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| // Verify |output.packet_infos_|. |
| ASSERT_THAT(output.packet_infos_, SizeIs(1)); |
| { |
| const auto& packet_info = output.packet_infos_[0]; |
| EXPECT_EQ(packet_info.ssrc(), rtp_header.ssrc); |
| EXPECT_THAT(packet_info.csrcs(), IsEmpty()); |
| EXPECT_EQ(packet_info.rtp_timestamp(), rtp_header.timestamp); |
| EXPECT_EQ(packet_info.audio_level(), rtp_header.extension.audioLevel); |
| EXPECT_EQ(packet_info.receive_time(), expected_receive_time); |
| } |
| |
| // Insert two more packets. The first one is out of order, and is already too |
| // old, the second one is the expected next packet. |
| rtp_header.sequenceNumber -= 1; |
| rtp_header.timestamp -= kPayloadLengthSamples; |
| rtp_header.extension.audioLevel = 1; |
| payload[0] = 1; |
| clock_.AdvanceTimeMilliseconds(1000); |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| rtp_header.sequenceNumber += 2; |
| rtp_header.timestamp += 2 * kPayloadLengthSamples; |
| rtp_header.extension.audioLevel = 2; |
| payload[0] = 2; |
| clock_.AdvanceTimeMilliseconds(2000); |
| expected_receive_time = clock_.CurrentTime(); |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| |
| // Expect only the second packet to be decoded (the one with "2" as the first |
| // payload byte). |
| EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(2), kPayloadLengthBytes, |
| kSampleRateHz, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| |
| // Pull audio once. |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| |
| // Now check the packet buffer, and make sure it is empty, since the |
| // out-of-order packet should have been discarded. |
| EXPECT_TRUE(packet_buffer_->Empty()); |
| |
| // Verify |output.packet_infos_|. Expect to only see the second packet. |
| ASSERT_THAT(output.packet_infos_, SizeIs(1)); |
| { |
| const auto& packet_info = output.packet_infos_[0]; |
| EXPECT_EQ(packet_info.ssrc(), rtp_header.ssrc); |
| EXPECT_THAT(packet_info.csrcs(), IsEmpty()); |
| EXPECT_EQ(packet_info.rtp_timestamp(), rtp_header.timestamp); |
| EXPECT_EQ(packet_info.audio_level(), rtp_header.extension.audioLevel); |
| EXPECT_EQ(packet_info.receive_time(), expected_receive_time); |
| } |
| |
| EXPECT_CALL(mock_decoder, Die()); |
| } |
| |
| // This test verifies that NetEq can handle the situation where the first |
| // incoming packet is rejected. |
| TEST_F(NetEqImplTest, FirstPacketUnknown) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const int kSampleRateHz = 8000; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = kPayloadLengthSamples * 2; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| // Insert one packet. Note that we have not registered any payload type, so |
| // this packet will be rejected. |
| EXPECT_EQ(NetEq::kFail, neteq_->InsertPacket(rtp_header, payload)); |
| |
| // Pull audio once. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_LE(output.samples_per_channel_, kMaxOutputSize); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kPLC, output.speech_type_); |
| EXPECT_THAT(output.packet_infos_, IsEmpty()); |
| |
| // Register the payload type. |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, |
| SdpAudioFormat("l16", 8000, 1))); |
| |
| // Insert 10 packets. |
| for (size_t i = 0; i < 10; ++i) { |
| rtp_header.sequenceNumber++; |
| rtp_header.timestamp += kPayloadLengthSamples; |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| EXPECT_EQ(i + 1, packet_buffer_->NumPacketsInBuffer()); |
| } |
| |
| // Pull audio repeatedly and make sure we get normal output, that is not PLC. |
| for (size_t i = 0; i < 3; ++i) { |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_LE(output.samples_per_channel_, kMaxOutputSize); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_) |
| << "NetEq did not decode the packets as expected."; |
| EXPECT_THAT(output.packet_infos_, SizeIs(1)); |
| } |
| } |
| |
| // This test verifies that audio interruption is not logged for the initial |
| // PLC period before the first packet is deocoded. |
| // TODO(henrik.lundin) Maybe move this test to neteq_network_stats_unittest.cc. |
| // Make the test parametrized, so that we can test with different initial |
| // sample rates in NetEq. |
| class NetEqImplTestSampleRateParameter |
| : public NetEqImplTest, |
| public testing::WithParamInterface<int> { |
| protected: |
| NetEqImplTestSampleRateParameter() |
| : NetEqImplTest(), initial_sample_rate_hz_(GetParam()) { |
| config_.sample_rate_hz = initial_sample_rate_hz_; |
| } |
| |
| const int initial_sample_rate_hz_; |
| }; |
| |
| class NetEqImplTestSdpFormatParameter |
| : public NetEqImplTest, |
| public testing::WithParamInterface<SdpAudioFormat> { |
| protected: |
| NetEqImplTestSdpFormatParameter() |
| : NetEqImplTest(), sdp_format_(GetParam()) {} |
| const SdpAudioFormat sdp_format_; |
| }; |
| |
| // This test does the following: |
| // 0. Set up NetEq with initial sample rate given by test parameter, and a codec |
| // sample rate of 16000. |
| // 1. Start calling GetAudio before inserting any encoded audio. The audio |
