| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aecm/aecm_core.h" |
| |
| #include <stddef.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| extern "C" { |
| #include "common_audio/ring_buffer.h" |
| #include "common_audio/signal_processing/include/real_fft.h" |
| } |
| #include "common_audio/signal_processing/include/signal_processing_library.h" |
| #include "modules/audio_processing/aecm/echo_control_mobile.h" |
| #include "modules/audio_processing/utility/delay_estimator_wrapper.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| #ifdef AEC_DEBUG |
| FILE* dfile; |
| FILE* testfile; |
| #endif |
| |
| // Initialization table for echo channel in 8 kHz |
| static const int16_t kChannelStored8kHz[PART_LEN1] = { |
| 2040, 1815, 1590, 1498, 1405, 1395, 1385, 1418, 1451, 1506, 1562, |
| 1644, 1726, 1804, 1882, 1918, 1953, 1982, 2010, 2025, 2040, 2034, |
| 2027, 2021, 2014, 1997, 1980, 1925, 1869, 1800, 1732, 1683, 1635, |
| 1604, 1572, 1545, 1517, 1481, 1444, 1405, 1367, 1331, 1294, 1270, |
| 1245, 1239, 1233, 1247, 1260, 1282, 1303, 1338, 1373, 1407, 1441, |
| 1470, 1499, 1524, 1549, 1565, 1582, 1601, 1621, 1649, 1676}; |
| |
| // Initialization table for echo channel in 16 kHz |
| static const int16_t kChannelStored16kHz[PART_LEN1] = { |
| 2040, 1590, 1405, 1385, 1451, 1562, 1726, 1882, 1953, 2010, 2040, |
| 2027, 2014, 1980, 1869, 1732, 1635, 1572, 1517, 1444, 1367, 1294, |
| 1245, 1233, 1260, 1303, 1373, 1441, 1499, 1549, 1582, 1621, 1676, |
| 1741, 1802, 1861, 1921, 1983, 2040, 2102, 2170, 2265, 2375, 2515, |
| 2651, 2781, 2922, 3075, 3253, 3471, 3738, 3976, 4151, 4258, 4308, |
| 4288, 4270, 4253, 4237, 4179, 4086, 3947, 3757, 3484, 3153}; |
| |
| } // namespace |
| |
| const int16_t WebRtcAecm_kCosTable[] = { |
| 8192, 8190, 8187, 8180, 8172, 8160, 8147, 8130, 8112, 8091, 8067, |
| 8041, 8012, 7982, 7948, 7912, 7874, 7834, 7791, 7745, 7697, 7647, |
| 7595, 7540, 7483, 7424, 7362, 7299, 7233, 7164, 7094, 7021, 6947, |
| 6870, 6791, 6710, 6627, 6542, 6455, 6366, 6275, 6182, 6087, 5991, |
| 5892, 5792, 5690, 5586, 5481, 5374, 5265, 5155, 5043, 4930, 4815, |
| 4698, 4580, 4461, 4341, 4219, 4096, 3971, 3845, 3719, 3591, 3462, |
| 3331, 3200, 3068, 2935, 2801, 2667, 2531, 2395, 2258, 2120, 1981, |
| 1842, 1703, 1563, 1422, 1281, 1140, 998, 856, 713, 571, 428, |
| 285, 142, 0, -142, -285, -428, -571, -713, -856, -998, -1140, |
| -1281, -1422, -1563, -1703, -1842, -1981, -2120, -2258, -2395, -2531, -2667, |
| -2801, -2935, -3068, -3200, -3331, -3462, -3591, -3719, -3845, -3971, -4095, |
| -4219, -4341, -4461, -4580, -4698, -4815, -4930, -5043, -5155, -5265, -5374, |
| -5481, -5586, -5690, -5792, -5892, -5991, -6087, -6182, -6275, -6366, -6455, |
| -6542, -6627, -6710, -6791, -6870, -6947, -7021, -7094, -7164, -7233, -7299, |
| -7362, -7424, -7483, -7540, -7595, -7647, -7697, -7745, -7791, -7834, -7874, |
| -7912, -7948, -7982, -8012, -8041, -8067, -8091, -8112, -8130, -8147, -8160, |
| -8172, -8180, -8187, -8190, -8191, -8190, -8187, -8180, -8172, -8160, -8147, |
| -8130, -8112, -8091, -8067, -8041, -8012, -7982, -7948, -7912, -7874, -7834, |
| -7791, -7745, -7697, -7647, -7595, -7540, -7483, -7424, -7362, -7299, -7233, |
| -7164, -7094, -7021, -6947, -6870, -6791, -6710, -6627, -6542, -6455, -6366, |
| -6275, -6182, -6087, -5991, -5892, -5792, -5690, -5586, -5481, -5374, -5265, |
| -5155, -5043, -4930, -4815, -4698, -4580, -4461, -4341, -4219, -4096, -3971, |
| -3845, -3719, -3591, -3462, -3331, -3200, -3068, -2935, -2801, -2667, -2531, |
| -2395, -2258, -2120, -1981, -1842, -1703, -1563, -1422, -1281, -1140, -998, |
| -856, -713, -571, -428, -285, -142, 0, 142, 285, 428, 571, |
| 713, 856, 998, 1140, 1281, 1422, 1563, 1703, 1842, 1981, 2120, |
| 2258, 2395, 2531, 2667, 2801, 2935, 3068, 3200, 3331, 3462, 3591, |
| 3719, 3845, 3971, 4095, 4219, 4341, 4461, 4580, 4698, 4815, 4930, |
| 5043, 5155, 5265, 5374, 5481, 5586, 5690, 5792, 5892, 5991, 6087, |
| 6182, 6275, 6366, 6455, 6542, 6627, 6710, 6791, 6870, 6947, 7021, |
| 7094, 7164, 7233, 7299, 7362, 7424, 7483, 7540, 7595, 7647, 7697, |
| 7745, 7791, 7834, 7874, 7912, 7948, 7982, 8012, 8041, 8067, 8091, |
| 8112, 8130, 8147, 8160, 8172, 8180, 8187, 8190}; |
| |
| const int16_t WebRtcAecm_kSinTable[] = { |
| 0, 142, 285, 428, 571, 713, 856, 998, 1140, 1281, 1422, |
| 1563, 1703, 1842, 1981, 2120, 2258, 2395, 2531, 2667, 2801, 2935, |
| 3068, 3200, 3331, 3462, 3591, 3719, 3845, 3971, 4095, 4219, 4341, |
| 4461, 4580, 4698, 4815, 4930, 5043, 5155, 5265, 5374, 5481, 5586, |
| 5690, 5792, 5892, 5991, 6087, 6182, 6275, 6366, 6455, 6542, 6627, |
| 6710, 6791, 6870, 6947, 7021, 7094, 7164, 7233, 7299, 7362, 7424, |
| 7483, 7540, 7595, 7647, 7697, 7745, 7791, 7834, 7874, 7912, 7948, |
| 7982, 8012, 8041, 8067, 8091, 8112, 8130, 8147, 8160, 8172, 8180, |
| 8187, 8190, 8191, 8190, 8187, 8180, 8172, 8160, 8147, 8130, 8112, |
| 8091, 8067, 8041, 8012, 7982, 7948, 7912, 7874, 7834, 7791, 7745, |
| 7697, 7647, 7595, 7540, 7483, 7424, 7362, 7299, 7233, 7164, 7094, |
| 7021, 6947, 6870, 6791, 6710, 6627, 6542, 6455, 6366, 6275, 6182, |
| 6087, 5991, 5892, 5792, 5690, 5586, 5481, 5374, 5265, 5155, 5043, |
