blob: 3da1be227071da85ea62b08f4ec3cdf3611286e5 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_mixer/audio_mixer_impl.h"
#include <algorithm>
#include <functional>
#include <iterator>
#include <utility>
#include "webrtc/audio/utility/audio_frame_operations.h"
#include "webrtc/base/logging.h"
#include "webrtc/modules/audio_mixer/audio_frame_manipulator.h"
#include "webrtc/modules/audio_mixer/default_output_rate_calculator.h"
namespace webrtc {
namespace {
struct SourceFrame {
SourceFrame(AudioMixerImpl::SourceStatus* source_status,
AudioFrame* audio_frame,
bool muted)
: source_status(source_status), audio_frame(audio_frame), muted(muted) {
RTC_DCHECK(source_status);
RTC_DCHECK(audio_frame);
if (!muted) {
energy = AudioMixerCalculateEnergy(*audio_frame);
}
}
SourceFrame(AudioMixerImpl::SourceStatus* source_status,
AudioFrame* audio_frame,
bool muted,
uint32_t energy)
: source_status(source_status),
audio_frame(audio_frame),
muted(muted),
energy(energy) {
RTC_DCHECK(source_status);
RTC_DCHECK(audio_frame);
}
AudioMixerImpl::SourceStatus* source_status = nullptr;
AudioFrame* audio_frame = nullptr;
bool muted = true;
uint32_t energy = 0;
};
// ShouldMixBefore(a, b) is used to select mixer sources.
bool ShouldMixBefore(const SourceFrame& a, const SourceFrame& b) {
if (a.muted != b.muted) {
return b.muted;
}
const auto a_activity = a.audio_frame->vad_activity_;
const auto b_activity = b.audio_frame->vad_activity_;
if (a_activity != b_activity) {
return a_activity == AudioFrame::kVadActive;
}
return a.energy > b.energy;
}
void RampAndUpdateGain(
const std::vector<SourceFrame>& mixed_sources_and_frames) {
for (const auto& source_frame : mixed_sources_and_frames) {
float target_gain = source_frame.source_status->is_mixed ? 1.0f : 0.0f;
Ramp(source_frame.source_status->gain, target_gain,
source_frame.audio_frame);
source_frame.source_status->gain = target_gain;
}
}
// Mix the AudioFrames stored in audioFrameList into mixed_audio.
int32_t MixFromList(AudioFrame* mixed_audio,
const AudioFrameList& audio_frame_list,
bool use_limiter) {
if (audio_frame_list.empty()) {
return 0;
}
if (audio_frame_list.size() == 1) {
mixed_audio->timestamp_ = audio_frame_list.front()->timestamp_;
mixed_audio->elapsed_time_ms_ = audio_frame_list.front()->elapsed_time_ms_;
} else {
// TODO(wu): Issue 3390.
// Audio frame timestamp is only supported in one channel case.
mixed_audio->timestamp_ = 0;
mixed_audio->elapsed_time_ms_ = -1;
}
for (const auto& frame : audio_frame_list) {
RTC_DCHECK_EQ(mixed_audio->sample_rate_hz_, frame->sample_rate_hz_);
RTC_DCHECK_EQ(
frame->samples_per_channel_,
static_cast<size_t>((mixed_audio->sample_rate_hz_ *
webrtc::AudioMixerImpl::kFrameDurationInMs) /
1000));
// Mix |f.frame| into |mixed_audio|, with saturation protection.
// These effect is applied to |f.frame| itself prior to mixing.
if (use_limiter) {
// This is to avoid saturation in the mixing. It is only
// meaningful if the limiter will be used.
AudioFrameOperations::ApplyHalfGain(frame);
}
RTC_DCHECK_EQ(frame->num_channels_, mixed_audio->num_channels_);
AudioFrameOperations::Add(*frame, mixed_audio);
}
return 0;
}
AudioMixerImpl::SourceStatusList::const_iterator FindSourceInList(
AudioMixerImpl::Source const* audio_source,
AudioMixerImpl::SourceStatusList const* audio_source_list) {
return std::find_if(
audio_source_list->begin(), audio_source_list->end(),
[audio_source](const std::unique_ptr<AudioMixerImpl::SourceStatus>& p) {
return p->audio_source == audio_source;
});
}
// TODO(aleloi): remove non-const version when WEBRTC only supports modern STL.