| // produced will be PLC. |
| // 2. Insert a number of encoded audio packets. |
| // 3. Keep calling GetAudio and verify that no audio interruption was logged. |
| // Call GetAudio until NetEq runs out of data again; PLC starts. |
| // 4. Insert one more packet. |
| // 5. Call GetAudio until that packet is decoded and the PLC ends. |
| |
| TEST_P(NetEqImplTestSampleRateParameter, |
| NoAudioInterruptionLoggedBeforeFirstDecode) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const int kPayloadSampleRateHz = 16000; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kPayloadSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = kPayloadLengthSamples * 2; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| // Register the payload type. |
| EXPECT_TRUE(neteq_->RegisterPayloadType( |
| kPayloadType, SdpAudioFormat("l16", kPayloadSampleRateHz, 1))); |
| |
| // Pull audio several times. No packets have been inserted yet. |
| const size_t initial_output_size = |
| static_cast<size_t>(10 * initial_sample_rate_hz_ / 1000); // 10 ms |
| AudioFrame output; |
| bool muted; |
| for (int i = 0; i < 100; ++i) { |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(initial_output_size, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_NE(AudioFrame::kNormalSpeech, output.speech_type_); |
| EXPECT_THAT(output.packet_infos_, IsEmpty()); |
| } |
| |
| // Lambda for inserting packets. |
| auto insert_packet = [&]() { |
| rtp_header.sequenceNumber++; |
| rtp_header.timestamp += kPayloadLengthSamples; |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| }; |
| // Insert 10 packets. |
| for (size_t i = 0; i < 10; ++i) { |
| insert_packet(); |
| EXPECT_EQ(i + 1, packet_buffer_->NumPacketsInBuffer()); |
| } |
| |
| // Pull audio repeatedly and make sure we get normal output, that is not PLC. |
| constexpr size_t kOutputSize = |
| static_cast<size_t>(10 * kPayloadSampleRateHz / 1000); // 10 ms |
| for (size_t i = 0; i < 3; ++i) { |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_) |
| << "NetEq did not decode the packets as expected."; |
| EXPECT_THAT(output.packet_infos_, SizeIs(1)); |
| } |
| |
| // Verify that no interruption was logged. |
| auto lifetime_stats = neteq_->GetLifetimeStatistics(); |
| EXPECT_EQ(0, lifetime_stats.interruption_count); |
| |
| // Keep pulling audio data until a new PLC period is started. |
| size_t count_loops = 0; |
| while (output.speech_type_ == AudioFrame::kNormalSpeech) { |
| // Make sure we don't hang the test if we never go to PLC. |
| ASSERT_LT(++count_loops, 100u); |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| } |
| |
| // Insert a few packets to avoid postpone decoding after expand. |
| for (size_t i = 0; i < 5; ++i) { |
| insert_packet(); |
| } |
| |
| // Pull audio until the newly inserted packet is decoded and the PLC ends. |
| while (output.speech_type_ != AudioFrame::kNormalSpeech) { |
| // Make sure we don't hang the test if we never go to PLC. |
| ASSERT_LT(++count_loops, 100u); |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| } |
| |
| // Verify that no interruption was logged. |
| lifetime_stats = neteq_->GetLifetimeStatistics(); |
| EXPECT_EQ(0, lifetime_stats.interruption_count); |
| } |
| |
| // This test does the following: |
| // 0. Set up NetEq with initial sample rate given by test parameter, and a codec |
| // sample rate of 16000. |
| // 1. Insert a number of encoded audio packets. |
| // 2. Call GetAudio and verify that decoded audio is produced. |
| // 3. Keep calling GetAudio until NetEq runs out of data; PLC starts. |
| // 4. Keep calling GetAudio until PLC has been produced for at least 150 ms. |
| // 5. Insert one more packet. |
| // 6. Call GetAudio until that packet is decoded and the PLC ends. |
| // 7. Verify that an interruption was logged. |
| |
| TEST_P(NetEqImplTestSampleRateParameter, AudioInterruptionLogged) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const int kPayloadSampleRateHz = 16000; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kPayloadSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = kPayloadLengthSamples * 2; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| // Register the payload type. |
| EXPECT_TRUE(neteq_->RegisterPayloadType( |
| kPayloadType, SdpAudioFormat("l16", kPayloadSampleRateHz, 1))); |
| |
| // Lambda for inserting packets. |
| auto insert_packet = [&]() { |
| rtp_header.sequenceNumber++; |
| rtp_header.timestamp += kPayloadLengthSamples; |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| }; |
| // Insert 10 packets. |
| for (size_t i = 0; i < 10; ++i) { |
| insert_packet(); |
| EXPECT_EQ(i + 1, packet_buffer_->NumPacketsInBuffer()); |
| } |
| |
| AudioFrame output; |
| bool muted; |
| // Keep pulling audio data until a new PLC period is started. |
| size_t count_loops = 0; |
| do { |
| // Make sure we don't hang the test if we never go to PLC. |
| ASSERT_LT(++count_loops, 100u); |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| } while (output.speech_type_ == AudioFrame::kNormalSpeech); |
| |