| 4930, 4815, 4698, 4580, 4461, 4341, 4219, 4096, 3971, 3845, 3719, |
| 3591, 3462, 3331, 3200, 3068, 2935, 2801, 2667, 2531, 2395, 2258, |
| 2120, 1981, 1842, 1703, 1563, 1422, 1281, 1140, 998, 856, 713, |
| 571, 428, 285, 142, 0, -142, -285, -428, -571, -713, -856, |
| -998, -1140, -1281, -1422, -1563, -1703, -1842, -1981, -2120, -2258, -2395, |
| -2531, -2667, -2801, -2935, -3068, -3200, -3331, -3462, -3591, -3719, -3845, |
| -3971, -4095, -4219, -4341, -4461, -4580, -4698, -4815, -4930, -5043, -5155, |
| -5265, -5374, -5481, -5586, -5690, -5792, -5892, -5991, -6087, -6182, -6275, |
| -6366, -6455, -6542, -6627, -6710, -6791, -6870, -6947, -7021, -7094, -7164, |
| -7233, -7299, -7362, -7424, -7483, -7540, -7595, -7647, -7697, -7745, -7791, |
| -7834, -7874, -7912, -7948, -7982, -8012, -8041, -8067, -8091, -8112, -8130, |
| -8147, -8160, -8172, -8180, -8187, -8190, -8191, -8190, -8187, -8180, -8172, |
| -8160, -8147, -8130, -8112, -8091, -8067, -8041, -8012, -7982, -7948, -7912, |
| -7874, -7834, -7791, -7745, -7697, -7647, -7595, -7540, -7483, -7424, -7362, |
| -7299, -7233, -7164, -7094, -7021, -6947, -6870, -6791, -6710, -6627, -6542, |
| -6455, -6366, -6275, -6182, -6087, -5991, -5892, -5792, -5690, -5586, -5481, |
| -5374, -5265, -5155, -5043, -4930, -4815, -4698, -4580, -4461, -4341, -4219, |
| -4096, -3971, -3845, -3719, -3591, -3462, -3331, -3200, -3068, -2935, -2801, |
| -2667, -2531, -2395, -2258, -2120, -1981, -1842, -1703, -1563, -1422, -1281, |
| -1140, -998, -856, -713, -571, -428, -285, -142}; |
| |
| |
| // Moves the pointer to the next entry and inserts |far_spectrum| and |
| // corresponding Q-domain in its buffer. |
| // |
| // Inputs: |
| // - self : Pointer to the delay estimation instance |
| // - far_spectrum : Pointer to the far end spectrum |
| // - far_q : Q-domain of far end spectrum |
| // |
| void WebRtcAecm_UpdateFarHistory(AecmCore* self, |
| uint16_t* far_spectrum, |
| int far_q) { |
| // Get new buffer position |
| self->far_history_pos++; |
| if (self->far_history_pos >= MAX_DELAY) { |
| self->far_history_pos = 0; |
| } |
| // Update Q-domain buffer |
| self->far_q_domains[self->far_history_pos] = far_q; |
| // Update far end spectrum buffer |
| memcpy(&(self->far_history[self->far_history_pos * PART_LEN1]), far_spectrum, |
| sizeof(uint16_t) * PART_LEN1); |
| } |
| |
| // Returns a pointer to the far end spectrum aligned to current near end |
| // spectrum. The function WebRtc_DelayEstimatorProcessFix(...) should have been |
| // called before AlignedFarend(...). Otherwise, you get the pointer to the |
| // previous frame. The memory is only valid until the next call of |
| // WebRtc_DelayEstimatorProcessFix(...). |
| // |
| // Inputs: |
| // - self : Pointer to the AECM instance. |
| // - delay : Current delay estimate. |
| // |
| // Output: |
| // - far_q : The Q-domain of the aligned far end spectrum |
| // |
| // Return value: |
| // - far_spectrum : Pointer to the aligned far end spectrum |
| // NULL - Error |
| // |
| const uint16_t* WebRtcAecm_AlignedFarend(AecmCore* self, |
| int* far_q, |
| int delay) { |
| int buffer_position = 0; |
| RTC_DCHECK(self); |
| buffer_position = self->far_history_pos - delay; |
| |
| // Check buffer position |
| if (buffer_position < 0) { |
| buffer_position += MAX_DELAY; |
| } |
| // Get Q-domain |
| *far_q = self->far_q_domains[buffer_position]; |
| // Return far end spectrum |
| return &(self->far_history[buffer_position * PART_LEN1]); |
| } |
| |
| // Declare function pointers. |
| CalcLinearEnergies WebRtcAecm_CalcLinearEnergies; |
| StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel; |
| ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel; |
| |
| AecmCore* WebRtcAecm_CreateCore() { |
| // Allocate zero-filled memory. |
| AecmCore* aecm = static_cast<AecmCore*>(calloc(1, sizeof(AecmCore))); |
| |
| aecm->farFrameBuf = |
| WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(int16_t)); |
| if (!aecm->farFrameBuf) { |
| WebRtcAecm_FreeCore(aecm); |
| return NULL; |
| } |
| |
| aecm->nearNoisyFrameBuf = |
| WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(int16_t)); |
| if (!aecm->nearNoisyFrameBuf) { |
| WebRtcAecm_FreeCore(aecm); |
| return NULL; |
| } |
| |
| aecm->nearCleanFrameBuf = |
| WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(int16_t)); |
| if (!aecm->nearCleanFrameBuf) { |
| WebRtcAecm_FreeCore(aecm); |
| return NULL; |
| } |
| |
| aecm->outFrameBuf = |
| WebRtc_CreateBuffer(FRAME_LEN + PART_LEN, sizeof(int16_t)); |
| if (!aecm->outFrameBuf) { |
| WebRtcAecm_FreeCore(aecm); |
| return NULL; |
| } |
| |
| aecm->delay_estimator_farend = |
| WebRtc_CreateDelayEstimatorFarend(PART_LEN1, MAX_DELAY); |
| if (aecm->delay_estimator_farend == NULL) { |
| WebRtcAecm_FreeCore(aecm); |
| return NULL; |
| } |
| aecm->delay_estimator = |
| WebRtc_CreateDelayEstimator(aecm->delay_estimator_farend, 0); |
| if (aecm->delay_estimator == NULL) { |
| WebRtcAecm_FreeCore(aecm); |
| return NULL; |
| } |
| // TODO(bjornv): Explicitly disable robust delay validation until no |
