| /* |
| * Copyright 2006 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <math.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| #if defined(WEBRTC_POSIX) |
| #include <netinet/in.h> |
| #endif |
| |
| #include <algorithm> |
| #include <memory> |
| #include <utility> |
| |
| #include "absl/memory/memory.h" |
| #include "rtc_base/arraysize.h" |
| #include "rtc_base/async_packet_socket.h" |
| #include "rtc_base/async_socket.h" |
| #include "rtc_base/async_udp_socket.h" |
| #include "rtc_base/fake_clock.h" |
| #include "rtc_base/gunit.h" |
| #include "rtc_base/ip_address.h" |
| #include "rtc_base/location.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/message_handler.h" |
| #include "rtc_base/socket.h" |
| #include "rtc_base/socket_address.h" |
| #include "rtc_base/test_client.h" |
| #include "rtc_base/test_utils.h" |
| #include "rtc_base/third_party/sigslot/sigslot.h" |
| #include "rtc_base/thread.h" |
| #include "rtc_base/time_utils.h" |
| #include "rtc_base/virtual_socket_server.h" |
| #include "test/gtest.h" |
| |
| namespace rtc { |
| namespace { |
| |
| using webrtc::testing::SSE_CLOSE; |
| using webrtc::testing::SSE_ERROR; |
| using webrtc::testing::SSE_OPEN; |
| using webrtc::testing::SSE_READ; |
| using webrtc::testing::SSE_WRITE; |
| using webrtc::testing::StreamSink; |
| |
| // Sends at a constant rate but with random packet sizes. |
| struct Sender : public MessageHandlerAutoCleanup { |
| Sender(Thread* th, AsyncSocket* s, uint32_t rt) |
| : thread(th), |
| socket(std::make_unique<AsyncUDPSocket>(s)), |
| done(false), |
| rate(rt), |
| count(0) { |
| last_send = rtc::TimeMillis(); |
| thread->PostDelayed(RTC_FROM_HERE, NextDelay(), this, 1); |
| } |
| |
| uint32_t NextDelay() { |
| uint32_t size = (rand() % 4096) + 1; |
| return 1000 * size / rate; |
| } |
| |
| void OnMessage(Message* pmsg) override { |
| ASSERT_EQ(1u, pmsg->message_id); |
| |
| if (done) |
| return; |
| |
| int64_t cur_time = rtc::TimeMillis(); |
| int64_t delay = cur_time - last_send; |
| uint32_t size = static_cast<uint32_t>(rate * delay / 1000); |
| size = std::min<uint32_t>(size, 4096); |
| size = std::max<uint32_t>(size, sizeof(uint32_t)); |
| |
| count += size; |
| memcpy(dummy, &cur_time, sizeof(cur_time)); |
| socket->Send(dummy, size, options); |
| |
| last_send = cur_time; |
| thread->PostDelayed(RTC_FROM_HERE, NextDelay(), this, 1); |
| } |
| |
| Thread* thread; |
| std::unique_ptr<AsyncUDPSocket> socket; |
| rtc::PacketOptions options; |
| bool done; |
| uint32_t rate; // bytes per second |
| uint32_t count; |
| int64_t last_send; |
| char dummy[4096]; |
| }; |
| |
| struct Receiver : public MessageHandlerAutoCleanup, |
| public sigslot::has_slots<> { |
| Receiver(Thread* th, AsyncSocket* s, uint32_t bw) |
| : thread(th), |
| socket(std::make_unique<AsyncUDPSocket>(s)), |
| bandwidth(bw), |
| done(false), |
| count(0), |
| sec_count(0), |
| sum(0), |
| sum_sq(0), |
| samples(0) { |
| socket->SignalReadPacket.connect(this, &Receiver::OnReadPacket); |
| thread->PostDelayed(RTC_FROM_HERE, 1000, this, 1); |
| } |
| |
| ~Receiver() override { thread->Clear(this); } |
| |
| void OnReadPacket(AsyncPacketSocket* s, |
| const char* data, |
| size_t size, |
| const SocketAddress& remote_addr, |
| const int64_t& /* packet_time_us */) { |
| ASSERT_EQ(socket.get(), s); |
| ASSERT_GE(size, 4U); |
| |
| count += size; |
| sec_count += size; |
| |
| uint32_t send_time = *reinterpret_cast<const uint32_t*>(data); |
| uint32_t recv_time = rtc::TimeMillis(); |
| uint32_t delay = recv_time - send_time; |
| sum += delay; |
| sum_sq += delay * delay; |
| samples += 1; |
| } |
| |
| void OnMessage(Message* pmsg) override { |
| ASSERT_EQ(1u, pmsg->message_id); |
| |
| if (done) |
| return; |
| |
| // It is always possible for us to receive more than expected because |
| // packets can be further delayed in delivery. |
| if (bandwidth > 0) |
| ASSERT_TRUE(sec_count <= 5 * bandwidth / 4); |
| sec_count = 0; |
| thread->PostDelayed(RTC_FROM_HERE, 1000, this, 1); |
| } |
| |
| Thread* thread; |
| std::unique_ptr<AsyncUDPSocket> socket; |
| uint32_t bandwidth; |
| bool done; |
| size_t count; |
| size_t sec_count; |
| double sum; |
| double sum_sq; |
| uint32_t samples; |
| }; |
| |
| // Note: This test uses a fake clock in addition to a virtual network. |
| class VirtualSocketServerTest : public ::testing::Test { |
| public: |
| VirtualSocketServerTest() |
| : ss_(&fake_clock_), |
| thread_(&ss_), |
| kIPv4AnyAddress(IPAddress(INADDR_ANY), 0), |
| kIPv6AnyAddress(IPAddress(in6addr_any), 0) {} |
| |
| void CheckPortIncrementalization(const SocketAddress& post, |
| const SocketAddress& pre) { |
| EXPECT_EQ(post.port(), pre.port() + 1); |
| IPAddress post_ip = post.ipaddr(); |
| IPAddress pre_ip = pre.ipaddr(); |
| EXPECT_EQ(pre_ip.family(), post_ip.family()); |
| if (post_ip.family() == AF_INET) { |
| in_addr pre_ipv4 = pre_ip.ipv4_address(); |
| in_addr post_ipv4 = post_ip.ipv4_address(); |