| // Pull audio 15 times, which produces 150 ms of output audio. This should |
| // all be produced as PLC. The total length of the gap will then be 150 ms |
| // plus an initial fraction of 10 ms at the start and the end of the PLC |
| // period. In total, less than 170 ms. |
| for (size_t i = 0; i < 15; ++i) { |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_NE(AudioFrame::kNormalSpeech, output.speech_type_); |
| } |
| |
| // Insert a few packets to avoid postpone decoding after expand. |
| for (size_t i = 0; i < 5; ++i) { |
| insert_packet(); |
| } |
| |
| // Pull audio until the newly inserted packet is decoded and the PLC ends. |
| while (output.speech_type_ != AudioFrame::kNormalSpeech) { |
| // Make sure we don't hang the test if we never go to PLC. |
| ASSERT_LT(++count_loops, 100u); |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| } |
| |
| // Verify that the interruption was logged. |
| auto lifetime_stats = neteq_->GetLifetimeStatistics(); |
| EXPECT_EQ(1, lifetime_stats.interruption_count); |
| EXPECT_GT(lifetime_stats.total_interruption_duration_ms, 150); |
| EXPECT_LT(lifetime_stats.total_interruption_duration_ms, 170); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(SampleRates, |
| NetEqImplTestSampleRateParameter, |
| testing::Values(8000, 16000, 32000, 48000)); |
| |
| TEST_P(NetEqImplTestSdpFormatParameter, GetNackListScaledTimestamp) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| neteq_->EnableNack(128); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const int kPayloadSampleRateHz = sdp_format_.clockrate_hz; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kPayloadSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = kPayloadLengthSamples * 2; |
| std::vector<uint8_t> payload(kPayloadLengthBytes, 0); |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, sdp_format_)); |
| |
| auto insert_packet = [&](bool lost = false) { |
| rtp_header.sequenceNumber++; |
| rtp_header.timestamp += kPayloadLengthSamples; |
| if (!lost) |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| }; |
| |
| // Insert and decode 10 packets. |
| for (size_t i = 0; i < 10; ++i) { |
| insert_packet(); |
| } |
| AudioFrame output; |
| size_t count_loops = 0; |
| do { |
| bool muted; |
| // Make sure we don't hang the test if we never go to PLC. |
| ASSERT_LT(++count_loops, 100u); |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| } while (output.speech_type_ == AudioFrame::kNormalSpeech); |
| |
| insert_packet(); |
| |
| insert_packet(/*lost=*/true); |
| |
| // Ensure packet gets marked as missing. |
| for (int i = 0; i < 5; ++i) { |
| insert_packet(); |
| } |
| |
| // Missing packet recoverable with 5ms RTT. |
| EXPECT_THAT(neteq_->GetNackList(5), Not(IsEmpty())); |
| |
| // No packets should have TimeToPlay > 500ms. |
| EXPECT_THAT(neteq_->GetNackList(500), IsEmpty()); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(GetNackList, |
| NetEqImplTestSdpFormatParameter, |
| testing::Values(SdpAudioFormat("g722", 8000, 1), |
| SdpAudioFormat("opus", 48000, 2))); |
| |
| // This test verifies that NetEq can handle comfort noise and enters/quits codec |
| // internal CNG mode properly. |
| TEST_F(NetEqImplTest, CodecInternalCng) { |
| UseNoMocks(); |
| // Create a mock decoder object. |
| MockAudioDecoder mock_decoder; |
| CreateInstance( |
| rtc::make_ref_counted<test::AudioDecoderProxyFactory>(&mock_decoder)); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const int kSampleRateKhz = 48; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(20 * kSampleRateKhz); // 20 ms. |
| const size_t kPayloadLengthBytes = 10; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| int16_t dummy_output[kPayloadLengthSamples] = {0}; |
| |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return()); |
| EXPECT_CALL(mock_decoder, SampleRateHz()) |
| .WillRepeatedly(Return(kSampleRateKhz * 1000)); |
| EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(mock_decoder, PacketDuration(_, kPayloadLengthBytes)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples))); |
| // Packed duration when asking the decoder for more CNG data (without a new |
| // packet). |
| EXPECT_CALL(mock_decoder, PacketDuration(nullptr, 0)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples))); |
| |
| // Pointee(x) verifies that first byte of the payload equals x, this makes it |
| // possible to verify that the correct payload is fed to Decode(). |
| EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(0), kPayloadLengthBytes, |
| kSampleRateKhz * 1000, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| |
| EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(1), kPayloadLengthBytes, |
| kSampleRateKhz * 1000, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kComfortNoise), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(IsNull(), 0, kSampleRateKhz * 1000, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kComfortNoise), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| |
| EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(2), kPayloadLengthBytes, |
| kSampleRateKhz * 1000, _, _)) |