| // performance regression has been established. Then remove the line. |
| WebRtc_enable_robust_validation(aecm->delay_estimator, 0); |
| |
| aecm->real_fft = WebRtcSpl_CreateRealFFT(PART_LEN_SHIFT); |
| if (aecm->real_fft == NULL) { |
| WebRtcAecm_FreeCore(aecm); |
| return NULL; |
| } |
| |
| // Init some aecm pointers. 16 and 32 byte alignment is only necessary |
| // for Neon code currently. |
| aecm->xBuf = (int16_t*)(((uintptr_t)aecm->xBuf_buf + 31) & ~31); |
| aecm->dBufClean = (int16_t*)(((uintptr_t)aecm->dBufClean_buf + 31) & ~31); |
| aecm->dBufNoisy = (int16_t*)(((uintptr_t)aecm->dBufNoisy_buf + 31) & ~31); |
| aecm->outBuf = (int16_t*)(((uintptr_t)aecm->outBuf_buf + 15) & ~15); |
| aecm->channelStored = |
| (int16_t*)(((uintptr_t)aecm->channelStored_buf + 15) & ~15); |
| aecm->channelAdapt16 = |
| (int16_t*)(((uintptr_t)aecm->channelAdapt16_buf + 15) & ~15); |
| aecm->channelAdapt32 = |
| (int32_t*)(((uintptr_t)aecm->channelAdapt32_buf + 31) & ~31); |
| |
| return aecm; |
| } |
| |
| void WebRtcAecm_InitEchoPathCore(AecmCore* aecm, const int16_t* echo_path) { |
| int i = 0; |
| |
| // Reset the stored channel |
| memcpy(aecm->channelStored, echo_path, sizeof(int16_t) * PART_LEN1); |
| // Reset the adapted channels |
| memcpy(aecm->channelAdapt16, echo_path, sizeof(int16_t) * PART_LEN1); |
| for (i = 0; i < PART_LEN1; i++) { |
| aecm->channelAdapt32[i] = (int32_t)aecm->channelAdapt16[i] << 16; |
| } |
| |
| // Reset channel storing variables |
| aecm->mseAdaptOld = 1000; |
| aecm->mseStoredOld = 1000; |
| aecm->mseThreshold = WEBRTC_SPL_WORD32_MAX; |
| aecm->mseChannelCount = 0; |
| } |
| |
| static void CalcLinearEnergiesC(AecmCore* aecm, |
| const uint16_t* far_spectrum, |
| int32_t* echo_est, |
| uint32_t* far_energy, |
| uint32_t* echo_energy_adapt, |
| uint32_t* echo_energy_stored) { |
| int i; |
| |
| // Get energy for the delayed far end signal and estimated |
| // echo using both stored and adapted channels. |
| for (i = 0; i < PART_LEN1; i++) { |
| echo_est[i] = |
| WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]); |
| (*far_energy) += (uint32_t)(far_spectrum[i]); |
| *echo_energy_adapt += aecm->channelAdapt16[i] * far_spectrum[i]; |
| (*echo_energy_stored) += (uint32_t)echo_est[i]; |
| } |
| } |
| |
| static void StoreAdaptiveChannelC(AecmCore* aecm, |
| const uint16_t* far_spectrum, |
| int32_t* echo_est) { |
| int i; |
| |
| // During startup we store the channel every block. |
| memcpy(aecm->channelStored, aecm->channelAdapt16, |
| sizeof(int16_t) * PART_LEN1); |
| // Recalculate echo estimate |
| for (i = 0; i < PART_LEN; i += 4) { |
| echo_est[i] = |
| WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]); |
| echo_est[i + 1] = |
| WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 1], far_spectrum[i + 1]); |
| echo_est[i + 2] = |
| WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 2], far_spectrum[i + 2]); |
| echo_est[i + 3] = |
| WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 3], far_spectrum[i + 3]); |
| } |
| echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i], far_spectrum[i]); |
| } |
| |
| static void ResetAdaptiveChannelC(AecmCore* aecm) { |
| int i; |
| |
| // The stored channel has a significantly lower MSE than the adaptive one for |
| // two consecutive calculations. Reset the adaptive channel. |
| memcpy(aecm->channelAdapt16, aecm->channelStored, |
| sizeof(int16_t) * PART_LEN1); |
| // Restore the W32 channel |
| for (i = 0; i < PART_LEN; i += 4) { |
| aecm->channelAdapt32[i] = (int32_t)aecm->channelStored[i] << 16; |
| aecm->channelAdapt32[i + 1] = (int32_t)aecm->channelStored[i + 1] << 16; |
| aecm->channelAdapt32[i + 2] = (int32_t)aecm->channelStored[i + 2] << 16; |
| aecm->channelAdapt32[i + 3] = (int32_t)aecm->channelStored[i + 3] << 16; |
| } |
| aecm->channelAdapt32[i] = (int32_t)aecm->channelStored[i] << 16; |
| } |
| |
| // Initialize function pointers for ARM Neon platform. |
| #if defined(WEBRTC_HAS_NEON) |
| static void WebRtcAecm_InitNeon(void) { |
| WebRtcAecm_StoreAdaptiveChannel = WebRtcAecm_StoreAdaptiveChannelNeon; |
| WebRtcAecm_ResetAdaptiveChannel = WebRtcAecm_ResetAdaptiveChannelNeon; |
| WebRtcAecm_CalcLinearEnergies = WebRtcAecm_CalcLinearEnergiesNeon; |
| } |
| #endif |
| |
| // Initialize function pointers for MIPS platform. |
| #if defined(MIPS32_LE) |
| static void WebRtcAecm_InitMips(void) { |
| #if defined(MIPS_DSP_R1_LE) |
| WebRtcAecm_StoreAdaptiveChannel = WebRtcAecm_StoreAdaptiveChannel_mips; |
| WebRtcAecm_ResetAdaptiveChannel = WebRtcAecm_ResetAdaptiveChannel_mips; |
| #endif |
| WebRtcAecm_CalcLinearEnergies = WebRtcAecm_CalcLinearEnergies_mips; |
| } |
| #endif |
| |
| // WebRtcAecm_InitCore(...) |
| // |
| // This function initializes the AECM instant created with |
| // WebRtcAecm_CreateCore(...) Input: |
| // - aecm : Pointer to the Echo Suppression instance |
| // - samplingFreq : Sampling Frequency |
| // |
| // Output: |
| // - aecm : Initialized instance |
| // |
| // Return value : 0 - Ok |
| // -1 - Error |
| // |
| int WebRtcAecm_InitCore(AecmCore* const aecm, int samplingFreq) { |
| int i = 0; |