| EXPECT_EQ(post_ipv4.s_addr, pre_ipv4.s_addr); |
| } else if (post_ip.family() == AF_INET6) { |
| in6_addr post_ip6 = post_ip.ipv6_address(); |
| in6_addr pre_ip6 = pre_ip.ipv6_address(); |
| uint32_t* post_as_ints = reinterpret_cast<uint32_t*>(&post_ip6.s6_addr); |
| uint32_t* pre_as_ints = reinterpret_cast<uint32_t*>(&pre_ip6.s6_addr); |
| EXPECT_EQ(post_as_ints[3], pre_as_ints[3]); |
| } |
| } |
| |
| // Test a client can bind to the any address, and all sent packets will have |
| // the default route as the source address. Also, it can receive packets sent |
| // to the default route. |
| void TestDefaultRoute(const IPAddress& default_route) { |
| ss_.SetDefaultRoute(default_route); |
| |
| // Create client1 bound to the any address. |
| AsyncSocket* socket = |
| ss_.CreateAsyncSocket(default_route.family(), SOCK_DGRAM); |
| socket->Bind(EmptySocketAddressWithFamily(default_route.family())); |
| SocketAddress client1_any_addr = socket->GetLocalAddress(); |
| EXPECT_TRUE(client1_any_addr.IsAnyIP()); |
| auto client1 = std::make_unique<TestClient>( |
| std::make_unique<AsyncUDPSocket>(socket), &fake_clock_); |
| |
| // Create client2 bound to the default route. |
| AsyncSocket* socket2 = |
| ss_.CreateAsyncSocket(default_route.family(), SOCK_DGRAM); |
| socket2->Bind(SocketAddress(default_route, 0)); |
| SocketAddress client2_addr = socket2->GetLocalAddress(); |
| EXPECT_FALSE(client2_addr.IsAnyIP()); |
| auto client2 = std::make_unique<TestClient>( |
| std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_); |
| |
| // Client1 sends to client2, client2 should see the default route as |
| // client1's address. |
| SocketAddress client1_addr; |
| EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); |
| EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); |
| EXPECT_EQ(client1_addr, |
| SocketAddress(default_route, client1_any_addr.port())); |
| |
| // Client2 can send back to client1's default route address. |
| EXPECT_EQ(3, client2->SendTo("foo", 3, client1_addr)); |
| EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); |
| } |
| |
| void BasicTest(const SocketAddress& initial_addr) { |
| AsyncSocket* socket = |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM); |
| socket->Bind(initial_addr); |
| SocketAddress server_addr = socket->GetLocalAddress(); |
| // Make sure VSS didn't switch families on us. |
| EXPECT_EQ(server_addr.family(), initial_addr.family()); |
| |
| auto client1 = std::make_unique<TestClient>( |
| std::make_unique<AsyncUDPSocket>(socket), &fake_clock_); |
| AsyncSocket* socket2 = |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM); |
| auto client2 = std::make_unique<TestClient>( |
| std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_); |
| |
| SocketAddress client2_addr; |
| EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr)); |
| EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); |
| |
| SocketAddress client1_addr; |
| EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); |
| EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); |
| EXPECT_EQ(client1_addr, server_addr); |
| |
| SocketAddress empty = EmptySocketAddressWithFamily(initial_addr.family()); |
| for (int i = 0; i < 10; i++) { |
| client2 = std::make_unique<TestClient>( |
| absl::WrapUnique(AsyncUDPSocket::Create(&ss_, empty)), &fake_clock_); |
| |
| SocketAddress next_client2_addr; |
| EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr)); |
| EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &next_client2_addr)); |
| CheckPortIncrementalization(next_client2_addr, client2_addr); |
| // EXPECT_EQ(next_client2_addr.port(), client2_addr.port() + 1); |
| |
| SocketAddress server_addr2; |
| EXPECT_EQ(6, client1->SendTo("bizbaz", 6, next_client2_addr)); |
| EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &server_addr2)); |
| EXPECT_EQ(server_addr2, server_addr); |
| |
| client2_addr = next_client2_addr; |
| } |
| } |
| |
| // initial_addr should be made from either INADDR_ANY or in6addr_any. |
| void ConnectTest(const SocketAddress& initial_addr) { |
| StreamSink sink; |
| SocketAddress accept_addr; |
| const SocketAddress kEmptyAddr = |
| EmptySocketAddressWithFamily(initial_addr.family()); |
| |
| // Create client |
| std::unique_ptr<AsyncSocket> client = absl::WrapUnique( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(client.get()); |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_TRUE(client->GetLocalAddress().IsNil()); |
| |
| // Create server |
| std::unique_ptr<AsyncSocket> server = absl::WrapUnique( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(server.get()); |
| EXPECT_NE(0, server->Listen(5)); // Bind required |
| EXPECT_EQ(0, server->Bind(initial_addr)); |
| EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); |
| EXPECT_EQ(0, server->Listen(5)); |
| EXPECT_EQ(server->GetState(), AsyncSocket::CS_CONNECTING); |
| |
| // No pending server connections |
| EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); |
