blob: 1850807783a9852e0b4b0aa538e95b7441b26ca4 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_coding/neteq/audio_decoder_impl.h"
#include <assert.h>
#include <stdlib.h>
#include <string>
#include <vector>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/modules/audio_coding/codecs/g711/include/audio_encoder_pcm.h"
#include "webrtc/modules/audio_coding/codecs/g722/include/audio_encoder_g722.h"
#include "webrtc/modules/audio_coding/codecs/ilbc/interface/audio_encoder_ilbc.h"
#include "webrtc/modules/audio_coding/codecs/isac/fix/interface/audio_encoder_isacfix.h"
#include "webrtc/modules/audio_coding/codecs/isac/main/interface/audio_encoder_isac.h"
#include "webrtc/modules/audio_coding/codecs/opus/interface/audio_encoder_opus.h"
#include "webrtc/modules/audio_coding/codecs/pcm16b/include/audio_encoder_pcm16b.h"
#include "webrtc/modules/audio_coding/neteq/tools/resample_input_audio_file.h"
#include "webrtc/system_wrappers/interface/data_log.h"
#include "webrtc/test/testsupport/fileutils.h"
namespace webrtc {
namespace {
// The absolute difference between the input and output (the first channel) is
// compared vs |tolerance|. The parameter |delay| is used to correct for codec
// delays.
void CompareInputOutput(const std::vector<int16_t>& input,
const std::vector<int16_t>& output,
size_t num_samples,
size_t channels,
int tolerance,
int delay) {
ASSERT_LE(num_samples, input.size());
ASSERT_LE(num_samples * channels, output.size());
for (unsigned int n = 0; n < num_samples - delay; ++n) {
ASSERT_NEAR(input[n], output[channels * n + delay], tolerance)
<< "Exit test on first diff; n = " << n;
DataLog::InsertCell("CodecTest", "input", input[n]);
DataLog::InsertCell("CodecTest", "output", output[channels * n]);
DataLog::NextRow("CodecTest");
}
}
// The absolute difference between the first two channels in |output| is
// compared vs |tolerance|.
void CompareTwoChannels(const std::vector<int16_t>& output,
size_t samples_per_channel,
size_t channels,
int tolerance) {
ASSERT_GE(channels, 2u);
ASSERT_LE(samples_per_channel * channels, output.size());
for (unsigned int n = 0; n < samples_per_channel; ++n)
ASSERT_NEAR(output[channels * n], output[channels * n + 1], tolerance)
<< "Stereo samples differ.";
}
// Calculates mean-squared error between input and output (the first channel).
// The parameter |delay| is used to correct for codec delays.
double MseInputOutput(const std::vector<int16_t>& input,
const std::vector<int16_t>& output,
size_t num_samples,
size_t channels,
int delay) {
assert(delay < static_cast<int>(num_samples));
assert(num_samples <= input.size());
assert(num_samples * channels <= output.size());
if (num_samples == 0)
return 0.0;
double squared_sum = 0.0;
for (unsigned int n = 0; n < num_samples - delay; ++n) {
squared_sum += (input[n] - output[channels * n + delay]) *
(input[n] - output[channels * n + delay]);
}
return squared_sum / (num_samples - delay);
}
} // namespace
class AudioDecoderTest : public ::testing::Test {
protected:
AudioDecoderTest()
: input_audio_(webrtc::test::ProjectRootPath() +
"resources/audio_coding/testfile32kHz.pcm",
32000),
codec_input_rate_hz_(32000), // Legacy default value.
encoded_(NULL),
frame_size_(0),
data_length_(0),
encoded_bytes_(0),
channels_(1),
payload_type_(17),
decoder_(NULL) {}
virtual ~AudioDecoderTest() {}
virtual void SetUp() {
if (audio_encoder_)
codec_input_rate_hz_ = audio_encoder_->SampleRateHz();
// Create arrays.
ASSERT_GT(data_length_, 0u) << "The test must set data_length_ > 0";
// Longest encoded data is produced by PCM16b with 2 bytes per sample.
encoded_ = new uint8_t[data_length_ * 2];
// Logging to view input and output in Matlab.
