blob: 74261dff245bbaa9b4af1ce69b7651a8ffa33dd8 [file] [log] [blame]
/*
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <atomic>
#include <chrono> // Not allowed in production per Chromium style guide.
#include <memory>
#include <thread> // Not allowed in production per Chromium style guide.
#include "absl/memory/memory.h"
#include "rtc_base/event.h"
#include "rtc_base/task_queue_for_test.h"
#include "rtc_base/task_utils/repeating_task.h"
#include "test/gmock.h"
#include "test/gtest.h"
// NOTE: Since these tests rely on real time behavior, they will be flaky
// if run on heavily loaded systems.
namespace webrtc {
namespace {
using ::testing::AtLeast;
using ::testing::Invoke;
using ::testing::MockFunction;
using ::testing::NiceMock;
using ::testing::Return;
constexpr TimeDelta kTimeout = TimeDelta::Millis<1000>();
void Sleep(TimeDelta time_delta) {
// Note that Chromium style guide prohibits use of <thread> and <chrono> in
// production code, used here since webrtc::SleepMs may return early.
std::this_thread::sleep_for(std::chrono::microseconds(time_delta.us()));
}
class MockClosure {
public:
MOCK_METHOD0(Call, TimeDelta());
MOCK_METHOD0(Delete, void());
};
class MoveOnlyClosure {
public:
explicit MoveOnlyClosure(MockClosure* mock) : mock_(mock) {}
MoveOnlyClosure(const MoveOnlyClosure&) = delete;
MoveOnlyClosure(MoveOnlyClosure&& other) : mock_(other.mock_) {
other.mock_ = nullptr;
}
~MoveOnlyClosure() {
if (mock_)
mock_->Delete();
}
TimeDelta operator()() { return mock_->Call(); }
private:
MockClosure* mock_;
};
// Helper closure class to stop repeating task on a task queue. This is
// equivalent to [handle{move(handle)}] { handle.Stop(); } in c++14.
class TaskHandleStopper {
public:
explicit TaskHandleStopper(RepeatingTaskHandle handle)
: handle_(std::move(handle)) {}
void operator()() { handle_.Stop(); }
private:
RepeatingTaskHandle handle_;
};
} // namespace
TEST(RepeatingTaskTest, TaskIsStoppedOnStop) {
const TimeDelta kShortInterval = TimeDelta::ms(5);
const TimeDelta kLongInterval = TimeDelta::ms(20);
const int kShortIntervalCount = 4;
const int kMargin = 1;
TaskQueueForTest task_queue("TestQueue");
std::atomic_int counter(0);
auto handle = RepeatingTaskHandle::Start(task_queue.Get(), [&] {
if (++counter >= kShortIntervalCount)
return kLongInterval;
return kShortInterval;
});
// Sleep long enough to go through the initial phase.
Sleep(kShortInterval * (kShortIntervalCount + kMargin));
EXPECT_EQ(counter.load(), kShortIntervalCount);
task_queue.PostTask(TaskHandleStopper(std::move(handle)));
// Sleep long enough that the task would run at least once more if not
// stopped.
Sleep(kLongInterval * 2);
EXPECT_EQ(counter.load(), kShortIntervalCount);
}
TEST(RepeatingTaskTest, CompensatesForLongRunTime) {
const int kTargetCount = 20;
const int kTargetCountMargin = 2;
const TimeDelta kRepeatInterval = TimeDelta::ms(2);
// Sleeping inside the task for longer than the repeat interval once, should
// be compensated for by repeating the task faster to catch up.
const TimeDelta kSleepDuration = TimeDelta::ms(20);
const int kSleepAtCount = 3;
std::atomic_int counter(0);
TaskQueueForTest task_queue("TestQueue");
RepeatingTaskHandle::Start(task_queue.Get(), [&] {
if (++counter == kSleepAtCount)
Sleep(kSleepDuration);
return kRepeatInterval;
});
Sleep(kRepeatInterval * kTargetCount);
// Execution time should not have affected the run count,
// but we allow some margin to reduce flakiness.