| EXPECT_TRUE(nullptr == server->Accept(&accept_addr)); |
| EXPECT_EQ(AF_UNSPEC, accept_addr.family()); |
| |
| // Attempt connect to listening socket |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| EXPECT_NE(client->GetLocalAddress(), kEmptyAddr); // Implicit Bind |
| EXPECT_NE(AF_UNSPEC, client->GetLocalAddress().family()); // Implicit Bind |
| EXPECT_NE(client->GetLocalAddress(), server->GetLocalAddress()); |
| |
| // Client is connecting |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING); |
| EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); |
| EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| // Client still connecting |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING); |
| EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); |
| EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); |
| |
| // Server has pending connection |
| EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); |
| std::unique_ptr<Socket> accepted = |
| absl::WrapUnique(server->Accept(&accept_addr)); |
| EXPECT_TRUE(nullptr != accepted); |
| EXPECT_NE(accept_addr, kEmptyAddr); |
| EXPECT_EQ(accepted->GetRemoteAddress(), accept_addr); |
| |
| EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED); |
| EXPECT_EQ(accepted->GetLocalAddress(), server->GetLocalAddress()); |
| EXPECT_EQ(accepted->GetRemoteAddress(), client->GetLocalAddress()); |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| // Client has connected |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTED); |
| EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN)); |
| EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); |
| EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress()); |
| EXPECT_EQ(client->GetRemoteAddress(), accepted->GetLocalAddress()); |
| } |
| |
| void ConnectToNonListenerTest(const SocketAddress& initial_addr) { |
| StreamSink sink; |
| SocketAddress accept_addr; |
| const SocketAddress nil_addr; |
| const SocketAddress empty_addr = |
| EmptySocketAddressWithFamily(initial_addr.family()); |
| |
| // Create client |
| std::unique_ptr<AsyncSocket> client = absl::WrapUnique( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(client.get()); |
| |
| // Create server |
| std::unique_ptr<AsyncSocket> server = absl::WrapUnique( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(server.get()); |
| EXPECT_EQ(0, server->Bind(initial_addr)); |
| EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); |
| // Attempt connect to non-listening socket |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| // No pending server connections |
| EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); |
| EXPECT_TRUE(nullptr == server->Accept(&accept_addr)); |
| EXPECT_EQ(accept_addr, nil_addr); |
| |
| // Connection failed |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); |
| EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR)); |
| EXPECT_EQ(client->GetRemoteAddress(), nil_addr); |
| } |
| |
| void CloseDuringConnectTest(const SocketAddress& initial_addr) { |
| StreamSink sink; |
| SocketAddress accept_addr; |
| const SocketAddress empty_addr = |
| EmptySocketAddressWithFamily(initial_addr.family()); |
| |
| // Create client and server |
| std::unique_ptr<AsyncSocket> client( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(client.get()); |
| std::unique_ptr<AsyncSocket> server( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(server.get()); |
| |
| // Initiate connect |
| EXPECT_EQ(0, server->Bind(initial_addr)); |
| EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); |
| |
| EXPECT_EQ(0, server->Listen(5)); |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| |
| // Server close before socket enters accept queue |
| EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); |
| server->Close(); |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| // Result: connection failed |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR)); |
| |
| server.reset(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(server.get()); |
| |
| // Initiate connect |
| EXPECT_EQ(0, server->Bind(initial_addr)); |
| EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); |
| |
| EXPECT_EQ(0, server->Listen(5)); |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| // Server close while socket is in accept queue |
| EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); |
| server->Close(); |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| // Result: connection failed |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_TRUE(sink.Check(client.get(), SSE_ERROR)); |
| |
| // New server |
| server.reset(ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(server.get()); |
| |
| // Initiate connect |
| EXPECT_EQ(0, server->Bind(initial_addr)); |
| EXPECT_EQ(server->GetLocalAddress().family(), initial_addr.family()); |
| |
| EXPECT_EQ(0, server->Listen(5)); |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| // Server accepts connection |
| EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); |
| std::unique_ptr<AsyncSocket> accepted(server->Accept(&accept_addr)); |
| ASSERT_TRUE(nullptr != accepted.get()); |
| sink.Monitor(accepted.get()); |
| |
| // Client closes before connection complets |
| EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED); |
| |
| // Connected message has not been processed yet. |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING); |
| client->Close(); |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| // Result: accepted socket closes |
| EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_TRUE(sink.Check(accepted.get(), SSE_CLOSE)); |
| EXPECT_FALSE(sink.Check(client.get(), SSE_CLOSE)); |
| } |
| |
| void CloseTest(const SocketAddress& initial_addr) { |
| StreamSink sink; |
| const SocketAddress kEmptyAddr; |
| |
| // Create clients |
| std::unique_ptr<AsyncSocket> a = absl::WrapUnique( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(a.get()); |
| a->Bind(initial_addr); |
| EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); |
| |
| std::unique_ptr<AsyncSocket> b = absl::WrapUnique( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(b.get()); |
| b->Bind(initial_addr); |
| EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); |
| |
| EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); |
| EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| EXPECT_TRUE(sink.Check(a.get(), SSE_OPEN)); |
| EXPECT_EQ(a->GetState(), AsyncSocket::CS_CONNECTED); |
| EXPECT_EQ(a->GetRemoteAddress(), b->GetLocalAddress()); |
| |
| EXPECT_TRUE(sink.Check(b.get(), SSE_OPEN)); |
| EXPECT_EQ(b->GetState(), AsyncSocket::CS_CONNECTED); |
| EXPECT_EQ(b->GetRemoteAddress(), a->GetLocalAddress()); |
| |
| EXPECT_EQ(1, a->Send("a", 1)); |
| b->Close(); |
| EXPECT_EQ(1, a->Send("b", 1)); |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| char buffer[10]; |
| EXPECT_FALSE(sink.Check(b.get(), SSE_READ)); |
| EXPECT_EQ(-1, b->Recv(buffer, 10, nullptr)); |
| |
| EXPECT_TRUE(sink.Check(a.get(), SSE_CLOSE)); |
| EXPECT_EQ(a->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_EQ(a->GetRemoteAddress(), kEmptyAddr); |
| |
| // No signal for Closer |
| EXPECT_FALSE(sink.Check(b.get(), SSE_CLOSE)); |
| EXPECT_EQ(b->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_EQ(b->GetRemoteAddress(), kEmptyAddr); |
| } |
| |
| void TcpSendTest(const SocketAddress& initial_addr) { |
| StreamSink sink; |
| const SocketAddress kEmptyAddr; |
| |
| // Connect two sockets |
| std::unique_ptr<AsyncSocket> a = absl::WrapUnique( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(a.get()); |
| a->Bind(initial_addr); |
| EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); |
| |
| std::unique_ptr<AsyncSocket> b = absl::WrapUnique( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| sink.Monitor(b.get()); |
| b->Bind(initial_addr); |
| EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); |
| |
| EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); |
| EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| const size_t kBufferSize = 2000; |
| ss_.set_send_buffer_capacity(kBufferSize); |
| ss_.set_recv_buffer_capacity(kBufferSize); |
| |
| const size_t kDataSize = 5000; |
| char send_buffer[kDataSize], recv_buffer[kDataSize]; |
| for (size_t i = 0; i < kDataSize; ++i) |
| send_buffer[i] = static_cast<char>(i % 256); |
| memset(recv_buffer, 0, sizeof(recv_buffer)); |
| size_t send_pos = 0, recv_pos = 0; |
| |
| // Can't send more than send buffer in one write |
| int result = a->Send(send_buffer + send_pos, kDataSize - send_pos); |
| EXPECT_EQ(static_cast<int>(kBufferSize), result); |
| send_pos += result; |
| |
| ss_.ProcessMessagesUntilIdle(); |
| EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE)); |
| EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); |
| |
| // Receive buffer is already filled, fill send buffer again |
| result = a->Send(send_buffer + send_pos, kDataSize - send_pos); |
| EXPECT_EQ(static_cast<int>(kBufferSize), result); |
| send_pos += result; |
| |
| ss_.ProcessMessagesUntilIdle(); |
| EXPECT_FALSE(sink.Check(a.get(), SSE_WRITE)); |
| EXPECT_FALSE(sink.Check(b.get(), SSE_READ)); |
| |
| // No more room in send or receive buffer |
| result = a->Send(send_buffer + send_pos, kDataSize - send_pos); |
| EXPECT_EQ(-1, result); |
| EXPECT_TRUE(a->IsBlocking()); |
| |
| // Read a subset of the data |
| result = b->Recv(recv_buffer + recv_pos, 500, nullptr); |
| EXPECT_EQ(500, result); |
| recv_pos += result; |
| |
| ss_.ProcessMessagesUntilIdle(); |
| EXPECT_TRUE(sink.Check(a.get(), SSE_WRITE)); |
| EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); |
| |
| // Room for more on the sending side |
| result = a->Send(send_buffer + send_pos, kDataSize - send_pos); |
| EXPECT_EQ(500, result); |
| send_pos += result; |
| |
| // Empty the recv buffer |
| while (true) { |
| result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr); |