// Use 'gyp -Denable_data_logging=1' to enable logging.
DataLog::CreateLog();
DataLog::AddTable("CodecTest");
DataLog::AddColumn("CodecTest", "input", 1);
DataLog::AddColumn("CodecTest", "output", 1);
}
virtual void TearDown() {
delete decoder_;
decoder_ = NULL;
// Delete arrays.
delete [] encoded_;
encoded_ = NULL;
// Close log.
DataLog::ReturnLog();
}
virtual void InitEncoder() { }
// TODO(henrik.lundin) Change return type to size_t once most/all overriding
// implementations are gone.
virtual int EncodeFrame(const int16_t* input,
size_t input_len_samples,
uint8_t* output) {
encoded_info_.encoded_bytes = 0;
const size_t samples_per_10ms = audio_encoder_->SampleRateHz() / 100;
CHECK_EQ(samples_per_10ms * audio_encoder_->Num10MsFramesInNextPacket(),
input_len_samples);
rtc::scoped_ptr<int16_t[]> interleaved_input(
new int16_t[channels_ * samples_per_10ms]);
for (int i = 0; i < audio_encoder_->Num10MsFramesInNextPacket(); ++i) {
EXPECT_EQ(0u, encoded_info_.encoded_bytes);
// Duplicate the mono input signal to however many channels the test
// wants.
test::InputAudioFile::DuplicateInterleaved(input + i * samples_per_10ms,
samples_per_10ms, channels_,
interleaved_input.get());
encoded_info_ = audio_encoder_->Encode(
0, interleaved_input.get(), audio_encoder_->SampleRateHz() / 100,
data_length_ * 2, output);
}
EXPECT_EQ(payload_type_, encoded_info_.payload_type);
return static_cast<int>(encoded_info_.encoded_bytes);
}
// Encodes and decodes audio. The absolute difference between the input and
// output is compared vs |tolerance|, and the mean-squared error is compared
// with |mse|. The encoded stream should contain |expected_bytes|. For stereo
// audio, the absolute difference between the two channels is compared vs
// |channel_diff_tolerance|.
void EncodeDecodeTest(size_t expected_bytes, int tolerance, double mse,
int delay = 0, int channel_diff_tolerance = 0) {
ASSERT_GE(tolerance, 0) << "Test must define a tolerance >= 0";
ASSERT_GE(channel_diff_tolerance, 0) <<
"Test must define a channel_diff_tolerance >= 0";
size_t processed_samples = 0u;
encoded_bytes_ = 0u;
InitEncoder();
EXPECT_EQ(0, decoder_->Init());
std::vector<int16_t> input;
std::vector<int16_t> decoded;
while (processed_samples + frame_size_ <= data_length_) {
// Extend input vector with |frame_size_|.
input.resize(input.size() + frame_size_, 0);
// Read from input file.
ASSERT_GE(input.size() - processed_samples, frame_size_);
ASSERT_TRUE(input_audio_.Read(
frame_size_, codec_input_rate_hz_, &input[processed_samples]));
size_t enc_len = EncodeFrame(
&input[processed_samples], frame_size_, &encoded_[encoded_bytes_]);
// Make sure that frame_size_ * channels_ samples are allocated and free.
decoded.resize((processed_samples + frame_size_) * channels_, 0);
AudioDecoder::SpeechType speech_type;
size_t dec_len = decoder_->Decode(
&encoded_[encoded_bytes_], enc_len, codec_input_rate_hz_,
frame_size_ * channels_ * sizeof(int16_t),
&decoded[processed_samples * channels_], &speech_type);
EXPECT_EQ(frame_size_ * channels_, dec_len);
encoded_bytes_ += enc_len;
processed_samples += frame_size_;
}
// For some codecs it doesn't make sense to check expected number of bytes,
// since the number can vary for different platforms. Opus and iSAC are
// such codecs. In this case expected_bytes is set to 0.