AudioMixerImpl::SourceStatusList::iterator FindSourceInList(
AudioMixerImpl::Source const* audio_source,
AudioMixerImpl::SourceStatusList* audio_source_list) {
return std::find_if(
audio_source_list->begin(), audio_source_list->end(),
[audio_source](const std::unique_ptr<AudioMixerImpl::SourceStatus>& p) {
return p->audio_source == audio_source;
});
}
std::unique_ptr<AudioProcessing> CreateLimiter() {
Config config;
config.Set<ExperimentalAgc>(new ExperimentalAgc(false));
std::unique_ptr<AudioProcessing> limiter(AudioProcessing::Create(config));
if (!limiter.get()) {
return nullptr;
}
if (limiter->gain_control()->set_mode(GainControl::kFixedDigital) !=
limiter->kNoError) {
return nullptr;
}
// We smoothly limit the mixed frame to -7 dbFS. -6 would correspond to the
// divide-by-2 but -7 is used instead to give a bit of headroom since the
// AGC is not a hard limiter.
if (limiter->gain_control()->set_target_level_dbfs(7) != limiter->kNoError) {
return nullptr;
}
if (limiter->gain_control()->set_compression_gain_db(0) !=
limiter->kNoError) {
return nullptr;
}
if (limiter->gain_control()->enable_limiter(true) != limiter->kNoError) {
return nullptr;
}
if (limiter->gain_control()->Enable(true) != limiter->kNoError) {
return nullptr;
}
return limiter;
}
} // namespace
AudioMixerImpl::AudioMixerImpl(
std::unique_ptr<AudioProcessing> limiter,
std::unique_ptr<OutputRateCalculator> output_rate_calculator)
: output_rate_calculator_(std::move(output_rate_calculator)),
output_frequency_(0),
sample_size_(0),
audio_source_list_(),
use_limiter_(true),
time_stamp_(0),
limiter_(std::move(limiter)) {}
AudioMixerImpl::~AudioMixerImpl() {}
rtc::scoped_refptr<AudioMixerImpl> AudioMixerImpl::Create() {
return CreateWithOutputRateCalculator(
std::unique_ptr<DefaultOutputRateCalculator>(
new DefaultOutputRateCalculator()));
}
rtc::scoped_refptr<AudioMixerImpl>
AudioMixerImpl::CreateWithOutputRateCalculator(
std::unique_ptr<OutputRateCalculator> output_rate_calculator) {
return rtc::scoped_refptr<AudioMixerImpl>(
new rtc::RefCountedObject<AudioMixerImpl>(
CreateLimiter(), std::move(output_rate_calculator)));
}
void AudioMixerImpl::Mix(size_t number_of_channels,
AudioFrame* audio_frame_for_mixing) {
RTC_DCHECK(number_of_channels == 1 || number_of_channels == 2);
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
CalculateOutputFrequency();
AudioFrameList mix_list;
{
rtc::CritScope lock(&crit_);
mix_list = GetAudioFromSources();
for (const auto& frame : mix_list) {
RemixFrame(number_of_channels, frame);
}
audio_frame_for_mixing->UpdateFrame(
-1, time_stamp_, NULL, 0, OutputFrequency(), AudioFrame::kNormalSpeech,
AudioFrame::kVadPassive, number_of_channels);
time_stamp_ += static_cast<uint32_t>(sample_size_);
use_limiter_ = mix_list.size() > 1;
// We only use the limiter if we're actually mixing multiple streams.
MixFromList(audio_frame_for_mixing, mix_list, use_limiter_);
}
if (audio_frame_for_mixing->samples_per_channel_ == 0) {
// Nothing was mixed, set the audio samples to silence.
audio_frame_for_mixing->samples_per_channel_ = sample_size_;
AudioFrameOperations::Mute(audio_frame_for_mixing);
} else {
// Only call the limiter if we have something to mix.