| if (result < 0) { |
| EXPECT_EQ(-1, result); |
| EXPECT_TRUE(b->IsBlocking()); |
| break; |
| } |
| recv_pos += result; |
| } |
| |
| ss_.ProcessMessagesUntilIdle(); |
| EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); |
| |
| // Continue to empty the recv buffer |
| while (true) { |
| result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr); |
| if (result < 0) { |
| EXPECT_EQ(-1, result); |
| EXPECT_TRUE(b->IsBlocking()); |
| break; |
| } |
| recv_pos += result; |
| } |
| |
| // Send last of the data |
| result = a->Send(send_buffer + send_pos, kDataSize - send_pos); |
| EXPECT_EQ(500, result); |
| send_pos += result; |
| |
| ss_.ProcessMessagesUntilIdle(); |
| EXPECT_TRUE(sink.Check(b.get(), SSE_READ)); |
| |
| // Receive the last of the data |
| while (true) { |
| result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos, nullptr); |
| if (result < 0) { |
| EXPECT_EQ(-1, result); |
| EXPECT_TRUE(b->IsBlocking()); |
| break; |
| } |
| recv_pos += result; |
| } |
| |
| ss_.ProcessMessagesUntilIdle(); |
| EXPECT_FALSE(sink.Check(b.get(), SSE_READ)); |
| |
| // The received data matches the sent data |
| EXPECT_EQ(kDataSize, send_pos); |
| EXPECT_EQ(kDataSize, recv_pos); |
| EXPECT_EQ(0, memcmp(recv_buffer, send_buffer, kDataSize)); |
| } |
| |
| void TcpSendsPacketsInOrderTest(const SocketAddress& initial_addr) { |
| const SocketAddress kEmptyAddr; |
| |
| // Connect two sockets |
| std::unique_ptr<AsyncSocket> a = absl::WrapUnique( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| std::unique_ptr<AsyncSocket> b = absl::WrapUnique( |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_STREAM)); |
| a->Bind(initial_addr); |
| EXPECT_EQ(a->GetLocalAddress().family(), initial_addr.family()); |
| |
| b->Bind(initial_addr); |
| EXPECT_EQ(b->GetLocalAddress().family(), initial_addr.family()); |
| |
| EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); |
| EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); |
| ss_.ProcessMessagesUntilIdle(); |
| |
| // First, deliver all packets in 0 ms. |
| char buffer[2] = {0, 0}; |
| const char cNumPackets = 10; |
| for (char i = 0; i < cNumPackets; ++i) { |
| buffer[0] = '0' + i; |
| EXPECT_EQ(1, a->Send(buffer, 1)); |
| } |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| for (char i = 0; i < cNumPackets; ++i) { |
| EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr)); |
| EXPECT_EQ(static_cast<char>('0' + i), buffer[0]); |
| } |
| |
| // Next, deliver packets at random intervals |
| const uint32_t mean = 50; |
| const uint32_t stddev = 50; |
| |
| ss_.set_delay_mean(mean); |
| ss_.set_delay_stddev(stddev); |
| ss_.UpdateDelayDistribution(); |
| |
| for (char i = 0; i < cNumPackets; ++i) { |
| buffer[0] = 'A' + i; |
| EXPECT_EQ(1, a->Send(buffer, 1)); |
| } |
| |
| ss_.ProcessMessagesUntilIdle(); |
| |
| for (char i = 0; i < cNumPackets; ++i) { |
| EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer), nullptr)); |
| EXPECT_EQ(static_cast<char>('A' + i), buffer[0]); |
| } |
| } |
| |
| // It is important that initial_addr's port has to be 0 such that the |
| // incremental port behavior could ensure the 2 Binds result in different |
| // address. |
| void BandwidthTest(const SocketAddress& initial_addr) { |
| AsyncSocket* send_socket = |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM); |
| AsyncSocket* recv_socket = |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM); |
| ASSERT_EQ(0, send_socket->Bind(initial_addr)); |
| ASSERT_EQ(0, recv_socket->Bind(initial_addr)); |
| EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family()); |
| EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family()); |
| ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress())); |
| |
| uint32_t bandwidth = 64 * 1024; |
| ss_.set_bandwidth(bandwidth); |
| |
| Thread* pthMain = Thread::Current(); |
| Sender sender(pthMain, send_socket, 80 * 1024); |
| Receiver receiver(pthMain, recv_socket, bandwidth); |
| |
| // Allow the sender to run for 5 (simulated) seconds, then be stopped for 5 |
| // seconds. |
| SIMULATED_WAIT(false, 5000, fake_clock_); |
| sender.done = true; |
| SIMULATED_WAIT(false, 5000, fake_clock_); |
| |
| // Ensure the observed bandwidth fell within a reasonable margin of error. |
| EXPECT_TRUE(receiver.count >= 5 * 3 * bandwidth / 4); |
| EXPECT_TRUE(receiver.count <= 6 * bandwidth); // queue could drain for 1s |
| |
| ss_.set_bandwidth(0); |
| } |
| |
| // It is important that initial_addr's port has to be 0 such that the |
| // incremental port behavior could ensure the 2 Binds result in different |
| // address. |
| void DelayTest(const SocketAddress& initial_addr) { |
| time_t seed = ::time(nullptr); |
| RTC_LOG(LS_VERBOSE) << "seed = " << seed; |
| srand(static_cast<unsigned int>(seed)); |
| |
| const uint32_t mean = 2000; |
| const uint32_t stddev = 500; |
| |
| ss_.set_delay_mean(mean); |
| ss_.set_delay_stddev(stddev); |
| ss_.UpdateDelayDistribution(); |
| |