if (expected_bytes) {
EXPECT_EQ(expected_bytes, encoded_bytes_);
}
CompareInputOutput(
input, decoded, processed_samples, channels_, tolerance, delay);
if (channels_ == 2)
CompareTwoChannels(
decoded, processed_samples, channels_, channel_diff_tolerance);
EXPECT_LE(
MseInputOutput(input, decoded, processed_samples, channels_, delay),
mse);
}
// Encodes a payload and decodes it twice with decoder re-init before each
// decode. Verifies that the decoded result is the same.
void ReInitTest() {
InitEncoder();
rtc::scoped_ptr<int16_t[]> input(new int16_t[frame_size_]);
ASSERT_TRUE(
input_audio_.Read(frame_size_, codec_input_rate_hz_, input.get()));
size_t enc_len = EncodeFrame(input.get(), frame_size_, encoded_);
size_t dec_len;
AudioDecoder::SpeechType speech_type1, speech_type2;
EXPECT_EQ(0, decoder_->Init());
rtc::scoped_ptr<int16_t[]> output1(new int16_t[frame_size_ * channels_]);
dec_len = decoder_->Decode(encoded_, enc_len, codec_input_rate_hz_,
frame_size_ * channels_ * sizeof(int16_t),
output1.get(), &speech_type1);
ASSERT_LE(dec_len, frame_size_ * channels_);
EXPECT_EQ(frame_size_ * channels_, dec_len);
// Re-init decoder and decode again.
EXPECT_EQ(0, decoder_->Init());
rtc::scoped_ptr<int16_t[]> output2(new int16_t[frame_size_ * channels_]);
dec_len = decoder_->Decode(encoded_, enc_len, codec_input_rate_hz_,
frame_size_ * channels_ * sizeof(int16_t),
output2.get(), &speech_type2);
ASSERT_LE(dec_len, frame_size_ * channels_);
EXPECT_EQ(frame_size_ * channels_, dec_len);
for (unsigned int n = 0; n < frame_size_; ++n) {
ASSERT_EQ(output1[n], output2[n]) << "Exit test on first diff; n = " << n;
}
EXPECT_EQ(speech_type1, speech_type2);
}
// Call DecodePlc and verify that the correct number of samples is produced.
void DecodePlcTest() {
InitEncoder();
rtc::scoped_ptr<int16_t[]> input(new int16_t[frame_size_]);
ASSERT_TRUE(
input_audio_.Read(frame_size_, codec_input_rate_hz_, input.get()));
size_t enc_len = EncodeFrame(input.get(), frame_size_, encoded_);
AudioDecoder::SpeechType speech_type;
EXPECT_EQ(0, decoder_->Init());
rtc::scoped_ptr<int16_t[]> output(new int16_t[frame_size_ * channels_]);
size_t dec_len = decoder_->Decode(encoded_, enc_len, codec_input_rate_hz_,
frame_size_ * channels_ * sizeof(int16_t),
output.get(), &speech_type);
EXPECT_EQ(frame_size_ * channels_, dec_len);
// Call DecodePlc and verify that we get one frame of data.
// (Overwrite the output from the above Decode call, but that does not
// matter.)