LimitMixedAudio(audio_frame_for_mixing);
}
return;
}
void AudioMixerImpl::CalculateOutputFrequency() {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
rtc::CritScope lock(&crit_);
std::vector<int> preferred_rates;
std::transform(audio_source_list_.begin(), audio_source_list_.end(),
std::back_inserter(preferred_rates),
[&](std::unique_ptr<SourceStatus>& a) {
return a->audio_source->PreferredSampleRate();
});
output_frequency_ =
output_rate_calculator_->CalculateOutputRate(preferred_rates);
sample_size_ = (output_frequency_ * kFrameDurationInMs) / 1000;
}
int AudioMixerImpl::OutputFrequency() const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
return output_frequency_;
}
bool AudioMixerImpl::AddSource(Source* audio_source) {
RTC_DCHECK(audio_source);
rtc::CritScope lock(&crit_);
RTC_DCHECK(FindSourceInList(audio_source, &audio_source_list_) ==
audio_source_list_.end())
<< "Source already added to mixer";
audio_source_list_.emplace_back(new SourceStatus(audio_source, false, 0));
return true;
}
void AudioMixerImpl::RemoveSource(Source* audio_source) {
RTC_DCHECK(audio_source);
rtc::CritScope lock(&crit_);
const auto iter = FindSourceInList(audio_source, &audio_source_list_);
RTC_DCHECK(iter != audio_source_list_.end()) << "Source not present in mixer";
audio_source_list_.erase(iter);
}
AudioFrameList AudioMixerImpl::GetAudioFromSources() {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
AudioFrameList result;
std::vector<SourceFrame> audio_source_mixing_data_list;
std::vector<SourceFrame> ramp_list;
// Get audio from the audio sources and put it in the SourceFrame vector.
for (auto& source_and_status : audio_source_list_) {
const auto audio_frame_info =
source_and_status->audio_source->GetAudioFrameWithInfo(
OutputFrequency(), &source_and_status->audio_frame);
if (audio_frame_info == Source::AudioFrameInfo::kError) {
LOG_F(LS_WARNING) << "failed to GetAudioFrameWithInfo() from source";
continue;
}
audio_source_mixing_data_list.emplace_back(
source_and_status.get(), &source_and_status->audio_frame,
audio_frame_info == Source::AudioFrameInfo::kMuted);
}
// Sort frames by sorting function.
std::sort(audio_source_mixing_data_list.begin(),
audio_source_mixing_data_list.end(), ShouldMixBefore);
int max_audio_frame_counter = kMaximumAmountOfMixedAudioSources;
// Go through list in order and put unmuted frames in result list.
for (const auto& p : audio_source_mixing_data_list) {
// Filter muted.
if (p.muted) {
p.source_status->is_mixed = false;
continue;
}
// Add frame to result vector for mixing.
bool is_mixed = false;
if (max_audio_frame_counter > 0) {
--max_audio_frame_counter;
result.push_back(p.audio_frame);
ramp_list.emplace_back(p.source_status, p.audio_frame, false, -1);
is_mixed = true;
}
p.source_status->is_mixed = is_mixed;
}
RampAndUpdateGain(ramp_list);
return result;
}
bool AudioMixerImpl::LimitMixedAudio(AudioFrame* mixed_audio) const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
if (!use_limiter_) {
return true;
}
// Smoothly limit the mixed frame.
const int error = limiter_->ProcessStream(mixed_audio);
// And now we can safely restore the level. This procedure results in
// some loss of resolution, deemed acceptable.
//
// It's possible to apply the gain in the AGC (with a target level of 0 dbFS
// and compression gain of 6 dB). However, in the transition frame when this
// is enabled (moving from one to two audio sources) it has the potential to
// create discontinuities in the mixed frame.
//
// Instead we double the frame (with addition since left-shifting a
// negative value is undefined).
AudioFrameOperations::Add(*mixed_audio, mixed_audio);
if (error != limiter_->kNoError) {
LOG_F(LS_ERROR) << "Error from AudioProcessing: " << error;
RTC_NOTREACHED();
return false;
}
return true;
}
bool AudioMixerImpl::GetAudioSourceMixabilityStatusForTest(
AudioMixerImpl::Source* audio_source) const {
RTC_DCHECK_RUNS_SERIALIZED(&race_checker_);
rtc::CritScope lock(&crit_);
const auto iter = FindSourceInList(audio_source, &audio_source_list_);
if (iter != audio_source_list_.end()) {
return (*iter)->is_mixed;
}
LOG(LS_ERROR) << "Audio source unknown";
return false;
}
} // namespace webrtc