blob: e0366798c3916341ab18313bf0e56163a50d2322 [file] [log] [blame]
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/network/network_emulation_manager.h"
#include <algorithm>
#include <memory>
#include "absl/memory/memory.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "call/simulated_network.h"
#include "rtc_base/fake_network.h"
#include "test/time_controller/real_time_controller.h"
namespace webrtc {
namespace test {
namespace {
// uint32_t representation of 192.168.0.0 address
constexpr uint32_t kMinIPv4Address = 0xC0A80000;
// uint32_t representation of 192.168.255.255 address
constexpr uint32_t kMaxIPv4Address = 0xC0A8FFFF;
template <typename T, typename Closure>
class ResourceOwningTask final : public QueuedTask {
public:
ResourceOwningTask(T&& resource, Closure&& handler)
: resource_(std::move(resource)),
handler_(std::forward<Closure>(handler)) {}
bool Run() override {
handler_(std::move(resource_));
return true;
}
private:
T resource_;
Closure handler_;
};
template <typename T, typename Closure>
std::unique_ptr<QueuedTask> CreateResourceOwningTask(T resource,
Closure&& closure) {
return absl::make_unique<ResourceOwningTask<T, Closure>>(
std::forward<T>(resource), std::forward<Closure>(closure));
}
} // namespace
NetworkEmulationManagerImpl::NetworkEmulationManagerImpl()
: NetworkEmulationManagerImpl(GlobalRealTimeController()) {}
NetworkEmulationManagerImpl::NetworkEmulationManagerImpl(
TimeController* time_controller)
: clock_(time_controller->GetClock()),
next_node_id_(1),
next_ip4_address_(kMinIPv4Address),
task_queue_(time_controller->GetTaskQueueFactory()->CreateTaskQueue(
"NetworkEmulation",
TaskQueueFactory::Priority::NORMAL)) {}
// TODO(srte): Ensure that any pending task that must be run for consistency
// (such as stats collection tasks) are not cancelled when the task queue is
// destroyed.
NetworkEmulationManagerImpl::~NetworkEmulationManagerImpl() = default;
EmulatedNetworkNode* NetworkEmulationManagerImpl::CreateEmulatedNode(
BuiltInNetworkBehaviorConfig config) {
return CreateEmulatedNode(absl::make_unique<SimulatedNetwork>(config));
}
EmulatedNetworkNode* NetworkEmulationManagerImpl::CreateEmulatedNode(
std::unique_ptr<NetworkBehaviorInterface> network_behavior) {
auto node = absl::make_unique<EmulatedNetworkNode>(
clock_, &task_queue_, std::move(network_behavior));
EmulatedNetworkNode* out = node.get();
task_queue_.PostTask(CreateResourceOwningTask(
std::move(node), [this](std::unique_ptr<EmulatedNetworkNode> node) {
network_nodes_.push_back(std::move(node));
}));
return out;
}
SimulatedNetworkNode::Builder NetworkEmulationManagerImpl::NodeBuilder() {
return SimulatedNetworkNode::Builder(this);
}
EmulatedEndpoint* NetworkEmulationManagerImpl::CreateEndpoint(
EmulatedEndpointConfig config) {
absl::optional<rtc::IPAddress> ip = config.ip;
if (!ip) {
switch (config.generated_ip_family) {
case EmulatedEndpointConfig::IpAddressFamily::kIpv4:
ip = GetNextIPv4Address();
RTC_CHECK(ip) << "All auto generated IPv4 addresses exhausted";
break;
case EmulatedEndpointConfig::IpAddressFamily::kIpv6:
ip = GetNextIPv4Address();
RTC_CHECK(ip) << "All auto generated IPv6 addresses exhausted";
ip = ip->AsIPv6Address();
break;
}
}
bool res = used_ip_addresses_.insert(*ip).second;
RTC_CHECK(res) << "IP=" << ip->ToString() << " already in use";
auto node = absl::make_unique<EmulatedEndpoint>(
next_node_id_++, *ip, config.start_as_enabled, &task_queue_, clock_);
EmulatedEndpoint* out = node.get();
endpoints_.push_back(std::move(node));
return out;
}
void NetworkEmulationManagerImpl::EnableEndpoint(EmulatedEndpoint* endpoint) {
EmulatedNetworkManager* network_manager =
endpoint_to_network_manager_[endpoint];
RTC_CHECK(network_manager);
network_manager->EnableEndpoint(endpoint);
}
void NetworkEmulationManagerImpl::DisableEndpoint(EmulatedEndpoint* endpoint) {
EmulatedNetworkManager* network_manager =
endpoint_to_network_manager_[endpoint];
RTC_CHECK(network_manager);
network_manager->DisableEndpoint(endpoint);
}
EmulatedRoute* NetworkEmulationManagerImpl::CreateRoute(
EmulatedEndpoint* from,
const std::vector<EmulatedNetworkNode*>& via_nodes,
EmulatedEndpoint* to) {
// Because endpoint has no send node by default at least one should be
// provided here.