| AsyncSocket* send_socket = |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM); |
| AsyncSocket* recv_socket = |
| ss_.CreateAsyncSocket(initial_addr.family(), SOCK_DGRAM); |
| ASSERT_EQ(0, send_socket->Bind(initial_addr)); |
| ASSERT_EQ(0, recv_socket->Bind(initial_addr)); |
| EXPECT_EQ(send_socket->GetLocalAddress().family(), initial_addr.family()); |
| EXPECT_EQ(recv_socket->GetLocalAddress().family(), initial_addr.family()); |
| ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress())); |
| |
| Thread* pthMain = Thread::Current(); |
| // Avg packet size is 2K, so at 200KB/s for 10s, we should see about |
| // 1000 packets, which is necessary to get a good distribution. |
| Sender sender(pthMain, send_socket, 100 * 2 * 1024); |
| Receiver receiver(pthMain, recv_socket, 0); |
| |
| // Simulate 10 seconds of packets being sent, then check the observed delay |
| // distribution. |
| SIMULATED_WAIT(false, 10000, fake_clock_); |
| sender.done = receiver.done = true; |
| ss_.ProcessMessagesUntilIdle(); |
| |
| const double sample_mean = receiver.sum / receiver.samples; |
| double num = |
| receiver.samples * receiver.sum_sq - receiver.sum * receiver.sum; |
| double den = receiver.samples * (receiver.samples - 1); |
| const double sample_stddev = sqrt(num / den); |
| RTC_LOG(LS_VERBOSE) << "mean=" << sample_mean |
| << " stddev=" << sample_stddev; |
| |
| EXPECT_LE(500u, receiver.samples); |
| // We initially used a 0.1 fudge factor, but on the build machine, we |
| // have seen the value differ by as much as 0.13. |
| EXPECT_NEAR(mean, sample_mean, 0.15 * mean); |
| EXPECT_NEAR(stddev, sample_stddev, 0.15 * stddev); |
| |
| ss_.set_delay_mean(0); |
| ss_.set_delay_stddev(0); |
| ss_.UpdateDelayDistribution(); |
| } |
| |
| // Test cross-family communication between a client bound to client_addr and a |
| // server bound to server_addr. shouldSucceed indicates if communication is |
| // expected to work or not. |
| void CrossFamilyConnectionTest(const SocketAddress& client_addr, |
| const SocketAddress& server_addr, |
| bool shouldSucceed) { |
| StreamSink sink; |
| SocketAddress accept_address; |
| const SocketAddress kEmptyAddr; |
| |
| // Client gets a IPv4 address |
| std::unique_ptr<AsyncSocket> client = absl::WrapUnique( |
| ss_.CreateAsyncSocket(client_addr.family(), SOCK_STREAM)); |
| sink.Monitor(client.get()); |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr); |
| client->Bind(client_addr); |
| |
| // Server gets a non-mapped non-any IPv6 address. |
| // IPv4 sockets should not be able to connect to this. |
| std::unique_ptr<AsyncSocket> server = absl::WrapUnique( |
| ss_.CreateAsyncSocket(server_addr.family(), SOCK_STREAM)); |
| sink.Monitor(server.get()); |
| server->Bind(server_addr); |
| server->Listen(5); |
| |
| if (shouldSucceed) { |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| ss_.ProcessMessagesUntilIdle(); |
| EXPECT_TRUE(sink.Check(server.get(), SSE_READ)); |
| std::unique_ptr<Socket> accepted = |
| absl::WrapUnique(server->Accept(&accept_address)); |
| EXPECT_TRUE(nullptr != accepted); |
| EXPECT_NE(kEmptyAddr, accept_address); |
| ss_.ProcessMessagesUntilIdle(); |
| EXPECT_TRUE(sink.Check(client.get(), SSE_OPEN)); |
| EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress()); |
| } else { |
| // Check that the connection failed. |
| EXPECT_EQ(-1, client->Connect(server->GetLocalAddress())); |
| ss_.ProcessMessagesUntilIdle(); |
| |
| EXPECT_FALSE(sink.Check(server.get(), SSE_READ)); |
| EXPECT_TRUE(nullptr == server->Accept(&accept_address)); |
| EXPECT_EQ(accept_address, kEmptyAddr); |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_FALSE(sink.Check(client.get(), SSE_OPEN)); |
| EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr); |
| } |
| } |
| |
| // Test cross-family datagram sending between a client bound to client_addr |
| // and a server bound to server_addr. shouldSucceed indicates if sending is |
| // expected to succeed or not. |
| void CrossFamilyDatagramTest(const SocketAddress& client_addr, |
| const SocketAddress& server_addr, |
| bool shouldSucceed) { |
| AsyncSocket* socket = ss_.CreateAsyncSocket(AF_INET, SOCK_DGRAM); |
| socket->Bind(server_addr); |
| SocketAddress bound_server_addr = socket->GetLocalAddress(); |
| auto client1 = std::make_unique<TestClient>( |
| std::make_unique<AsyncUDPSocket>(socket), &fake_clock_); |
| |
| AsyncSocket* socket2 = ss_.CreateAsyncSocket(AF_INET, SOCK_DGRAM); |
| socket2->Bind(client_addr); |
| auto client2 = std::make_unique<TestClient>( |
| std::make_unique<AsyncUDPSocket>(socket2), &fake_clock_); |
| SocketAddress client2_addr; |
| |
| if (shouldSucceed) { |
| EXPECT_EQ(3, client2->SendTo("foo", 3, bound_server_addr)); |
| EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); |
| SocketAddress client1_addr; |
| EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); |
| EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); |
| EXPECT_EQ(client1_addr, bound_server_addr); |
