| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/transient/transient_suppressor_impl.h" |
| |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <complex> |
| #include <deque> |
| #include <limits> |
| #include <set> |
| |
| #include "common_audio/include/audio_util.h" |
| #include "common_audio/signal_processing/include/signal_processing_library.h" |
| #include "common_audio/third_party/ooura/fft_size_256/fft4g.h" |
| #include "modules/audio_processing/transient/common.h" |
| #include "modules/audio_processing/transient/transient_detector.h" |
| #include "modules/audio_processing/transient/transient_suppressor.h" |
| #include "modules/audio_processing/transient/windows_private.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| |
| namespace webrtc { |
| |
| static const float kMeanIIRCoefficient = 0.5f; |
| static const float kVoiceThreshold = 0.02f; |
| |
| // TODO(aluebs): Check if these values work also for 48kHz. |
| static const size_t kMinVoiceBin = 3; |
| static const size_t kMaxVoiceBin = 60; |
| |
| namespace { |
| |
| float ComplexMagnitude(float a, float b) { |
| return std::abs(a) + std::abs(b); |
| } |
| |
| } // namespace |
| |
| TransientSuppressorImpl::TransientSuppressorImpl() |
| : data_length_(0), |
| detection_length_(0), |
| analysis_length_(0), |
| buffer_delay_(0), |
| complex_analysis_length_(0), |
| num_channels_(0), |
| window_(NULL), |
| detector_smoothed_(0.f), |
| keypress_counter_(0), |
| chunks_since_keypress_(0), |
| detection_enabled_(false), |
| suppression_enabled_(false), |
| use_hard_restoration_(false), |
| chunks_since_voice_change_(0), |
| seed_(182), |
| using_reference_(false) {} |
| |
| TransientSuppressorImpl::~TransientSuppressorImpl() {} |
| |
| int TransientSuppressorImpl::Initialize(int sample_rate_hz, |
| int detection_rate_hz, |
| int num_channels) { |
| switch (sample_rate_hz) { |
| case ts::kSampleRate8kHz: |
| analysis_length_ = 128u; |
| window_ = kBlocks80w128; |
| break; |
| case ts::kSampleRate16kHz: |
| analysis_length_ = 256u; |
| window_ = kBlocks160w256; |
| break; |
| case ts::kSampleRate32kHz: |
| analysis_length_ = 512u; |
| window_ = kBlocks320w512; |
| break; |
| case ts::kSampleRate48kHz: |
| analysis_length_ = 1024u; |
| window_ = kBlocks480w1024; |
| break; |
| default: |
| return -1; |
| } |
| if (detection_rate_hz != ts::kSampleRate8kHz && |
| detection_rate_hz != ts::kSampleRate16kHz && |
| detection_rate_hz != ts::kSampleRate32kHz && |
| detection_rate_hz != ts::kSampleRate48kHz) { |
| return -1; |
| } |
| if (num_channels <= 0) { |
| return -1; |
| } |
| |
| detector_.reset(new TransientDetector(detection_rate_hz)); |
| data_length_ = sample_rate_hz * ts::kChunkSizeMs / 1000; |
| if (data_length_ > analysis_length_) { |
| RTC_NOTREACHED(); |
| return -1; |
| } |
| buffer_delay_ = analysis_length_ - data_length_; |
| |
| complex_analysis_length_ = analysis_length_ / 2 + 1; |
| RTC_DCHECK_GE(complex_analysis_length_, kMaxVoiceBin); |
| num_channels_ = num_channels; |
| in_buffer_.reset(new float[analysis_length_ * num_channels_]); |
| memset(in_buffer_.get(), 0, |
| analysis_length_ * num_channels_ * sizeof(in_buffer_[0])); |
| detection_length_ = detection_rate_hz * ts::kChunkSizeMs / 1000; |
| detection_buffer_.reset(new float[detection_length_]); |
| memset(detection_buffer_.get(), 0, |
| detection_length_ * sizeof(detection_buffer_[0])); |
| out_buffer_.reset(new float[analysis_length_ * num_channels_]); |
| memset(out_buffer_.get(), 0, |
| analysis_length_ * num_channels_ * sizeof(out_buffer_[0])); |
| // ip[0] must be zero to trigger initialization using rdft(). |
| size_t ip_length = 2 + sqrtf(analysis_length_); |