dec_len = decoder_->DecodePlc(1, output.get());
EXPECT_EQ(frame_size_ * channels_, dec_len);
}
test::ResampleInputAudioFile input_audio_;
int codec_input_rate_hz_;
uint8_t* encoded_;
size_t frame_size_;
size_t data_length_;
size_t encoded_bytes_;
size_t channels_;
const int payload_type_;
AudioEncoder::EncodedInfo encoded_info_;
AudioDecoder* decoder_;
rtc::scoped_ptr<AudioEncoder> audio_encoder_;
};
class AudioDecoderPcmUTest : public AudioDecoderTest {
protected:
AudioDecoderPcmUTest() : AudioDecoderTest() {
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcmU;
AudioEncoderPcmU::Config config;
config.frame_size_ms = static_cast<int>(frame_size_ / 8);
config.payload_type = payload_type_;
audio_encoder_.reset(new AudioEncoderPcmU(config));
}
};
class AudioDecoderPcmATest : public AudioDecoderTest {
protected:
AudioDecoderPcmATest() : AudioDecoderTest() {
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcmA;
AudioEncoderPcmA::Config config;
config.frame_size_ms = static_cast<int>(frame_size_ / 8);
config.payload_type = payload_type_;
audio_encoder_.reset(new AudioEncoderPcmA(config));
}
};
class AudioDecoderPcm16BTest : public AudioDecoderTest {
protected:
AudioDecoderPcm16BTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 16000;
frame_size_ = 20 * codec_input_rate_hz_ / 1000;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcm16B;
assert(decoder_);
AudioEncoderPcm16B::Config config;
config.sample_rate_hz = codec_input_rate_hz_;
config.frame_size_ms =
static_cast<int>(frame_size_ / (config.sample_rate_hz / 1000));
config.payload_type = payload_type_;
audio_encoder_.reset(new AudioEncoderPcm16B(config));
}
};
class AudioDecoderIlbcTest : public AudioDecoderTest {
protected:
AudioDecoderIlbcTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 8000;
frame_size_ = 240;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderIlbc;
assert(decoder_);
AudioEncoderIlbc::Config config;
config.frame_size_ms = 30;
config.payload_type = payload_type_;
audio_encoder_.reset(new AudioEncoderIlbc(config));
}
// Overload the default test since iLBC's function WebRtcIlbcfix_NetEqPlc does
// not return any data. It simply resets a few states and returns 0.
void DecodePlcTest() {
InitEncoder();
rtc::scoped_ptr<int16_t[]> input(new int16_t[frame_size_]);
ASSERT_TRUE(
input_audio_.Read(frame_size_, codec_input_rate_hz_, input.get()));
size_t enc_len = EncodeFrame(input.get(), frame_size_, encoded_);
AudioDecoder::SpeechType speech_type;
EXPECT_EQ(0, decoder_->Init());
rtc::scoped_ptr<int16_t[]> output(new int16_t[frame_size_ * channels_]);
size_t dec_len = decoder_->Decode(encoded_, enc_len, codec_input_rate_hz_,
frame_size_ * channels_ * sizeof(int16_t),
output.get(), &speech_type);
EXPECT_EQ(frame_size_, dec_len);
// Simply call DecodePlc and verify that we get 0 as return value.
EXPECT_EQ(0, decoder_->DecodePlc(1, output.get()));
}
};
class AudioDecoderIsacFloatTest : public AudioDecoderTest {
protected:
AudioDecoderIsacFloatTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 16000;
frame_size_ = 480;
data_length_ = 10 * frame_size_;
AudioEncoderDecoderIsac::Config config;
config.payload_type = payload_type_;
config.sample_rate_hz = codec_input_rate_hz_;
config.adaptive_mode = false;
config.frame_size_ms =
1000 * static_cast<int>(frame_size_) / codec_input_rate_hz_;
// We need to create separate AudioEncoderDecoderIsac objects for encoding
// and decoding, because the test class destructor destroys them both.
audio_encoder_.reset(new AudioEncoderDecoderIsac(config));
decoder_ = new AudioEncoderDecoderIsac(config);
}
};
class AudioDecoderIsacSwbTest : public AudioDecoderTest {
protected:
AudioDecoderIsacSwbTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 32000;
frame_size_ = 960;
data_length_ = 10 * frame_size_;
AudioEncoderDecoderIsac::Config config;
config.payload_type = payload_type_;
config.sample_rate_hz = codec_input_rate_hz_;
config.adaptive_mode = false;
config.frame_size_ms =
1000 * static_cast<int>(frame_size_) / codec_input_rate_hz_;
// We need to create separate AudioEncoderDecoderIsac objects for encoding
// and decoding, because the test class destructor destroys them both.
audio_encoder_.reset(new AudioEncoderDecoderIsac(config));
decoder_ = new AudioEncoderDecoderIsac(config);
}
};
class AudioDecoderIsacFixTest : public AudioDecoderTest {
protected:
AudioDecoderIsacFixTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 16000;
frame_size_ = 480;
data_length_ = 10 * frame_size_;
AudioEncoderDecoderIsacFix::Config config;
config.payload_type = payload_type_;
config.sample_rate_hz = codec_input_rate_hz_;
config.adaptive_mode = false;
config.frame_size_ms =
1000 * static_cast<int>(frame_size_) / codec_input_rate_hz_;
// We need to create separate AudioEncoderDecoderIsacFix objects for
// encoding and decoding, because the test class destructor destroys them
// both.