| int32_t tmp32 = PART_LEN1 * PART_LEN1; |
| int16_t tmp16 = PART_LEN1; |
| |
| if (samplingFreq != 8000 && samplingFreq != 16000) { |
| samplingFreq = 8000; |
| return -1; |
| } |
| // sanity check of sampling frequency |
| aecm->mult = (int16_t)samplingFreq / 8000; |
| |
| aecm->farBufWritePos = 0; |
| aecm->farBufReadPos = 0; |
| aecm->knownDelay = 0; |
| aecm->lastKnownDelay = 0; |
| |
| WebRtc_InitBuffer(aecm->farFrameBuf); |
| WebRtc_InitBuffer(aecm->nearNoisyFrameBuf); |
| WebRtc_InitBuffer(aecm->nearCleanFrameBuf); |
| WebRtc_InitBuffer(aecm->outFrameBuf); |
| |
| memset(aecm->xBuf_buf, 0, sizeof(aecm->xBuf_buf)); |
| memset(aecm->dBufClean_buf, 0, sizeof(aecm->dBufClean_buf)); |
| memset(aecm->dBufNoisy_buf, 0, sizeof(aecm->dBufNoisy_buf)); |
| memset(aecm->outBuf_buf, 0, sizeof(aecm->outBuf_buf)); |
| |
| aecm->seed = 666; |
| aecm->totCount = 0; |
| |
| if (WebRtc_InitDelayEstimatorFarend(aecm->delay_estimator_farend) != 0) { |
| return -1; |
| } |
| if (WebRtc_InitDelayEstimator(aecm->delay_estimator) != 0) { |
| return -1; |
| } |
| // Set far end histories to zero |
| memset(aecm->far_history, 0, sizeof(uint16_t) * PART_LEN1 * MAX_DELAY); |
| memset(aecm->far_q_domains, 0, sizeof(int) * MAX_DELAY); |
| aecm->far_history_pos = MAX_DELAY; |
| |
| aecm->nlpFlag = 1; |
| aecm->fixedDelay = -1; |
| |
| aecm->dfaCleanQDomain = 0; |
| aecm->dfaCleanQDomainOld = 0; |
| aecm->dfaNoisyQDomain = 0; |
| aecm->dfaNoisyQDomainOld = 0; |
| |
| memset(aecm->nearLogEnergy, 0, sizeof(aecm->nearLogEnergy)); |
| aecm->farLogEnergy = 0; |
| memset(aecm->echoAdaptLogEnergy, 0, sizeof(aecm->echoAdaptLogEnergy)); |
| memset(aecm->echoStoredLogEnergy, 0, sizeof(aecm->echoStoredLogEnergy)); |
| |
| // Initialize the echo channels with a stored shape. |
| if (samplingFreq == 8000) { |
| WebRtcAecm_InitEchoPathCore(aecm, kChannelStored8kHz); |
| } else { |
| WebRtcAecm_InitEchoPathCore(aecm, kChannelStored16kHz); |
| } |
| |
| memset(aecm->echoFilt, 0, sizeof(aecm->echoFilt)); |
| memset(aecm->nearFilt, 0, sizeof(aecm->nearFilt)); |
| aecm->noiseEstCtr = 0; |
| |
| aecm->cngMode = AecmTrue; |
| |
| memset(aecm->noiseEstTooLowCtr, 0, sizeof(aecm->noiseEstTooLowCtr)); |
| memset(aecm->noiseEstTooHighCtr, 0, sizeof(aecm->noiseEstTooHighCtr)); |
| // Shape the initial noise level to an approximate pink noise. |
| for (i = 0; i < (PART_LEN1 >> 1) - 1; i++) { |
| aecm->noiseEst[i] = (tmp32 << 8); |
| tmp16--; |
| tmp32 -= (int32_t)((tmp16 << 1) + 1); |
| } |
| for (; i < PART_LEN1; i++) { |
| aecm->noiseEst[i] = (tmp32 << 8); |
| } |
| |
| aecm->farEnergyMin = WEBRTC_SPL_WORD16_MAX; |
| aecm->farEnergyMax = WEBRTC_SPL_WORD16_MIN; |
| aecm->farEnergyMaxMin = 0; |
| aecm->farEnergyVAD = FAR_ENERGY_MIN; // This prevents false speech detection |
| // at the beginning. |
| aecm->farEnergyMSE = 0; |
| aecm->currentVADValue = 0; |
| aecm->vadUpdateCount = 0; |
| aecm->firstVAD = 1; |
| |
| aecm->startupState = 0; |
| aecm->supGain = SUPGAIN_DEFAULT; |
| aecm->supGainOld = SUPGAIN_DEFAULT; |
| |
| aecm->supGainErrParamA = SUPGAIN_ERROR_PARAM_A; |
| aecm->supGainErrParamD = SUPGAIN_ERROR_PARAM_D; |
| aecm->supGainErrParamDiffAB = SUPGAIN_ERROR_PARAM_A - SUPGAIN_ERROR_PARAM_B; |
| aecm->supGainErrParamDiffBD = SUPGAIN_ERROR_PARAM_B - SUPGAIN_ERROR_PARAM_D; |
| |
| // Assert a preprocessor definition at compile-time. It's an assumption |
| // used in assembly code, so check the assembly files before any change. |
| static_assert(PART_LEN % 16 == 0, "PART_LEN is not a multiple of 16"); |
| |
| // Initialize function pointers. |
| WebRtcAecm_CalcLinearEnergies = CalcLinearEnergiesC; |
| WebRtcAecm_StoreAdaptiveChannel = StoreAdaptiveChannelC; |
| WebRtcAecm_ResetAdaptiveChannel = ResetAdaptiveChannelC; |
| |
| #if defined(WEBRTC_HAS_NEON) |
| WebRtcAecm_InitNeon(); |
| #endif |
| |
| #if defined(MIPS32_LE) |
| WebRtcAecm_InitMips(); |
| #endif |
| return 0; |
| } |
| |
| // TODO(bjornv): This function is currently not used. Add support for these |
| // parameters from a higher level |
| int WebRtcAecm_Control(AecmCore* aecm, int delay, int nlpFlag) { |
| aecm->nlpFlag = nlpFlag; |
| aecm->fixedDelay = delay; |
| |
| return 0; |
| } |
| |
| void WebRtcAecm_FreeCore(AecmCore* aecm) { |
| if (aecm == NULL) { |
| return; |
| } |
| |
| WebRtc_FreeBuffer(aecm->farFrameBuf); |
| WebRtc_FreeBuffer(aecm->nearNoisyFrameBuf); |
| WebRtc_FreeBuffer(aecm->nearCleanFrameBuf); |
| WebRtc_FreeBuffer(aecm->outFrameBuf); |
| |
| WebRtc_FreeDelayEstimator(aecm->delay_estimator); |
| WebRtc_FreeDelayEstimatorFarend(aecm->delay_estimator_farend); |
| WebRtcSpl_FreeRealFFT(aecm->real_fft); |
| |
| free(aecm); |
| } |
| |
| int WebRtcAecm_ProcessFrame(AecmCore* aecm, |
| const int16_t* farend, |
| const int16_t* nearendNoisy, |
| const int16_t* nearendClean, |
| int16_t* out) { |
| int16_t outBlock_buf[PART_LEN + 8]; // Align buffer to 8-byte boundary. |
| int16_t* outBlock = (int16_t*)(((uintptr_t)outBlock_buf + 15) & ~15); |
| |
| int16_t farFrame[FRAME_LEN]; |
| const int16_t* out_ptr = NULL; |
| int size = 0; |
| |
| // Buffer the current frame. |
| // Fetch an older one corresponding to the delay. |