EXPECT_GE(counter.load(), kTargetCount - kTargetCountMargin);
}
TEST(RepeatingTaskTest, CompensatesForShortRunTime) {
std::atomic_int counter(0);
TaskQueueForTest task_queue("TestQueue");
RepeatingTaskHandle::Start(task_queue.Get(), [&] {
++counter;
// Sleeping for the 10 ms should be compensated.
Sleep(TimeDelta::ms(10));
return TimeDelta::ms(30);
});
Sleep(TimeDelta::ms(40));
// We expect that the task have been called twice, once directly at Start and
// once after 30 ms has passed.
EXPECT_EQ(counter.load(), 2);
}
TEST(RepeatingTaskTest, CancelDelayedTaskBeforeItRuns) {
rtc::Event done;
MockClosure mock;
EXPECT_CALL(mock, Call).Times(0);
EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); }));
TaskQueueForTest task_queue("queue");
auto handle = RepeatingTaskHandle::DelayedStart(
task_queue.Get(), TimeDelta::ms(100), MoveOnlyClosure(&mock));
task_queue.PostTask(TaskHandleStopper(std::move(handle)));
EXPECT_TRUE(done.Wait(kTimeout.ms()));
}
TEST(RepeatingTaskTest, CancelTaskAfterItRuns) {
rtc::Event done;
MockClosure mock;
EXPECT_CALL(mock, Call).WillOnce(Return(TimeDelta::ms(100)));
EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); }));
TaskQueueForTest task_queue("queue");
auto handle =
RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&mock));
task_queue.PostTask(TaskHandleStopper(std::move(handle)));
EXPECT_TRUE(done.Wait(kTimeout.ms()));
}
TEST(RepeatingTaskTest, TaskCanStopItself) {
std::atomic_int counter(0);
TaskQueueForTest task_queue("TestQueue");
RepeatingTaskHandle handle;
task_queue.PostTask([&] {
handle = RepeatingTaskHandle::Start(task_queue.Get(), [&] {
++counter;
handle.Stop();
return TimeDelta::ms(2);
});
});
Sleep(TimeDelta::ms(10));
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, ZeroReturnValueRepostsTheTask) {
NiceMock<MockClosure> closure;
rtc::Event done;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Zero()))
.WillOnce(Invoke([&done] {
done.Set();
return kTimeout;
}));
TaskQueueForTest task_queue("queue");
RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&closure));
EXPECT_TRUE(done.Wait(kTimeout.ms()));
}
TEST(RepeatingTaskTest, StartPeriodicTask) {
MockFunction<TimeDelta()> closure;
rtc::Event done;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::ms(20)))
.WillOnce(Return(TimeDelta::ms(20)))
.WillOnce(Invoke([&done] {
done.Set();
return kTimeout;
}));
TaskQueueForTest task_queue("queue");
RepeatingTaskHandle::Start(task_queue.Get(), closure.AsStdFunction());
EXPECT_TRUE(done.Wait(kTimeout.ms()));
}
TEST(RepeatingTaskTest, Example) {
class ObjectOnTaskQueue {
public:
void DoPeriodicTask() {}
TimeDelta TimeUntilNextRun() { return TimeDelta::ms(100); }
void StartPeriodicTask(RepeatingTaskHandle* handle,
TaskQueueBase* task_queue) {
*handle = RepeatingTaskHandle::Start(task_queue, [this] {
DoPeriodicTask();
return TimeUntilNextRun();
});
}
};
TaskQueueForTest task_queue("queue");
auto object = absl::make_unique<ObjectOnTaskQueue>();
// Create and start the periodic task.
RepeatingTaskHandle handle;
object->StartPeriodicTask(&handle, task_queue.Get());
// Restart the task
task_queue.PostTask(TaskHandleStopper(std::move(handle)));
object->StartPeriodicTask(&handle, task_queue.Get());
task_queue.PostTask(TaskHandleStopper(std::move(handle)));
struct Destructor {
void operator()() { object.reset(); }
std::unique_ptr<ObjectOnTaskQueue> object;
};
task_queue.PostTask(Destructor{std::move(object)});
// Do not wait for the destructor closure in order to create a race between
// task queue destruction and running the desctructor closure.
}
} // namespace webrtc