audio_encoder_.reset(new AudioEncoderDecoderIsacFix(config));
decoder_ = new AudioEncoderDecoderIsacFix(config);
}
};
class AudioDecoderG722Test : public AudioDecoderTest {
protected:
AudioDecoderG722Test() : AudioDecoderTest() {
codec_input_rate_hz_ = 16000;
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderG722;
assert(decoder_);
AudioEncoderG722::Config config;
config.frame_size_ms = 10;
config.payload_type = payload_type_;
config.num_channels = 1;
audio_encoder_.reset(new AudioEncoderG722(config));
}
};
class AudioDecoderG722StereoTest : public AudioDecoderTest {
protected:
AudioDecoderG722StereoTest() : AudioDecoderTest() {
channels_ = 2;
codec_input_rate_hz_ = 16000;
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderG722Stereo;
assert(decoder_);
AudioEncoderG722::Config config;
config.frame_size_ms = 10;
config.payload_type = payload_type_;
config.num_channels = 2;
audio_encoder_.reset(new AudioEncoderG722(config));
}
};
class AudioDecoderOpusTest : public AudioDecoderTest {
protected:
AudioDecoderOpusTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 48000;
frame_size_ = 480;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderOpus(1);
AudioEncoderOpus::Config config;
config.frame_size_ms = static_cast<int>(frame_size_) / 48;
config.payload_type = payload_type_;
config.application = AudioEncoderOpus::kVoip;
audio_encoder_.reset(new AudioEncoderOpus(config));
}
};
class AudioDecoderOpusStereoTest : public AudioDecoderOpusTest {
protected:
AudioDecoderOpusStereoTest() : AudioDecoderOpusTest() {
channels_ = 2;
delete decoder_;
decoder_ = new AudioDecoderOpus(2);
AudioEncoderOpus::Config config;
config.frame_size_ms = static_cast<int>(frame_size_) / 48;
config.num_channels = 2;
config.payload_type = payload_type_;
config.application = AudioEncoderOpus::kAudio;
audio_encoder_.reset(new AudioEncoderOpus(config));
}
};
TEST_F(AudioDecoderPcmUTest, EncodeDecode) {
int tolerance = 251;
double mse = 1734.0;
EXPECT_TRUE(CodecSupported(kDecoderPCMu));
EncodeDecodeTest(data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderPcmATest, EncodeDecode) {
int tolerance = 308;
double mse = 1931.0;
EXPECT_TRUE(CodecSupported(kDecoderPCMa));
EncodeDecodeTest(data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderPcm16BTest, EncodeDecode) {
int tolerance = 0;
double mse = 0.0;
EXPECT_TRUE(CodecSupported(kDecoderPCM16B));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bwb));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb32kHz));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb48kHz));
EncodeDecodeTest(2 * data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderIlbcTest, EncodeDecode) {
int tolerance = 6808;
double mse = 2.13e6;
int delay = 80; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderILBC));
EncodeDecodeTest(500, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacFloatTest, EncodeDecode) {
int tolerance = 3399;
double mse = 434951.0;
int delay = 48; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderISAC));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderIsacSwbTest, EncodeDecode) {
int tolerance = 19757;
double mse = 8.18e6;
int delay = 160; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderISACswb));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
// Fails Android ARM64. https://code.google.com/p/webrtc/issues/detail?id=4198
#if defined(WEBRTC_ANDROID) && defined(WEBRTC_ARCH_ARM64)
#define MAYBE_EncodeDecode DISABLED_EncodeDecode
#else
#define MAYBE_EncodeDecode EncodeDecode
#endif
TEST_F(AudioDecoderIsacFixTest, MAYBE_EncodeDecode) {
int tolerance = 11034;
double mse = 3.46e6;
int delay = 54; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderISAC));
#ifdef WEBRTC_ANDROID
static const int kEncodedBytes = 685;
#else
static const int kEncodedBytes = 671;
#endif
EncodeDecodeTest(kEncodedBytes, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderG722Test, EncodeDecode) {
int tolerance = 6176;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderG722));
EncodeDecodeTest(data_length_ / 2, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderG722StereoTest, CreateAndDestroy) {