| .WillOnce(DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples)))); |
| |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, |
| SdpAudioFormat("opus", 48000, 2))); |
| |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateKhz); |
| AudioFrame output; |
| AudioFrame::SpeechType expected_type[8] = { |
| AudioFrame::kNormalSpeech, AudioFrame::kNormalSpeech, AudioFrame::kCNG, |
| AudioFrame::kCNG, AudioFrame::kCNG, AudioFrame::kCNG, |
| AudioFrame::kNormalSpeech, AudioFrame::kNormalSpeech}; |
| int expected_timestamp_increment[8] = { |
| -1, // will not be used. |
| 10 * kSampleRateKhz, |
| -1, |
| -1, // timestamp will be empty during CNG mode; indicated by -1 here. |
| -1, |
| -1, |
| 50 * kSampleRateKhz, |
| 10 * kSampleRateKhz}; |
| |
| // Insert one packet (decoder will return speech). |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| absl::optional<uint32_t> last_timestamp = neteq_->GetPlayoutTimestamp(); |
| ASSERT_TRUE(last_timestamp); |
| |
| // Insert second packet (decoder will return CNG). |
| payload[0] = 1; |
| rtp_header.sequenceNumber++; |
| rtp_header.timestamp += kPayloadLengthSamples; |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| |
| // Lambda for verifying the timestamps. |
| auto verify_timestamp = [&last_timestamp, &expected_timestamp_increment]( |
| absl::optional<uint32_t> ts, size_t i) { |
| if (expected_timestamp_increment[i] == -1) { |
| // Expect to get an empty timestamp value during CNG and PLC. |
| EXPECT_FALSE(ts) << "i = " << i; |
| } else { |
| ASSERT_TRUE(ts) << "i = " << i; |
| EXPECT_EQ(*ts, *last_timestamp + expected_timestamp_increment[i]) |
| << "i = " << i; |
| last_timestamp = ts; |
| } |
| }; |
| |
| for (size_t i = 1; i < 6; ++i) { |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(expected_type[i - 1], output.speech_type_); |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| SCOPED_TRACE(""); |
| verify_timestamp(neteq_->GetPlayoutTimestamp(), i); |
| } |
| |
| // Insert third packet, which leaves a gap from last packet. |
| payload[0] = 2; |
| rtp_header.sequenceNumber += 2; |
| rtp_header.timestamp += 2 * kPayloadLengthSamples; |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| |
| for (size_t i = 6; i < 8; ++i) { |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(expected_type[i - 1], output.speech_type_); |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| SCOPED_TRACE(""); |
| verify_timestamp(neteq_->GetPlayoutTimestamp(), i); |
| } |
| |
| // Now check the packet buffer, and make sure it is empty. |
| EXPECT_TRUE(packet_buffer_->Empty()); |
| |
| EXPECT_CALL(mock_decoder, Die()); |
| } |
| |
| TEST_F(NetEqImplTest, UnsupportedDecoder) { |
| UseNoMocks(); |
| ::testing::NiceMock<MockAudioDecoder> decoder; |
| |
| CreateInstance( |
| rtc::make_ref_counted<test::AudioDecoderProxyFactory>(&decoder)); |
| static const size_t kNetEqMaxFrameSize = 5760; // 120 ms @ 48 kHz. |
| static const size_t kChannels = 2; |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const int kSampleRateHz = 8000; |
| |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = 1; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| int16_t dummy_output[kPayloadLengthSamples * kChannels] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| const uint8_t kFirstPayloadValue = 1; |
| const uint8_t kSecondPayloadValue = 2; |
| |
| EXPECT_CALL(decoder, |
| PacketDuration(Pointee(kFirstPayloadValue), kPayloadLengthBytes)) |
| .Times(AtLeast(1)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kNetEqMaxFrameSize + 1))); |
| |
| EXPECT_CALL(decoder, DecodeInternal(Pointee(kFirstPayloadValue), _, _, _, _)) |
| .Times(0); |
| |
| EXPECT_CALL(decoder, DecodeInternal(Pointee(kSecondPayloadValue), |
| kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .Times(1) |
| .WillOnce(DoAll( |
| SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples * kChannels), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(static_cast<int>(kPayloadLengthSamples * kChannels)))); |
| |
| EXPECT_CALL(decoder, |
| PacketDuration(Pointee(kSecondPayloadValue), kPayloadLengthBytes)) |
| .Times(AtLeast(1)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kNetEqMaxFrameSize))); |
| |
| EXPECT_CALL(decoder, SampleRateHz()).WillRepeatedly(Return(kSampleRateHz)); |
| |
| EXPECT_CALL(decoder, Channels()).WillRepeatedly(Return(kChannels)); |
| |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, |
| SdpAudioFormat("L16", 8000, 1))); |
| |
| // Insert one packet. |
| payload[0] = kFirstPayloadValue; // This will make Decode() fail. |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| |
| // Insert another packet. |
| payload[0] = kSecondPayloadValue; // This will make Decode() successful. |
| rtp_header.sequenceNumber++; |
| // The second timestamp needs to be at least 30 ms after the first to make |
| // the second packet get decoded. |
| rtp_header.timestamp += 3 * kPayloadLengthSamples; |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| |
| AudioFrame output; |
| bool muted; |