| WebRtcAecm_BufferFarFrame(aecm, farend, FRAME_LEN); |
| WebRtcAecm_FetchFarFrame(aecm, farFrame, FRAME_LEN, aecm->knownDelay); |
| |
| // Buffer the synchronized far and near frames, |
| // to pass the smaller blocks individually. |
| WebRtc_WriteBuffer(aecm->farFrameBuf, farFrame, FRAME_LEN); |
| WebRtc_WriteBuffer(aecm->nearNoisyFrameBuf, nearendNoisy, FRAME_LEN); |
| if (nearendClean != NULL) { |
| WebRtc_WriteBuffer(aecm->nearCleanFrameBuf, nearendClean, FRAME_LEN); |
| } |
| |
| // Process as many blocks as possible. |
| while (WebRtc_available_read(aecm->farFrameBuf) >= PART_LEN) { |
| int16_t far_block[PART_LEN]; |
| const int16_t* far_block_ptr = NULL; |
| int16_t near_noisy_block[PART_LEN]; |
| const int16_t* near_noisy_block_ptr = NULL; |
| |
| WebRtc_ReadBuffer(aecm->farFrameBuf, (void**)&far_block_ptr, far_block, |
| PART_LEN); |
| WebRtc_ReadBuffer(aecm->nearNoisyFrameBuf, (void**)&near_noisy_block_ptr, |
| near_noisy_block, PART_LEN); |
| if (nearendClean != NULL) { |
| int16_t near_clean_block[PART_LEN]; |
| const int16_t* near_clean_block_ptr = NULL; |
| |
| WebRtc_ReadBuffer(aecm->nearCleanFrameBuf, (void**)&near_clean_block_ptr, |
| near_clean_block, PART_LEN); |
| if (WebRtcAecm_ProcessBlock(aecm, far_block_ptr, near_noisy_block_ptr, |
| near_clean_block_ptr, outBlock) == -1) { |
| return -1; |
| } |
| } else { |
| if (WebRtcAecm_ProcessBlock(aecm, far_block_ptr, near_noisy_block_ptr, |
| NULL, outBlock) == -1) { |
| return -1; |
| } |
| } |
| |
| WebRtc_WriteBuffer(aecm->outFrameBuf, outBlock, PART_LEN); |
| } |
| |
| // Stuff the out buffer if we have less than a frame to output. |
| // This should only happen for the first frame. |
| size = (int)WebRtc_available_read(aecm->outFrameBuf); |
| if (size < FRAME_LEN) { |
| WebRtc_MoveReadPtr(aecm->outFrameBuf, size - FRAME_LEN); |
| } |
| |
| // Obtain an output frame. |
| WebRtc_ReadBuffer(aecm->outFrameBuf, (void**)&out_ptr, out, FRAME_LEN); |
| if (out_ptr != out) { |
| // ReadBuffer() hasn't copied to |out| in this case. |
| memcpy(out, out_ptr, FRAME_LEN * sizeof(int16_t)); |
| } |
| |
| return 0; |
| } |
| |
| // WebRtcAecm_AsymFilt(...) |
| // |
| // Performs asymmetric filtering. |
| // |
| // Inputs: |
| // - filtOld : Previous filtered value. |
| // - inVal : New input value. |
| // - stepSizePos : Step size when we have a positive contribution. |
| // - stepSizeNeg : Step size when we have a negative contribution. |
| // |
| // Output: |
| // |
| // Return: - Filtered value. |
| // |
| int16_t WebRtcAecm_AsymFilt(const int16_t filtOld, |
| const int16_t inVal, |
| const int16_t stepSizePos, |
| const int16_t stepSizeNeg) { |
| int16_t retVal; |
| |
| if ((filtOld == WEBRTC_SPL_WORD16_MAX) | (filtOld == WEBRTC_SPL_WORD16_MIN)) { |
| return inVal; |
| } |
| retVal = filtOld; |
| if (filtOld > inVal) { |
| retVal -= (filtOld - inVal) >> stepSizeNeg; |
| } else { |
| retVal += (inVal - filtOld) >> stepSizePos; |
| } |
| |
| return retVal; |
| } |
| |
| // ExtractFractionPart(a, zeros) |
| // |
| // returns the fraction part of |a|, with |zeros| number of leading zeros, as an |
| // int16_t scaled to Q8. There is no sanity check of |a| in the sense that the |
| // number of zeros match. |
| static int16_t ExtractFractionPart(uint32_t a, int zeros) { |
| return (int16_t)(((a << zeros) & 0x7FFFFFFF) >> 23); |
| } |
| |
| // Calculates and returns the log of |energy| in Q8. The input |energy| is |
| // supposed to be in Q(|q_domain|). |
| static int16_t LogOfEnergyInQ8(uint32_t energy, int q_domain) { |
| static const int16_t kLogLowValue = PART_LEN_SHIFT << 7; |
| int16_t log_energy_q8 = kLogLowValue; |
| if (energy > 0) { |
| int zeros = WebRtcSpl_NormU32(energy); |
| int16_t frac = ExtractFractionPart(energy, zeros); |
| // log2 of |energy| in Q8. |
| log_energy_q8 += ((31 - zeros) << 8) + frac - (q_domain << 8); |
| } |
| return log_energy_q8; |
| } |
| |
| // WebRtcAecm_CalcEnergies(...) |
| // |
| // This function calculates the log of energies for nearend, farend and |
| // estimated echoes. There is also an update of energy decision levels, i.e. |
| // internal VAD. |
| // |
| // |
| // @param aecm [i/o] Handle of the AECM instance. |
| // @param far_spectrum [in] Pointer to farend spectrum. |
| // @param far_q [in] Q-domain of farend spectrum. |
| // @param nearEner [in] Near end energy for current block in |
| // Q(aecm->dfaQDomain). |
| // @param echoEst [out] Estimated echo in Q(xfa_q+RESOLUTION_CHANNEL16). |
| // |
| void WebRtcAecm_CalcEnergies(AecmCore* aecm, |
| const uint16_t* far_spectrum, |
| const int16_t far_q, |
| const uint32_t nearEner, |
| int32_t* echoEst) { |
| // Local variables |
| uint32_t tmpAdapt = 0; |
| uint32_t tmpStored = 0; |
| uint32_t tmpFar = 0; |
| |
| int i; |
| |
| int16_t tmp16; |
| int16_t increase_max_shifts = 4; |
| int16_t decrease_max_shifts = 11; |
| int16_t increase_min_shifts = 11; |
| int16_t decrease_min_shifts = 3; |
| |
| // Get log of near end energy and store in buffer |
| |
| // Shift buffer |
| memmove(aecm->nearLogEnergy + 1, aecm->nearLogEnergy, |