| ip_.reset(new size_t[ip_length]()); |
| memset(ip_.get(), 0, ip_length * sizeof(ip_[0])); |
| wfft_.reset(new float[complex_analysis_length_ - 1]); |
| memset(wfft_.get(), 0, (complex_analysis_length_ - 1) * sizeof(wfft_[0])); |
| spectral_mean_.reset(new float[complex_analysis_length_ * num_channels_]); |
| memset(spectral_mean_.get(), 0, |
| complex_analysis_length_ * num_channels_ * sizeof(spectral_mean_[0])); |
| fft_buffer_.reset(new float[analysis_length_ + 2]); |
| memset(fft_buffer_.get(), 0, (analysis_length_ + 2) * sizeof(fft_buffer_[0])); |
| magnitudes_.reset(new float[complex_analysis_length_]); |
| memset(magnitudes_.get(), 0, |
| complex_analysis_length_ * sizeof(magnitudes_[0])); |
| mean_factor_.reset(new float[complex_analysis_length_]); |
| |
| static const float kFactorHeight = 10.f; |
| static const float kLowSlope = 1.f; |
| static const float kHighSlope = 0.3f; |
| for (size_t i = 0; i < complex_analysis_length_; ++i) { |
| mean_factor_[i] = |
| kFactorHeight / |
| (1.f + std::exp(kLowSlope * static_cast<int>(i - kMinVoiceBin))) + |
| kFactorHeight / |
| (1.f + std::exp(kHighSlope * static_cast<int>(kMaxVoiceBin - i))); |
| } |
| detector_smoothed_ = 0.f; |
| keypress_counter_ = 0; |
| chunks_since_keypress_ = 0; |
| detection_enabled_ = false; |
| suppression_enabled_ = false; |
| use_hard_restoration_ = false; |
| chunks_since_voice_change_ = 0; |
| seed_ = 182; |
| using_reference_ = false; |
| return 0; |
| } |
| |
| int TransientSuppressorImpl::Suppress(float* data, |
| size_t data_length, |
| int num_channels, |
| const float* detection_data, |
| size_t detection_length, |
| const float* reference_data, |
| size_t reference_length, |
| float voice_probability, |
| bool key_pressed) { |
| if (!data || data_length != data_length_ || num_channels != num_channels_ || |
| detection_length != detection_length_ || voice_probability < 0 || |
| voice_probability > 1) { |
| return -1; |
| } |
| |
| UpdateKeypress(key_pressed); |
| UpdateBuffers(data); |
| |
| int result = 0; |
| if (detection_enabled_) { |
| UpdateRestoration(voice_probability); |
| |
| if (!detection_data) { |
| // Use the input data of the first channel if special detection data is |
| // not supplied. |
| detection_data = &in_buffer_[buffer_delay_]; |
| } |
| |
| float detector_result = detector_->Detect(detection_data, detection_length, |
| reference_data, reference_length); |
| if (detector_result < 0) { |
| return -1; |
| } |
| |
| using_reference_ = detector_->using_reference(); |
| |
| // `detector_smoothed_` follows the `detector_result` when this last one is |
| // increasing, but has an exponential decaying tail to be able to suppress |
| // the ringing of keyclicks. |
| float smooth_factor = using_reference_ ? 0.6 : 0.1; |
| detector_smoothed_ = detector_result >= detector_smoothed_ |
| ? detector_result |
| : smooth_factor * detector_smoothed_ + |
| (1 - smooth_factor) * detector_result; |
| |
| for (int i = 0; i < num_channels_; ++i) { |
| Suppress(&in_buffer_[i * analysis_length_], |
| &spectral_mean_[i * complex_analysis_length_], |
| &out_buffer_[i * analysis_length_]); |
| } |
| } |
| |
| // If the suppression isn't enabled, we use the in buffer to delay the signal |
| // appropriately. This also gives time for the out buffer to be refreshed with |
| // new data between detection and suppression getting enabled. |
| for (int i = 0; i < num_channels_; ++i) { |
| memcpy(&data[i * data_length_], |
| suppression_enabled_ ? &out_buffer_[i * analysis_length_] |
| : &in_buffer_[i * analysis_length_], |
| data_length_ * sizeof(*data)); |
| } |
| return result; |