| // First call to GetAudio will try to decode the "faulty" packet. |
| // Expect kFail return value. |
| EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted)); |
| // Output size and number of channels should be correct. |
| const size_t kExpectedOutputSize = 10 * (kSampleRateHz / 1000) * kChannels; |
| EXPECT_EQ(kExpectedOutputSize, output.samples_per_channel_ * kChannels); |
| EXPECT_EQ(kChannels, output.num_channels_); |
| EXPECT_THAT(output.packet_infos_, IsEmpty()); |
| |
| // Second call to GetAudio will decode the packet that is ok. No errors are |
| // expected. |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kExpectedOutputSize, output.samples_per_channel_ * kChannels); |
| EXPECT_EQ(kChannels, output.num_channels_); |
| EXPECT_THAT(output.packet_infos_, SizeIs(1)); |
| |
| // Die isn't called through NiceMock (since it's called by the |
| // MockAudioDecoder constructor), so it needs to be mocked explicitly. |
| EXPECT_CALL(decoder, Die()); |
| } |
| |
| // This test inserts packets until the buffer is flushed. After that, it asks |
| // NetEq for the network statistics. The purpose of the test is to make sure |
| // that even though the buffer size increment is negative (which it becomes when |
| // the packet causing a flush is inserted), the packet length stored in the |
| // decision logic remains valid. |
| TEST_F(NetEqImplTest, FloodBufferAndGetNetworkStats) { |
| UseNoMocks(); |
| CreateInstance(); |
| |
| const size_t kPayloadLengthSamples = 80; |
| const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; // PCM 16-bit. |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, |
| SdpAudioFormat("l16", 8000, 1))); |
| |
| // Insert packets until the buffer flushes. |
| for (size_t i = 0; i <= config_.max_packets_in_buffer; ++i) { |
| EXPECT_EQ(i, packet_buffer_->NumPacketsInBuffer()); |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| rtp_header.timestamp += rtc::checked_cast<uint32_t>(kPayloadLengthSamples); |
| ++rtp_header.sequenceNumber; |
| } |
| EXPECT_EQ(1u, packet_buffer_->NumPacketsInBuffer()); |
| |
| // Ask for network statistics. This should not crash. |
| NetEqNetworkStatistics stats; |
| EXPECT_EQ(NetEq::kOK, neteq_->NetworkStatistics(&stats)); |
| } |
| |
| TEST_F(NetEqImplTest, DecodedPayloadTooShort) { |
| UseNoMocks(); |
| // Create a mock decoder object. |
| MockAudioDecoder mock_decoder; |
| |
| CreateInstance( |
| rtc::make_ref_counted<test::AudioDecoderProxyFactory>(&mock_decoder)); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const int kSampleRateHz = 8000; |
| const size_t kPayloadLengthSamples = |
| static_cast<size_t>(10 * kSampleRateHz / 1000); // 10 ms. |
| const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return()); |
| EXPECT_CALL(mock_decoder, SampleRateHz()) |
| .WillRepeatedly(Return(kSampleRateHz)); |
| EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(mock_decoder, PacketDuration(_, _)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples))); |
| int16_t dummy_output[kPayloadLengthSamples] = {0}; |
| // The below expectation will make the mock decoder write |
| // `kPayloadLengthSamples` - 5 zeros to the output array, and mark it as |
| // speech. That is, the decoded length is 5 samples shorter than the expected. |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .WillOnce( |
| DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kPayloadLengthSamples - 5), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kPayloadLengthSamples - 5)))); |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, |
| SdpAudioFormat("L16", 8000, 1))); |
| |
| // Insert one packet. |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| |
| EXPECT_EQ(5u, neteq_->sync_buffer_for_test()->FutureLength()); |
| |
| // Pull audio once. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| EXPECT_THAT(output.packet_infos_, SizeIs(1)); |
| |
| EXPECT_CALL(mock_decoder, Die()); |
| } |
| |
| // This test checks the behavior of NetEq when audio decoder fails. |
| TEST_F(NetEqImplTest, DecodingError) { |
| UseNoMocks(); |
| // Create a mock decoder object. |
| MockAudioDecoder mock_decoder; |
| |
| CreateInstance( |
| rtc::make_ref_counted<test::AudioDecoderProxyFactory>(&mock_decoder)); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const int kSampleRateHz = 8000; |
| const int kDecoderErrorCode = -97; // Any negative number. |
| |
| // We let decoder return 5 ms each time, and therefore, 2 packets make 10 ms. |
| const size_t kFrameLengthSamples = |
| static_cast<size_t>(5 * kSampleRateHz / 1000); |
| |
| const size_t kPayloadLengthBytes = 1; // This can be arbitrary. |
| |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return()); |
| EXPECT_CALL(mock_decoder, SampleRateHz()) |
| .WillRepeatedly(Return(kSampleRateHz)); |
| EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(mock_decoder, PacketDuration(_, _)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kFrameLengthSamples))); |
| EXPECT_CALL(mock_decoder, ErrorCode()).WillOnce(Return(kDecoderErrorCode)); |
| EXPECT_CALL(mock_decoder, HasDecodePlc()).WillOnce(Return(false)); |