| } else { |
| EXPECT_EQ(-1, client2->SendTo("foo", 3, bound_server_addr)); |
| EXPECT_TRUE(client1->CheckNoPacket()); |
| } |
| } |
| |
| protected: |
| rtc::ScopedFakeClock fake_clock_; |
| VirtualSocketServer ss_; |
| AutoSocketServerThread thread_; |
| const SocketAddress kIPv4AnyAddress; |
| const SocketAddress kIPv6AnyAddress; |
| }; |
| |
| TEST_F(VirtualSocketServerTest, basic_v4) { |
| SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 5000); |
| BasicTest(ipv4_test_addr); |
| } |
| |
| TEST_F(VirtualSocketServerTest, basic_v6) { |
| SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 5000); |
| BasicTest(ipv6_test_addr); |
| } |
| |
| TEST_F(VirtualSocketServerTest, TestDefaultRoute_v4) { |
| IPAddress ipv4_default_addr(0x01020304); |
| TestDefaultRoute(ipv4_default_addr); |
| } |
| |
| TEST_F(VirtualSocketServerTest, TestDefaultRoute_v6) { |
| IPAddress ipv6_default_addr; |
| EXPECT_TRUE( |
| IPFromString("2401:fa00:4:1000:be30:5bff:fee5:c3", &ipv6_default_addr)); |
| TestDefaultRoute(ipv6_default_addr); |
| } |
| |
| TEST_F(VirtualSocketServerTest, connect_v4) { |
| ConnectTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, connect_v6) { |
| ConnectTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, connect_to_non_listener_v4) { |
| ConnectToNonListenerTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, connect_to_non_listener_v6) { |
| ConnectToNonListenerTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, close_during_connect_v4) { |
| CloseDuringConnectTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, close_during_connect_v6) { |
| CloseDuringConnectTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, close_v4) { |
| CloseTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, close_v6) { |
| CloseTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, tcp_send_v4) { |
| TcpSendTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, tcp_send_v6) { |
| TcpSendTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v4) { |
| TcpSendsPacketsInOrderTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v6) { |
| TcpSendsPacketsInOrderTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, bandwidth_v4) { |
| BandwidthTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, bandwidth_v6) { |
| BandwidthTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, delay_v4) { |
| DelayTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, delay_v6) { |
| DelayTest(kIPv6AnyAddress); |
| } |
| |
| // Works, receiving socket sees 127.0.0.2. |
| TEST_F(VirtualSocketServerTest, CanConnectFromMappedIPv6ToIPv4Any) { |
| CrossFamilyConnectionTest(SocketAddress("::ffff:127.0.0.2", 0), |
| SocketAddress("0.0.0.0", 5000), true); |
| } |
| |
| // Fails. |
| TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToIPv4Any) { |
| CrossFamilyConnectionTest(SocketAddress("::2", 0), |
| SocketAddress("0.0.0.0", 5000), false); |
| } |
| |
| // Fails. |
| TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToMappedIPv6) { |
| CrossFamilyConnectionTest(SocketAddress("::2", 0), |
| SocketAddress("::ffff:127.0.0.1", 5000), false); |
| } |
| |
| // Works. receiving socket sees ::ffff:127.0.0.2. |
| TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToIPv6Any) { |
| CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0), |
| SocketAddress("::", 5000), true); |
| } |
| |
| // Fails. |
| TEST_F(VirtualSocketServerTest, CantConnectFromIPv4ToUnMappedIPv6) { |
| CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0), |
| SocketAddress("::1", 5000), false); |
| } |
| |
| // Works. Receiving socket sees ::ffff:127.0.0.1. |
| TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToMappedIPv6) { |
| CrossFamilyConnectionTest(SocketAddress("127.0.0.1", 0), |
| SocketAddress("::ffff:127.0.0.2", 5000), true); |
| } |
| |
| // Works, receiving socket sees a result from GetNextIP. |
| TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv6ToIPv4Any) { |
| CrossFamilyConnectionTest(SocketAddress("::", 0), |
| SocketAddress("0.0.0.0", 5000), true); |
| } |
| |
| // Works, receiving socket sees whatever GetNextIP gave the client. |
| TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv4ToIPv6Any) { |
| CrossFamilyConnectionTest(SocketAddress("0.0.0.0", 0), |
| SocketAddress("::", 5000), true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv4ToIPv6Any) { |
| CrossFamilyDatagramTest(SocketAddress("0.0.0.0", 0), |
| SocketAddress("::", 5000), true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CanSendDatagramFromMappedIPv6ToIPv4Any) { |
| CrossFamilyDatagramTest(SocketAddress("::ffff:127.0.0.1", 0), |
| SocketAddress("0.0.0.0", 5000), true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToIPv4Any) { |
| CrossFamilyDatagramTest(SocketAddress("::2", 0), |
| SocketAddress("0.0.0.0", 5000), false); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToMappedIPv6) { |
| CrossFamilyDatagramTest(SocketAddress("::2", 0), |