| } |
| |
| // This should only be called when detection is enabled. UpdateBuffers() must |
| // have been called. At return, `out_buffer_` will be filled with the |
| // processed output. |
| void TransientSuppressorImpl::Suppress(float* in_ptr, |
| float* spectral_mean, |
| float* out_ptr) { |
| // Go to frequency domain. |
| for (size_t i = 0; i < analysis_length_; ++i) { |
| // TODO(aluebs): Rename windows |
| fft_buffer_[i] = in_ptr[i] * window_[i]; |
| } |
| |
| WebRtc_rdft(analysis_length_, 1, fft_buffer_.get(), ip_.get(), wfft_.get()); |
| |
| // Since WebRtc_rdft puts R[n/2] in fft_buffer_[1], we move it to the end |
| // for convenience. |
| fft_buffer_[analysis_length_] = fft_buffer_[1]; |
| fft_buffer_[analysis_length_ + 1] = 0.f; |
| fft_buffer_[1] = 0.f; |
| |
| for (size_t i = 0; i < complex_analysis_length_; ++i) { |
| magnitudes_[i] = |
| ComplexMagnitude(fft_buffer_[i * 2], fft_buffer_[i * 2 + 1]); |
| } |
| // Restore audio if necessary. |
| if (suppression_enabled_) { |
| if (use_hard_restoration_) { |
| HardRestoration(spectral_mean); |
| } else { |
| SoftRestoration(spectral_mean); |
| } |
| } |
| |
| // Update the spectral mean. |
| for (size_t i = 0; i < complex_analysis_length_; ++i) { |
| spectral_mean[i] = (1 - kMeanIIRCoefficient) * spectral_mean[i] + |
| kMeanIIRCoefficient * magnitudes_[i]; |
| } |
| |
| // Back to time domain. |
| // Put R[n/2] back in fft_buffer_[1]. |
| fft_buffer_[1] = fft_buffer_[analysis_length_]; |
| |
| WebRtc_rdft(analysis_length_, -1, fft_buffer_.get(), ip_.get(), wfft_.get()); |
| const float fft_scaling = 2.f / analysis_length_; |
| |
| for (size_t i = 0; i < analysis_length_; ++i) { |
| out_ptr[i] += fft_buffer_[i] * window_[i] * fft_scaling; |
| } |
| } |
| |
| void TransientSuppressorImpl::UpdateKeypress(bool key_pressed) { |
| const int kKeypressPenalty = 1000 / ts::kChunkSizeMs; |
| const int kIsTypingThreshold = 1000 / ts::kChunkSizeMs; |
| const int kChunksUntilNotTyping = 4000 / ts::kChunkSizeMs; // 4 seconds. |
| |
| if (key_pressed) { |
| keypress_counter_ += kKeypressPenalty; |
| chunks_since_keypress_ = 0; |
| detection_enabled_ = true; |
| } |
| keypress_counter_ = std::max(0, keypress_counter_ - 1); |
| |
| if (keypress_counter_ > kIsTypingThreshold) { |
| if (!suppression_enabled_) { |
| RTC_LOG(LS_INFO) << "[ts] Transient suppression is now enabled."; |
| } |
| suppression_enabled_ = true; |
| keypress_counter_ = 0; |
| } |
| |
| if (detection_enabled_ && ++chunks_since_keypress_ > kChunksUntilNotTyping) { |
| if (suppression_enabled_) { |
| RTC_LOG(LS_INFO) << "[ts] Transient suppression is now disabled."; |
| } |
| detection_enabled_ = false; |
| suppression_enabled_ = false; |
| keypress_counter_ = 0; |
| } |
| } |
| |
| void TransientSuppressorImpl::UpdateRestoration(float voice_probability) { |
| const int kHardRestorationOffsetDelay = 3; |
| const int kHardRestorationOnsetDelay = 80; |
| |
| bool not_voiced = voice_probability < kVoiceThreshold; |
| |
| if (not_voiced == use_hard_restoration_) { |
| chunks_since_voice_change_ = 0; |
| } else { |
| ++chunks_since_voice_change_; |
| |
| if ((use_hard_restoration_ && |
| chunks_since_voice_change_ > kHardRestorationOffsetDelay) || |
| (!use_hard_restoration_ && |
| chunks_since_voice_change_ > kHardRestorationOnsetDelay)) { |
| use_hard_restoration_ = not_voiced; |
| chunks_since_voice_change_ = 0; |
| } |
| } |
| } |
| |
| // Shift buffers to make way for new data. Must be called after |
| // `detection_enabled_` is updated by UpdateKeypress(). |
| void TransientSuppressorImpl::UpdateBuffers(float* data) { |
| // TODO(aluebs): Change to ring buffer. |