| sizeof(int16_t) * (MAX_BUF_LEN - 1)); |
| |
| // Logarithm of integrated magnitude spectrum (nearEner) |
| aecm->nearLogEnergy[0] = LogOfEnergyInQ8(nearEner, aecm->dfaNoisyQDomain); |
| |
| WebRtcAecm_CalcLinearEnergies(aecm, far_spectrum, echoEst, &tmpFar, &tmpAdapt, |
| &tmpStored); |
| |
| // Shift buffers |
| memmove(aecm->echoAdaptLogEnergy + 1, aecm->echoAdaptLogEnergy, |
| sizeof(int16_t) * (MAX_BUF_LEN - 1)); |
| memmove(aecm->echoStoredLogEnergy + 1, aecm->echoStoredLogEnergy, |
| sizeof(int16_t) * (MAX_BUF_LEN - 1)); |
| |
| // Logarithm of delayed far end energy |
| aecm->farLogEnergy = LogOfEnergyInQ8(tmpFar, far_q); |
| |
| // Logarithm of estimated echo energy through adapted channel |
| aecm->echoAdaptLogEnergy[0] = |
| LogOfEnergyInQ8(tmpAdapt, RESOLUTION_CHANNEL16 + far_q); |
| |
| // Logarithm of estimated echo energy through stored channel |
| aecm->echoStoredLogEnergy[0] = |
| LogOfEnergyInQ8(tmpStored, RESOLUTION_CHANNEL16 + far_q); |
| |
| // Update farend energy levels (min, max, vad, mse) |
| if (aecm->farLogEnergy > FAR_ENERGY_MIN) { |
| if (aecm->startupState == 0) { |
| increase_max_shifts = 2; |
| decrease_min_shifts = 2; |
| increase_min_shifts = 8; |
| } |
| |
| aecm->farEnergyMin = |
| WebRtcAecm_AsymFilt(aecm->farEnergyMin, aecm->farLogEnergy, |
| increase_min_shifts, decrease_min_shifts); |
| aecm->farEnergyMax = |
| WebRtcAecm_AsymFilt(aecm->farEnergyMax, aecm->farLogEnergy, |
| increase_max_shifts, decrease_max_shifts); |
| aecm->farEnergyMaxMin = (aecm->farEnergyMax - aecm->farEnergyMin); |
| |
| // Dynamic VAD region size |
| tmp16 = 2560 - aecm->farEnergyMin; |
| if (tmp16 > 0) { |
| tmp16 = (int16_t)((tmp16 * FAR_ENERGY_VAD_REGION) >> 9); |
| } else { |
| tmp16 = 0; |
| } |
| tmp16 += FAR_ENERGY_VAD_REGION; |
| |
| if ((aecm->startupState == 0) | (aecm->vadUpdateCount > 1024)) { |
| // In startup phase or VAD update halted |
| aecm->farEnergyVAD = aecm->farEnergyMin + tmp16; |
| } else { |
| if (aecm->farEnergyVAD > aecm->farLogEnergy) { |
| aecm->farEnergyVAD += |
| (aecm->farLogEnergy + tmp16 - aecm->farEnergyVAD) >> 6; |
| aecm->vadUpdateCount = 0; |
| } else { |
| aecm->vadUpdateCount++; |
| } |
| } |
| // Put MSE threshold higher than VAD |
| aecm->farEnergyMSE = aecm->farEnergyVAD + (1 << 8); |
| } |
| |
| // Update VAD variables |
| if (aecm->farLogEnergy > aecm->farEnergyVAD) { |
| if ((aecm->startupState == 0) | (aecm->farEnergyMaxMin > FAR_ENERGY_DIFF)) { |
| // We are in startup or have significant dynamics in input speech level |
| aecm->currentVADValue = 1; |
| } |
| } else { |
| aecm->currentVADValue = 0; |
| } |
| if ((aecm->currentVADValue) && (aecm->firstVAD)) { |
| aecm->firstVAD = 0; |
| if (aecm->echoAdaptLogEnergy[0] > aecm->nearLogEnergy[0]) { |
| // The estimated echo has higher energy than the near end signal. |
| // This means that the initialization was too aggressive. Scale |
| // down by a factor 8 |
| for (i = 0; i < PART_LEN1; i++) { |
| aecm->channelAdapt16[i] >>= 3; |
| } |
| // Compensate the adapted echo energy level accordingly. |
| aecm->echoAdaptLogEnergy[0] -= (3 << 8); |
| aecm->firstVAD = 1; |
| } |
| } |
| } |
| |
| // WebRtcAecm_CalcStepSize(...) |
| // |
| // This function calculates the step size used in channel estimation |
| // |
| // |
| // @param aecm [in] Handle of the AECM instance. |
| // @param mu [out] (Return value) Stepsize in log2(), i.e. number of |
| // shifts. |
| // |
| // |
| int16_t WebRtcAecm_CalcStepSize(AecmCore* const aecm) { |
| int32_t tmp32; |
| int16_t tmp16; |
| int16_t mu = MU_MAX; |
| |
| // Here we calculate the step size mu used in the |
| // following NLMS based Channel estimation algorithm |
| if (!aecm->currentVADValue) { |
| // Far end energy level too low, no channel update |
| mu = 0; |
| } else if (aecm->startupState > 0) { |
| if (aecm->farEnergyMin >= aecm->farEnergyMax) { |
| mu = MU_MIN; |
| } else { |
| tmp16 = (aecm->farLogEnergy - aecm->farEnergyMin); |
| tmp32 = tmp16 * MU_DIFF; |
| tmp32 = WebRtcSpl_DivW32W16(tmp32, aecm->farEnergyMaxMin); |
| mu = MU_MIN - 1 - (int16_t)(tmp32); |
| // The -1 is an alternative to rounding. This way we get a larger |
| // stepsize, so we in some sense compensate for truncation in NLMS |
| } |
| if (mu < MU_MAX) { |
| mu = MU_MAX; // Equivalent with maximum step size of 2^-MU_MAX |
| } |
| } |
| |
| return mu; |
| } |
| |
| // WebRtcAecm_UpdateChannel(...) |
| // |
| // This function performs channel estimation. NLMS and decision on channel |
| // storage. |
| // |
| // |
| // @param aecm [i/o] Handle of the AECM instance. |
| // @param far_spectrum [in] Absolute value of the farend signal in Q(far_q) |
| // @param far_q [in] Q-domain of the farend signal |
| // @param dfa [in] Absolute value of the nearend signal |
| // (Q[aecm->dfaQDomain]) |
| // @param mu [in] NLMS step size. |
| // @param echoEst [i/o] Estimated echo in Q(far_q+RESOLUTION_CHANNEL16). |
| // |
| void WebRtcAecm_UpdateChannel(AecmCore* aecm, |
| const uint16_t* far_spectrum, |
| const int16_t far_q, |
| const uint16_t* const dfa, |
| const int16_t mu, |
| int32_t* echoEst) { |
| uint32_t tmpU32no1, tmpU32no2; |