| SocketAddress("::ffff:127.0.0.1", 5000), false); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToIPv6Any) { |
| CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0), |
| SocketAddress("::", 5000), true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CantSendDatagramFromIPv4ToUnMappedIPv6) { |
| CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0), |
| SocketAddress("::1", 5000), false); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToMappedIPv6) { |
| CrossFamilyDatagramTest(SocketAddress("127.0.0.1", 0), |
| SocketAddress("::ffff:127.0.0.2", 5000), true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv6ToIPv4Any) { |
| CrossFamilyDatagramTest(SocketAddress("::", 0), |
| SocketAddress("0.0.0.0", 5000), true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, SetSendingBlockedWithUdpSocket) { |
| AsyncSocket* socket1 = |
| ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_DGRAM); |
| std::unique_ptr<AsyncSocket> socket2 = absl::WrapUnique( |
| ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_DGRAM)); |
| socket1->Bind(kIPv4AnyAddress); |
| socket2->Bind(kIPv4AnyAddress); |
| auto client1 = std::make_unique<TestClient>( |
| std::make_unique<AsyncUDPSocket>(socket1), &fake_clock_); |
| |
| ss_.SetSendingBlocked(true); |
| EXPECT_EQ(-1, client1->SendTo("foo", 3, socket2->GetLocalAddress())); |
| EXPECT_TRUE(socket1->IsBlocking()); |
| EXPECT_EQ(0, client1->ready_to_send_count()); |
| |
| ss_.SetSendingBlocked(false); |
| EXPECT_EQ(1, client1->ready_to_send_count()); |
| EXPECT_EQ(3, client1->SendTo("foo", 3, socket2->GetLocalAddress())); |
| } |
| |
| TEST_F(VirtualSocketServerTest, SetSendingBlockedWithTcpSocket) { |
| constexpr size_t kBufferSize = 1024; |
| ss_.set_send_buffer_capacity(kBufferSize); |
| ss_.set_recv_buffer_capacity(kBufferSize); |
| |
| StreamSink sink; |
| std::unique_ptr<AsyncSocket> socket1 = absl::WrapUnique( |
| ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_STREAM)); |
| std::unique_ptr<AsyncSocket> socket2 = absl::WrapUnique( |
| ss_.CreateAsyncSocket(kIPv4AnyAddress.family(), SOCK_STREAM)); |
| sink.Monitor(socket1.get()); |
| sink.Monitor(socket2.get()); |
| socket1->Bind(kIPv4AnyAddress); |
| socket2->Bind(kIPv4AnyAddress); |
| |
| // Connect sockets. |
| EXPECT_EQ(0, socket1->Connect(socket2->GetLocalAddress())); |
| EXPECT_EQ(0, socket2->Connect(socket1->GetLocalAddress())); |
| ss_.ProcessMessagesUntilIdle(); |
| |
| char data[kBufferSize] = {}; |
| |
| // First Send call will fill the send buffer but not send anything. |
| ss_.SetSendingBlocked(true); |
| EXPECT_EQ(static_cast<int>(kBufferSize), socket1->Send(data, kBufferSize)); |
| ss_.ProcessMessagesUntilIdle(); |
| EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE)); |
| EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ)); |
| EXPECT_FALSE(socket1->IsBlocking()); |
| |
| // Since the send buffer is full, next Send will result in EWOULDBLOCK. |
| EXPECT_EQ(-1, socket1->Send(data, kBufferSize)); |
| EXPECT_FALSE(sink.Check(socket1.get(), SSE_WRITE)); |
| EXPECT_FALSE(sink.Check(socket2.get(), SSE_READ)); |
| EXPECT_TRUE(socket1->IsBlocking()); |
| |
| // When sending is unblocked, the buffered data should be sent and |
| // SignalWriteEvent should fire. |
| ss_.SetSendingBlocked(false); |
| ss_.ProcessMessagesUntilIdle(); |
| EXPECT_TRUE(sink.Check(socket1.get(), SSE_WRITE)); |
| EXPECT_TRUE(sink.Check(socket2.get(), SSE_READ)); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CreatesStandardDistribution) { |
| const uint32_t kTestMean[] = {10, 100, 333, 1000}; |
| const double kTestDev[] = {0.25, 0.1, 0.01}; |
| // TODO(deadbeef): The current code only works for 1000 data points or more. |
| const uint32_t kTestSamples[] = {/*10, 100,*/ 1000}; |
| for (size_t midx = 0; midx < arraysize(kTestMean); ++midx) { |
| for (size_t didx = 0; didx < arraysize(kTestDev); ++didx) { |
| for (size_t sidx = 0; sidx < arraysize(kTestSamples); ++sidx) { |
| ASSERT_LT(0u, kTestSamples[sidx]); |
| const uint32_t kStdDev = |
| static_cast<uint32_t>(kTestDev[didx] * kTestMean[midx]); |
| VirtualSocketServer::Function* f = |
| VirtualSocketServer::CreateDistribution(kTestMean[midx], kStdDev, |
| kTestSamples[sidx]); |
| ASSERT_TRUE(nullptr != f); |
| ASSERT_EQ(kTestSamples[sidx], f->size()); |
| double sum = 0; |
| for (uint32_t i = 0; i < f->size(); ++i) { |
| sum += (*f)[i].second; |
| } |
| const double mean = sum / f->size(); |
| double sum_sq_dev = 0; |
| for (uint32_t i = 0; i < f->size(); ++i) { |
| double dev = (*f)[i].second - mean; |
| sum_sq_dev += dev * dev; |
| } |
| const double stddev = sqrt(sum_sq_dev / f->size()); |
| EXPECT_NEAR(kTestMean[midx], mean, 0.1 * kTestMean[midx]) |
| << "M=" << kTestMean[midx] << " SD=" << kStdDev |
| << " N=" << kTestSamples[sidx]; |
| EXPECT_NEAR(kStdDev, stddev, 0.1 * kStdDev) |
| << "M=" << kTestMean[midx] << " SD=" << kStdDev |
| << " N=" << kTestSamples[sidx]; |
| delete f; |
| } |
| } |
| } |
| } |
| |
| } // namespace |
| } // namespace rtc |