| int16_t dummy_output[kFrameLengthSamples] = {0}; |
| |
| { |
| InSequence sequence; // Dummy variable. |
| // Mock decoder works normally the first time. |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .Times(3) |
| .WillRepeatedly( |
| DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kFrameLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kFrameLengthSamples)))) |
| .RetiresOnSaturation(); |
| |
| // Then mock decoder fails. A common reason for failure can be buffer being |
| // too short |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .WillOnce(Return(-1)) |
| .RetiresOnSaturation(); |
| |
| // Mock decoder finally returns to normal. |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .Times(2) |
| .WillRepeatedly( |
| DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kFrameLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kSpeech), |
| Return(rtc::checked_cast<int>(kFrameLengthSamples)))); |
| } |
| |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, |
| SdpAudioFormat("L16", 8000, 1))); |
| |
| // Insert packets. |
| for (int i = 0; i < 20; ++i) { |
| rtp_header.sequenceNumber += 1; |
| rtp_header.timestamp += kFrameLengthSamples; |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| } |
| |
| // Pull audio. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| EXPECT_THAT(output.packet_infos_, SizeIs(2)); // 5 ms packets vs 10 ms output |
| |
| // Pull audio again. Decoder fails. |
| EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| // We are not expecting anything for output.speech_type_, since an error was |
| // returned. |
| |
| // Pull audio again, should continue an expansion. |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kPLC, output.speech_type_); |
| EXPECT_THAT(output.packet_infos_, IsEmpty()); |
| |
| // Pull audio again, should behave normal. |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kNormalSpeech, output.speech_type_); |
| EXPECT_THAT(output.packet_infos_, SizeIs(2)); // 5 ms packets vs 10 ms output |
| |
| EXPECT_CALL(mock_decoder, Die()); |
| } |
| |
| // This test checks the behavior of NetEq when audio decoder fails during CNG. |
| TEST_F(NetEqImplTest, DecodingErrorDuringInternalCng) { |
| UseNoMocks(); |
| |
| // Create a mock decoder object. |
| MockAudioDecoder mock_decoder; |
| CreateInstance( |
| rtc::make_ref_counted<test::AudioDecoderProxyFactory>(&mock_decoder)); |
| |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| const int kSampleRateHz = 8000; |
| const int kDecoderErrorCode = -97; // Any negative number. |
| |
| // We let decoder return 5 ms each time, and therefore, 2 packets make 10 ms. |
| const size_t kFrameLengthSamples = |
| static_cast<size_t>(5 * kSampleRateHz / 1000); |
| |
| const size_t kPayloadLengthBytes = 1; // This can be arbitrary. |
| |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_CALL(mock_decoder, Reset()).WillRepeatedly(Return()); |
| EXPECT_CALL(mock_decoder, SampleRateHz()) |
| .WillRepeatedly(Return(kSampleRateHz)); |
| EXPECT_CALL(mock_decoder, Channels()).WillRepeatedly(Return(1)); |
| EXPECT_CALL(mock_decoder, PacketDuration(_, _)) |
| .WillRepeatedly(Return(rtc::checked_cast<int>(kFrameLengthSamples))); |
| EXPECT_CALL(mock_decoder, ErrorCode()).WillOnce(Return(kDecoderErrorCode)); |
| int16_t dummy_output[kFrameLengthSamples] = {0}; |
| |
| { |
| InSequence sequence; // Dummy variable. |
| // Mock decoder works normally the first 2 times. |
| EXPECT_CALL(mock_decoder, |
| DecodeInternal(_, kPayloadLengthBytes, kSampleRateHz, _, _)) |
| .Times(2) |
| .WillRepeatedly( |
| DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kFrameLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kComfortNoise), |
| Return(rtc::checked_cast<int>(kFrameLengthSamples)))) |
| .RetiresOnSaturation(); |
| |
| // Then mock decoder fails. A common reason for failure can be buffer being |
| // too short |
| EXPECT_CALL(mock_decoder, DecodeInternal(nullptr, 0, kSampleRateHz, _, _)) |
| .WillOnce(Return(-1)) |
| .RetiresOnSaturation(); |
| |
| // Mock decoder finally returns to normal. |
| EXPECT_CALL(mock_decoder, DecodeInternal(nullptr, 0, kSampleRateHz, _, _)) |
| .Times(2) |
| .WillRepeatedly( |
| DoAll(SetArrayArgument<3>(dummy_output, |
| dummy_output + kFrameLengthSamples), |
| SetArgPointee<4>(AudioDecoder::kComfortNoise), |
| Return(rtc::checked_cast<int>(kFrameLengthSamples)))); |
| } |
| |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, |
| SdpAudioFormat("l16", 8000, 1))); |
| |
| // Insert 2 packets. This will make netEq into codec internal CNG mode. |
| for (int i = 0; i < 2; ++i) { |
| rtp_header.sequenceNumber += 1; |
| rtp_header.timestamp += kFrameLengthSamples; |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| } |
| |
| // Pull audio. |
| const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateHz / 1000); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kCNG, output.speech_type_); |
| |
| // Pull audio again. Decoder fails. |
| EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| // We are not expecting anything for output.speech_type_, since an error was |