| int32_t tmp32no1, tmp32no2; |
| int32_t mseStored; |
| int32_t mseAdapt; |
| |
| int i; |
| |
| int16_t zerosFar, zerosNum, zerosCh, zerosDfa; |
| int16_t shiftChFar, shiftNum, shift2ResChan; |
| int16_t tmp16no1; |
| int16_t xfaQ, dfaQ; |
| |
| // This is the channel estimation algorithm. It is base on NLMS but has a |
| // variable step length, which was calculated above. |
| if (mu) { |
| for (i = 0; i < PART_LEN1; i++) { |
| // Determine norm of channel and farend to make sure we don't get overflow |
| // in multiplication |
| zerosCh = WebRtcSpl_NormU32(aecm->channelAdapt32[i]); |
| zerosFar = WebRtcSpl_NormU32((uint32_t)far_spectrum[i]); |
| if (zerosCh + zerosFar > 31) { |
| // Multiplication is safe |
| tmpU32no1 = |
| WEBRTC_SPL_UMUL_32_16(aecm->channelAdapt32[i], far_spectrum[i]); |
| shiftChFar = 0; |
| } else { |
| // We need to shift down before multiplication |
| shiftChFar = 32 - zerosCh - zerosFar; |
| // If zerosCh == zerosFar == 0, shiftChFar is 32. A |
| // right shift of 32 is undefined. To avoid that, we |
| // do this check. |
| tmpU32no1 = |
| rtc::dchecked_cast<uint32_t>( |
| shiftChFar >= 32 ? 0 : aecm->channelAdapt32[i] >> shiftChFar) * |
| far_spectrum[i]; |
| } |
| // Determine Q-domain of numerator |
| zerosNum = WebRtcSpl_NormU32(tmpU32no1); |
| if (dfa[i]) { |
| zerosDfa = WebRtcSpl_NormU32((uint32_t)dfa[i]); |
| } else { |
| zerosDfa = 32; |
| } |
| tmp16no1 = zerosDfa - 2 + aecm->dfaNoisyQDomain - RESOLUTION_CHANNEL32 - |
| far_q + shiftChFar; |
| if (zerosNum > tmp16no1 + 1) { |
| xfaQ = tmp16no1; |
| dfaQ = zerosDfa - 2; |
| } else { |
| xfaQ = zerosNum - 2; |
| dfaQ = RESOLUTION_CHANNEL32 + far_q - aecm->dfaNoisyQDomain - |
| shiftChFar + xfaQ; |
| } |
| // Add in the same Q-domain |
| tmpU32no1 = WEBRTC_SPL_SHIFT_W32(tmpU32no1, xfaQ); |
| tmpU32no2 = WEBRTC_SPL_SHIFT_W32((uint32_t)dfa[i], dfaQ); |
| tmp32no1 = (int32_t)tmpU32no2 - (int32_t)tmpU32no1; |
| zerosNum = WebRtcSpl_NormW32(tmp32no1); |
| if ((tmp32no1) && (far_spectrum[i] > (CHANNEL_VAD << far_q))) { |
| // |
| // Update is needed |
| // |
| // This is what we would like to compute |
| // |
| // tmp32no1 = dfa[i] - (aecm->channelAdapt[i] * far_spectrum[i]) |
| // tmp32norm = (i + 1) |
| // aecm->channelAdapt[i] += (2^mu) * tmp32no1 |
| // / (tmp32norm * far_spectrum[i]) |
| // |
| |
| // Make sure we don't get overflow in multiplication. |
| if (zerosNum + zerosFar > 31) { |
| if (tmp32no1 > 0) { |
| tmp32no2 = |
| (int32_t)WEBRTC_SPL_UMUL_32_16(tmp32no1, far_spectrum[i]); |
| } else { |
| tmp32no2 = |
| -(int32_t)WEBRTC_SPL_UMUL_32_16(-tmp32no1, far_spectrum[i]); |
| } |
| shiftNum = 0; |
| } else { |
| shiftNum = 32 - (zerosNum + zerosFar); |
| if (tmp32no1 > 0) { |
| tmp32no2 = (tmp32no1 >> shiftNum) * far_spectrum[i]; |
| } else { |
| tmp32no2 = -((-tmp32no1 >> shiftNum) * far_spectrum[i]); |
| } |
| } |
| // Normalize with respect to frequency bin |
| tmp32no2 = WebRtcSpl_DivW32W16(tmp32no2, i + 1); |
| // Make sure we are in the right Q-domain |
| shift2ResChan = |
| shiftNum + shiftChFar - xfaQ - mu - ((30 - zerosFar) << 1); |
| if (WebRtcSpl_NormW32(tmp32no2) < shift2ResChan) { |
| tmp32no2 = WEBRTC_SPL_WORD32_MAX; |
| } else { |
| tmp32no2 = WEBRTC_SPL_SHIFT_W32(tmp32no2, shift2ResChan); |
| } |
| aecm->channelAdapt32[i] = |
| WebRtcSpl_AddSatW32(aecm->channelAdapt32[i], tmp32no2); |
| if (aecm->channelAdapt32[i] < 0) { |
| // We can never have negative channel gain |
| aecm->channelAdapt32[i] = 0; |
| } |
| aecm->channelAdapt16[i] = (int16_t)(aecm->channelAdapt32[i] >> 16); |
| } |
| } |
| } |
| // END: Adaptive channel update |
| |
| // Determine if we should store or restore the channel |
| if ((aecm->startupState == 0) & (aecm->currentVADValue)) { |
| // During startup we store the channel every block, |
| // and we recalculate echo estimate |
| WebRtcAecm_StoreAdaptiveChannel(aecm, far_spectrum, echoEst); |
| } else { |
| if (aecm->farLogEnergy < aecm->farEnergyMSE) { |
| aecm->mseChannelCount = 0; |
| } else { |
| aecm->mseChannelCount++; |
| } |
| // Enough data for validation. Store channel if we can. |
| if (aecm->mseChannelCount >= (MIN_MSE_COUNT + 10)) { |
| // We have enough data. |
| // Calculate MSE of "Adapt" and "Stored" versions. |
| // It is actually not MSE, but average absolute error. |
| mseStored = 0; |
| mseAdapt = 0; |
| for (i = 0; i < MIN_MSE_COUNT; i++) { |
| tmp32no1 = ((int32_t)aecm->echoStoredLogEnergy[i] - |
| (int32_t)aecm->nearLogEnergy[i]); |
| tmp32no2 = WEBRTC_SPL_ABS_W32(tmp32no1); |
| mseStored += tmp32no2; |
| |
| tmp32no1 = ((int32_t)aecm->echoAdaptLogEnergy[i] - |
| (int32_t)aecm->nearLogEnergy[i]); |
| tmp32no2 = WEBRTC_SPL_ABS_W32(tmp32no1); |
| mseAdapt += tmp32no2; |
| } |
| if (((mseStored << MSE_RESOLUTION) < (MIN_MSE_DIFF * mseAdapt)) & |
| ((aecm->mseStoredOld << MSE_RESOLUTION) < |
| (MIN_MSE_DIFF * aecm->mseAdaptOld))) { |
| // The stored channel has a significantly lower MSE than the adaptive |
| // one for two consecutive calculations. Reset the adaptive channel. |
| WebRtcAecm_ResetAdaptiveChannel(aecm); |
| } else if (((MIN_MSE_DIFF * mseStored) > (mseAdapt << MSE_RESOLUTION)) & |