| memmove(in_buffer_.get(), &in_buffer_[data_length_], |
| (buffer_delay_ + (num_channels_ - 1) * analysis_length_) * |
| sizeof(in_buffer_[0])); |
| // Copy new chunk to buffer. |
| for (int i = 0; i < num_channels_; ++i) { |
| memcpy(&in_buffer_[buffer_delay_ + i * analysis_length_], |
| &data[i * data_length_], data_length_ * sizeof(*data)); |
| } |
| if (detection_enabled_) { |
| // Shift previous chunk in out buffer. |
| memmove(out_buffer_.get(), &out_buffer_[data_length_], |
| (buffer_delay_ + (num_channels_ - 1) * analysis_length_) * |
| sizeof(out_buffer_[0])); |
| // Initialize new chunk in out buffer. |
| for (int i = 0; i < num_channels_; ++i) { |
| memset(&out_buffer_[buffer_delay_ + i * analysis_length_], 0, |
| data_length_ * sizeof(out_buffer_[0])); |
| } |
| } |
| } |
| |
| // Restores the unvoiced signal if a click is present. |
| // Attenuates by a certain factor every peak in the `fft_buffer_` that exceeds |
| // the spectral mean. The attenuation depends on `detector_smoothed_`. |
| // If a restoration takes place, the `magnitudes_` are updated to the new value. |
| void TransientSuppressorImpl::HardRestoration(float* spectral_mean) { |
| const float detector_result = |
| 1.f - std::pow(1.f - detector_smoothed_, using_reference_ ? 200.f : 50.f); |
| // To restore, we get the peaks in the spectrum. If higher than the previous |
| // spectral mean we adjust them. |
| for (size_t i = 0; i < complex_analysis_length_; ++i) { |
| if (magnitudes_[i] > spectral_mean[i] && magnitudes_[i] > 0) { |
| // RandU() generates values on [0, int16::max()] |
| const float phase = 2 * ts::kPi * WebRtcSpl_RandU(&seed_) / |
| std::numeric_limits<int16_t>::max(); |
| const float scaled_mean = detector_result * spectral_mean[i]; |
| |
| fft_buffer_[i * 2] = (1 - detector_result) * fft_buffer_[i * 2] + |
| scaled_mean * cosf(phase); |
| fft_buffer_[i * 2 + 1] = (1 - detector_result) * fft_buffer_[i * 2 + 1] + |
| scaled_mean * sinf(phase); |
| magnitudes_[i] = magnitudes_[i] - |
| detector_result * (magnitudes_[i] - spectral_mean[i]); |
| } |
| } |
| } |
| |
| // Restores the voiced signal if a click is present. |
| // Attenuates by a certain factor every peak in the `fft_buffer_` that exceeds |
| // the spectral mean and that is lower than some function of the current block |
| // frequency mean. The attenuation depends on `detector_smoothed_`. |
| // If a restoration takes place, the `magnitudes_` are updated to the new value. |
| void TransientSuppressorImpl::SoftRestoration(float* spectral_mean) { |
| // Get the spectral magnitude mean of the current block. |
| float block_frequency_mean = 0; |
| for (size_t i = kMinVoiceBin; i < kMaxVoiceBin; ++i) { |
| block_frequency_mean += magnitudes_[i]; |
| } |
| block_frequency_mean /= (kMaxVoiceBin - kMinVoiceBin); |
| |
| // To restore, we get the peaks in the spectrum. If higher than the |
| // previous spectral mean and lower than a factor of the block mean |
| // we adjust them. The factor is a double sigmoid that has a minimum in the |
| // voice frequency range (300Hz - 3kHz). |
| for (size_t i = 0; i < complex_analysis_length_; ++i) { |
| if (magnitudes_[i] > spectral_mean[i] && magnitudes_[i] > 0 && |
| (using_reference_ || |
| magnitudes_[i] < block_frequency_mean * mean_factor_[i])) { |
| const float new_magnitude = |
| magnitudes_[i] - |
| detector_smoothed_ * (magnitudes_[i] - spectral_mean[i]); |
| const float magnitude_ratio = new_magnitude / magnitudes_[i]; |
| |
| fft_buffer_[i * 2] *= magnitude_ratio; |
| fft_buffer_[i * 2 + 1] *= magnitude_ratio; |
| magnitudes_[i] = new_magnitude; |
| } |
| } |
| } |
| |
| } // namespace webrtc |