| // returned. |
| |
| // Pull audio again, should resume codec CNG. |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(kMaxOutputSize, output.samples_per_channel_); |
| EXPECT_EQ(1u, output.num_channels_); |
| EXPECT_EQ(AudioFrame::kCNG, output.speech_type_); |
| |
| EXPECT_CALL(mock_decoder, Die()); |
| } |
| |
| // Tests that the return value from last_output_sample_rate_hz() is equal to the |
| // configured inital sample rate. |
| TEST_F(NetEqImplTest, InitialLastOutputSampleRate) { |
| UseNoMocks(); |
| config_.sample_rate_hz = 48000; |
| CreateInstance(); |
| EXPECT_EQ(48000, neteq_->last_output_sample_rate_hz()); |
| } |
| |
| TEST_F(NetEqImplTest, TickTimerIncrement) { |
| UseNoMocks(); |
| CreateInstance(); |
| ASSERT_TRUE(tick_timer_); |
| EXPECT_EQ(0u, tick_timer_->ticks()); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| EXPECT_EQ(1u, tick_timer_->ticks()); |
| } |
| |
| TEST_F(NetEqImplTest, SetBaseMinimumDelay) { |
| UseNoMocks(); |
| use_mock_neteq_controller_ = true; |
| CreateInstance(); |
| |
| EXPECT_CALL(*mock_neteq_controller_, SetBaseMinimumDelay(_)) |
| .WillOnce(Return(true)) |
| .WillOnce(Return(false)); |
| |
| const int delay_ms = 200; |
| |
| EXPECT_EQ(true, neteq_->SetBaseMinimumDelayMs(delay_ms)); |
| EXPECT_EQ(false, neteq_->SetBaseMinimumDelayMs(delay_ms)); |
| } |
| |
| TEST_F(NetEqImplTest, GetBaseMinimumDelayMs) { |
| UseNoMocks(); |
| use_mock_neteq_controller_ = true; |
| CreateInstance(); |
| |
| const int delay_ms = 200; |
| |
| EXPECT_CALL(*mock_neteq_controller_, GetBaseMinimumDelay()) |
| .WillOnce(Return(delay_ms)); |
| |
| EXPECT_EQ(delay_ms, neteq_->GetBaseMinimumDelayMs()); |
| } |
| |
| TEST_F(NetEqImplTest, TargetDelayMs) { |
| UseNoMocks(); |
| use_mock_neteq_controller_ = true; |
| CreateInstance(); |
| constexpr int kTargetLevelMs = 510; |
| EXPECT_CALL(*mock_neteq_controller_, TargetLevelMs()) |
| .WillOnce(Return(kTargetLevelMs)); |
| EXPECT_EQ(510, neteq_->TargetDelayMs()); |
| } |
| |
| TEST_F(NetEqImplTest, InsertEmptyPacket) { |
| UseNoMocks(); |
| use_mock_neteq_controller_ = true; |
| CreateInstance(); |
| |
| RTPHeader rtp_header; |
| rtp_header.payloadType = 17; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_CALL(*mock_neteq_controller_, RegisterEmptyPacket()); |
| neteq_->InsertEmptyPacket(rtp_header); |
| } |
| |
| TEST_F(NetEqImplTest, EnableRtxHandling) { |
| using ::testing::AllOf; |
| using ::testing::Field; |
| UseNoMocks(); |
| use_mock_neteq_controller_ = true; |
| config_.enable_rtx_handling = true; |
| CreateInstance(); |
| EXPECT_CALL(*mock_neteq_controller_, GetDecision(_, _)) |
| .Times(1) |
| .WillOnce(Return(NetEq::Operation::kNormal)); |
| |
| const int kPayloadLengthSamples = 80; |
| const size_t kPayloadLengthBytes = 2 * kPayloadLengthSamples; // PCM 16-bit. |
| const uint8_t kPayloadType = 17; // Just an arbitrary number. |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = 0x1234; |
| rtp_header.timestamp = 0x12345678; |
| rtp_header.ssrc = 0x87654321; |
| |
| EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType, |
| SdpAudioFormat("l16", 8000, 1))); |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| AudioFrame output; |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted)); |
| |
| // Insert second packet that was sent before the first packet. |
| rtp_header.sequenceNumber -= 1; |
| rtp_header.timestamp -= kPayloadLengthSamples; |
| EXPECT_CALL( |
| *mock_neteq_controller_, |
| PacketArrived( |
| /*fs_hz*/ 8000, |
| /*should_update_stats*/ _, |
| /*info*/ |
| AllOf( |
| Field(&NetEqController::PacketArrivedInfo::packet_length_samples, |
| kPayloadLengthSamples), |
| Field(&NetEqController::PacketArrivedInfo::main_sequence_number, |
| rtp_header.sequenceNumber), |
| Field(&NetEqController::PacketArrivedInfo::main_timestamp, |
| rtp_header.timestamp)))); |
| |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| } |
| |
| class Decoder120ms : public AudioDecoder { |
| public: |
| Decoder120ms(int sample_rate_hz, SpeechType speech_type) |
| : sample_rate_hz_(sample_rate_hz), |
| next_value_(1), |
| speech_type_(speech_type) {} |
| |
| int DecodeInternal(const uint8_t* encoded, |
| size_t encoded_len, |
| int sample_rate_hz, |
| int16_t* decoded, |
| SpeechType* speech_type) override { |
| EXPECT_EQ(sample_rate_hz_, sample_rate_hz); |
| size_t decoded_len = |
| rtc::CheckedDivExact(sample_rate_hz, 1000) * 120 * Channels(); |
| for (size_t i = 0; i < decoded_len; ++i) { |
| decoded[i] = next_value_++; |
| } |
| *speech_type = speech_type_; |
| return rtc::checked_cast<int>(decoded_len); |
| } |
| |
| void Reset() override { next_value_ = 1; } |
| int SampleRateHz() const override { return sample_rate_hz_; } |
| size_t Channels() const override { return 2; } |
| |
| private: |
| int sample_rate_hz_; |
| int16_t next_value_; |
| SpeechType speech_type_; |
| }; |
| |
| class NetEqImplTest120ms : public NetEqImplTest { |
| protected: |
| NetEqImplTest120ms() : NetEqImplTest() {} |
| virtual ~NetEqImplTest120ms() {} |