| (mseAdapt < aecm->mseThreshold) & |
| (aecm->mseAdaptOld < aecm->mseThreshold)) { |
| // The adaptive channel has a significantly lower MSE than the stored |
| // one. The MSE for the adaptive channel has also been low for two |
| // consecutive calculations. Store the adaptive channel. |
| WebRtcAecm_StoreAdaptiveChannel(aecm, far_spectrum, echoEst); |
| |
| // Update threshold |
| if (aecm->mseThreshold == WEBRTC_SPL_WORD32_MAX) { |
| aecm->mseThreshold = (mseAdapt + aecm->mseAdaptOld); |
| } else { |
| int scaled_threshold = aecm->mseThreshold * 5 / 8; |
| aecm->mseThreshold += ((mseAdapt - scaled_threshold) * 205) >> 8; |
| } |
| } |
| |
| // Reset counter |
| aecm->mseChannelCount = 0; |
| |
| // Store the MSE values. |
| aecm->mseStoredOld = mseStored; |
| aecm->mseAdaptOld = mseAdapt; |
| } |
| } |
| // END: Determine if we should store or reset channel estimate. |
| } |
| |
| // CalcSuppressionGain(...) |
| // |
| // This function calculates the suppression gain that is used in the Wiener |
| // filter. |
| // |
| // |
| // @param aecm [i/n] Handle of the AECM instance. |
| // @param supGain [out] (Return value) Suppression gain with which to scale |
| // the noise |
| // level (Q14). |
| // |
| // |
| int16_t WebRtcAecm_CalcSuppressionGain(AecmCore* const aecm) { |
| int32_t tmp32no1; |
| |
| int16_t supGain = SUPGAIN_DEFAULT; |
| int16_t tmp16no1; |
| int16_t dE = 0; |
| |
| // Determine suppression gain used in the Wiener filter. The gain is based on |
| // a mix of far end energy and echo estimation error. Adjust for the far end |
| // signal level. A low signal level indicates no far end signal, hence we set |
| // the suppression gain to 0 |
| if (!aecm->currentVADValue) { |
| supGain = 0; |
| } else { |
| // Adjust for possible double talk. If we have large variations in |
| // estimation error we likely have double talk (or poor channel). |
| tmp16no1 = (aecm->nearLogEnergy[0] - aecm->echoStoredLogEnergy[0] - |
| ENERGY_DEV_OFFSET); |
| dE = WEBRTC_SPL_ABS_W16(tmp16no1); |
| |
| if (dE < ENERGY_DEV_TOL) { |
| // Likely no double talk. The better estimation, the more we can suppress |
| // signal. Update counters |
| if (dE < SUPGAIN_EPC_DT) { |
| tmp32no1 = aecm->supGainErrParamDiffAB * dE; |
| tmp32no1 += (SUPGAIN_EPC_DT >> 1); |
| tmp16no1 = (int16_t)WebRtcSpl_DivW32W16(tmp32no1, SUPGAIN_EPC_DT); |
| supGain = aecm->supGainErrParamA - tmp16no1; |
| } else { |
| tmp32no1 = aecm->supGainErrParamDiffBD * (ENERGY_DEV_TOL - dE); |
| tmp32no1 += ((ENERGY_DEV_TOL - SUPGAIN_EPC_DT) >> 1); |
| tmp16no1 = (int16_t)WebRtcSpl_DivW32W16( |
| tmp32no1, (ENERGY_DEV_TOL - SUPGAIN_EPC_DT)); |
| supGain = aecm->supGainErrParamD + tmp16no1; |
| } |
| } else { |
| // Likely in double talk. Use default value |
| supGain = aecm->supGainErrParamD; |
| } |
| } |
| |
| if (supGain > aecm->supGainOld) { |
| tmp16no1 = supGain; |
| } else { |
| tmp16no1 = aecm->supGainOld; |
| } |
| aecm->supGainOld = supGain; |
| if (tmp16no1 < aecm->supGain) { |
| aecm->supGain += (int16_t)((tmp16no1 - aecm->supGain) >> 4); |
| } else { |
| aecm->supGain += (int16_t)((tmp16no1 - aecm->supGain) >> 4); |
| } |
| |
| // END: Update suppression gain |
| |
| return aecm->supGain; |
| } |
| |
| void WebRtcAecm_BufferFarFrame(AecmCore* const aecm, |
| const int16_t* const farend, |
| const int farLen) { |
| int writeLen = farLen, writePos = 0; |
| |
| // Check if the write position must be wrapped |
| while (aecm->farBufWritePos + writeLen > FAR_BUF_LEN) { |
| // Write to remaining buffer space before wrapping |
| writeLen = FAR_BUF_LEN - aecm->farBufWritePos; |
| memcpy(aecm->farBuf + aecm->farBufWritePos, farend + writePos, |
| sizeof(int16_t) * writeLen); |
| aecm->farBufWritePos = 0; |
| writePos = writeLen; |
| writeLen = farLen - writeLen; |
| } |
| |
| memcpy(aecm->farBuf + aecm->farBufWritePos, farend + writePos, |
| sizeof(int16_t) * writeLen); |
| aecm->farBufWritePos += writeLen; |
| } |
| |
| void WebRtcAecm_FetchFarFrame(AecmCore* const aecm, |
| int16_t* const farend, |
| const int farLen, |
| const int knownDelay) { |
| int readLen = farLen; |
| int readPos = 0; |
| int delayChange = knownDelay - aecm->lastKnownDelay; |
| |
| aecm->farBufReadPos -= delayChange; |
| |
| // Check if delay forces a read position wrap |
| while (aecm->farBufReadPos < 0) { |
| aecm->farBufReadPos += FAR_BUF_LEN; |
| } |
| while (aecm->farBufReadPos > FAR_BUF_LEN - 1) { |
| aecm->farBufReadPos -= FAR_BUF_LEN; |
| } |
| |
| aecm->lastKnownDelay = knownDelay; |
| |
| // Check if read position must be wrapped |
| while (aecm->farBufReadPos + readLen > FAR_BUF_LEN) { |
| // Read from remaining buffer space before wrapping |
| readLen = FAR_BUF_LEN - aecm->farBufReadPos; |
| memcpy(farend + readPos, aecm->farBuf + aecm->farBufReadPos, |
| sizeof(int16_t) * readLen); |
| aecm->farBufReadPos = 0; |
| readPos = readLen; |
| readLen = farLen - readLen; |
| } |
| memcpy(farend + readPos, aecm->farBuf + aecm->farBufReadPos, |
| sizeof(int16_t) * readLen); |
| aecm->farBufReadPos += readLen; |
| } |
| |
| } // namespace webrtc |