EXPECT_TRUE(CodecSupported(kDecoderG722_2ch));
}
TEST_F(AudioDecoderG722StereoTest, EncodeDecode) {
int tolerance = 6176;
int channel_diff_tolerance = 0;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderG722_2ch));
EncodeDecodeTest(data_length_, tolerance, mse, delay, channel_diff_tolerance);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderOpusTest, EncodeDecode) {
int tolerance = 6176;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderOpus));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderOpusStereoTest, EncodeDecode) {
int tolerance = 6176;
int channel_diff_tolerance = 0;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderOpus_2ch));
EncodeDecodeTest(0, tolerance, mse, delay, channel_diff_tolerance);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST(AudioDecoder, CodecSampleRateHz) {
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCMu));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCMa));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCMu_2ch));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCMa_2ch));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderILBC));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderISAC));
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderISACswb));
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderISACfb));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCM16B));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderPCM16Bwb));
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderPCM16Bswb32kHz));
EXPECT_EQ(48000, CodecSampleRateHz(kDecoderPCM16Bswb48kHz));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCM16B_2ch));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderPCM16Bwb_2ch));
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderPCM16Bswb32kHz_2ch));
EXPECT_EQ(48000, CodecSampleRateHz(kDecoderPCM16Bswb48kHz_2ch));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCM16B_5ch));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderG722));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderG722_2ch));
EXPECT_EQ(-1, CodecSampleRateHz(kDecoderRED));
EXPECT_EQ(-1, CodecSampleRateHz(kDecoderAVT));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderCNGnb));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderCNGwb));
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderCNGswb32kHz));
EXPECT_EQ(48000, CodecSampleRateHz(kDecoderOpus));
EXPECT_EQ(48000, CodecSampleRateHz(kDecoderOpus_2ch));
// TODO(tlegrand): Change 32000 to 48000 below once ACM has 48 kHz support.
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderCNGswb48kHz));
EXPECT_EQ(-1, CodecSampleRateHz(kDecoderArbitrary));
}
TEST(AudioDecoder, CodecSupported) {
EXPECT_TRUE(CodecSupported(kDecoderPCMu));
EXPECT_TRUE(CodecSupported(kDecoderPCMa));
EXPECT_TRUE(CodecSupported(kDecoderPCMu_2ch));
EXPECT_TRUE(CodecSupported(kDecoderPCMa_2ch));
EXPECT_TRUE(CodecSupported(kDecoderILBC));
EXPECT_TRUE(CodecSupported(kDecoderISAC));
EXPECT_TRUE(CodecSupported(kDecoderISACswb));
EXPECT_TRUE(CodecSupported(kDecoderISACfb));
EXPECT_TRUE(CodecSupported(kDecoderPCM16B));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bwb));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb32kHz));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb48kHz));
EXPECT_TRUE(CodecSupported(kDecoderPCM16B_2ch));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bwb_2ch));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb32kHz_2ch));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb48kHz_2ch));
EXPECT_TRUE(CodecSupported(kDecoderPCM16B_5ch));
EXPECT_TRUE(CodecSupported(kDecoderG722));
EXPECT_TRUE(CodecSupported(kDecoderG722_2ch));
EXPECT_TRUE(CodecSupported(kDecoderRED));
EXPECT_TRUE(CodecSupported(kDecoderAVT));
EXPECT_TRUE(CodecSupported(kDecoderCNGnb));
EXPECT_TRUE(CodecSupported(kDecoderCNGwb));
EXPECT_TRUE(CodecSupported(kDecoderCNGswb32kHz));
EXPECT_TRUE(CodecSupported(kDecoderCNGswb48kHz));
EXPECT_TRUE(CodecSupported(kDecoderArbitrary));
EXPECT_TRUE(CodecSupported(kDecoderOpus));
EXPECT_TRUE(CodecSupported(kDecoderOpus_2ch));
}
} // namespace webrtc