| |
| void CreateInstanceNoMocks() { |
| UseNoMocks(); |
| CreateInstance(decoder_factory_); |
| EXPECT_TRUE(neteq_->RegisterPayloadType( |
| kPayloadType, SdpAudioFormat("opus", 48000, 2, {{"stereo", "1"}}))); |
| } |
| |
| void CreateInstanceWithDelayManagerMock() { |
| UseNoMocks(); |
| use_mock_neteq_controller_ = true; |
| CreateInstance(decoder_factory_); |
| EXPECT_TRUE(neteq_->RegisterPayloadType( |
| kPayloadType, SdpAudioFormat("opus", 48000, 2, {{"stereo", "1"}}))); |
| } |
| |
| uint32_t timestamp_diff_between_packets() const { |
| return rtc::CheckedDivExact(kSamplingFreq_, 1000u) * 120; |
| } |
| |
| uint32_t first_timestamp() const { return 10u; } |
| |
| void GetFirstPacket() { |
| bool muted; |
| for (int i = 0; i < 12; i++) { |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_FALSE(muted); |
| } |
| } |
| |
| void InsertPacket(uint32_t timestamp) { |
| RTPHeader rtp_header; |
| rtp_header.payloadType = kPayloadType; |
| rtp_header.sequenceNumber = sequence_number_; |
| rtp_header.timestamp = timestamp; |
| rtp_header.ssrc = 15; |
| const size_t kPayloadLengthBytes = 1; // This can be arbitrary. |
| uint8_t payload[kPayloadLengthBytes] = {0}; |
| EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload)); |
| sequence_number_++; |
| } |
| |
| void Register120msCodec(AudioDecoder::SpeechType speech_type) { |
| const uint32_t sampling_freq = kSamplingFreq_; |
| decoder_factory_ = rtc::make_ref_counted<test::FunctionAudioDecoderFactory>( |
| [sampling_freq, speech_type]() { |
| std::unique_ptr<AudioDecoder> decoder = |
| std::make_unique<Decoder120ms>(sampling_freq, speech_type); |
| RTC_CHECK_EQ(2, decoder->Channels()); |
| return decoder; |
| }); |
| } |
| |
| rtc::scoped_refptr<AudioDecoderFactory> decoder_factory_; |
| AudioFrame output_; |
| const uint32_t kPayloadType = 17; |
| const uint32_t kSamplingFreq_ = 48000; |
| uint16_t sequence_number_ = 1; |
| }; |
| |
| TEST_F(NetEqImplTest120ms, CodecInternalCng) { |
| Register120msCodec(AudioDecoder::kComfortNoise); |
| CreateInstanceNoMocks(); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(NetEq::Operation::kCodecInternalCng, |
| neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, Normal) { |
| Register120msCodec(AudioDecoder::kSpeech); |
| CreateInstanceNoMocks(); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| EXPECT_EQ(NetEq::Operation::kNormal, neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, Merge) { |
| Register120msCodec(AudioDecoder::kSpeech); |
| CreateInstanceWithDelayManagerMock(); |
| |
| EXPECT_CALL(*mock_neteq_controller_, CngOff()).WillRepeatedly(Return(true)); |
| InsertPacket(first_timestamp()); |
| |
| GetFirstPacket(); |
| bool muted; |
| EXPECT_CALL(*mock_neteq_controller_, GetDecision(_, _)) |
| .WillOnce(Return(NetEq::Operation::kExpand)); |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| |
| InsertPacket(first_timestamp() + 2 * timestamp_diff_between_packets()); |
| |
| EXPECT_CALL(*mock_neteq_controller_, GetDecision(_, _)) |
| .WillOnce(Return(NetEq::Operation::kMerge)); |
| |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(NetEq::Operation::kMerge, neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, Expand) { |
| Register120msCodec(AudioDecoder::kSpeech); |
| CreateInstanceNoMocks(); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(NetEq::Operation::kExpand, neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, FastAccelerate) { |
| Register120msCodec(AudioDecoder::kSpeech); |
| CreateInstanceWithDelayManagerMock(); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| InsertPacket(first_timestamp() + timestamp_diff_between_packets()); |
| |
| EXPECT_CALL(*mock_neteq_controller_, GetDecision(_, _)) |
| .Times(1) |
| .WillOnce(Return(NetEq::Operation::kFastAccelerate)); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(NetEq::Operation::kFastAccelerate, |
| neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, PreemptiveExpand) { |
| Register120msCodec(AudioDecoder::kSpeech); |
| CreateInstanceWithDelayManagerMock(); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| InsertPacket(first_timestamp() + timestamp_diff_between_packets()); |
| |
| EXPECT_CALL(*mock_neteq_controller_, GetDecision(_, _)) |
| .Times(1) |
| .WillOnce(Return(NetEq::Operation::kPreemptiveExpand)); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(NetEq::Operation::kPreemptiveExpand, |
| neteq_->last_operation_for_test()); |
| } |
| |
| TEST_F(NetEqImplTest120ms, Accelerate) { |
| Register120msCodec(AudioDecoder::kSpeech); |
| CreateInstanceWithDelayManagerMock(); |
| |
| InsertPacket(first_timestamp()); |
| GetFirstPacket(); |
| |
| InsertPacket(first_timestamp() + timestamp_diff_between_packets()); |
| |
| EXPECT_CALL(*mock_neteq_controller_, GetDecision(_, _)) |
| .Times(1) |
| .WillOnce(Return(NetEq::Operation::kAccelerate)); |
| |
| bool muted; |
| EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output_, &muted)); |
| EXPECT_EQ(NetEq::Operation::kAccelerate, neteq_->last_operation_for_test()); |
| } |
| |
| } // namespace webrtc |