RTC_CHECK(!via_nodes.empty());
from->router()->SetReceiver(to->GetPeerLocalAddress(), via_nodes[0]);
EmulatedNetworkNode* cur_node = via_nodes[0];
for (size_t i = 1; i < via_nodes.size(); ++i) {
cur_node->router()->SetReceiver(to->GetPeerLocalAddress(), via_nodes[i]);
cur_node = via_nodes[i];
}
cur_node->router()->SetReceiver(to->GetPeerLocalAddress(), to);
std::unique_ptr<EmulatedRoute> route =
absl::make_unique<EmulatedRoute>(from, std::move(via_nodes), to);
EmulatedRoute* out = route.get();
routes_.push_back(std::move(route));
return out;
}
EmulatedRoute* NetworkEmulationManagerImpl::CreateRoute(
const std::vector<EmulatedNetworkNode*>& via_nodes) {
EmulatedEndpoint* from = CreateEndpoint(EmulatedEndpointConfig());
EmulatedEndpoint* to = CreateEndpoint(EmulatedEndpointConfig());
return CreateRoute(from, via_nodes, to);
}
void NetworkEmulationManagerImpl::ClearRoute(EmulatedRoute* route) {
RTC_CHECK(route->active) << "Route already cleared";
task_queue_.SendTask([route]() {
// Remove receiver from intermediate nodes.
for (auto* node : route->via_nodes) {
node->router()->RemoveReceiver(route->to->GetPeerLocalAddress());
}
// Remove destination endpoint from source endpoint's router.
route->from->router()->RemoveReceiver(route->to->GetPeerLocalAddress());
route->active = false;
});
}
TrafficRoute* NetworkEmulationManagerImpl::CreateTrafficRoute(
const std::vector<EmulatedNetworkNode*>& via_nodes) {
RTC_CHECK(!via_nodes.empty());
EmulatedEndpoint* endpoint = CreateEndpoint(EmulatedEndpointConfig());
// Setup a route via specified nodes.
EmulatedNetworkNode* cur_node = via_nodes[0];
for (size_t i = 1; i < via_nodes.size(); ++i) {
cur_node->router()->SetReceiver(endpoint->GetPeerLocalAddress(),
via_nodes[i]);
cur_node = via_nodes[i];
}
cur_node->router()->SetReceiver(endpoint->GetPeerLocalAddress(), endpoint);
std::unique_ptr<TrafficRoute> traffic_route =
absl::make_unique<TrafficRoute>(clock_, via_nodes[0], endpoint);
TrafficRoute* out = traffic_route.get();
traffic_routes_.push_back(std::move(traffic_route));
return out;
}
RandomWalkCrossTraffic*
NetworkEmulationManagerImpl::CreateRandomWalkCrossTraffic(
TrafficRoute* traffic_route,
RandomWalkConfig config) {
auto traffic =
absl::make_unique<RandomWalkCrossTraffic>(config, traffic_route);
RandomWalkCrossTraffic* out = traffic.get();
task_queue_.PostTask(CreateResourceOwningTask(
std::move(traffic),
[this, config](std::unique_ptr<RandomWalkCrossTraffic> traffic) {
auto* traffic_ptr = traffic.get();
random_cross_traffics_.push_back(std::move(traffic));
RepeatingTaskHandle::Start(task_queue_.Get(),
[this, config, traffic_ptr] {
traffic_ptr->Process(Now());
return config.min_packet_interval;
});
}));
return out;
}
PulsedPeaksCrossTraffic*
NetworkEmulationManagerImpl::CreatePulsedPeaksCrossTraffic(
TrafficRoute* traffic_route,
PulsedPeaksConfig config) {
auto traffic =
absl::make_unique<PulsedPeaksCrossTraffic>(config, traffic_route);
PulsedPeaksCrossTraffic* out = traffic.get();
task_queue_.PostTask(CreateResourceOwningTask(
std::move(traffic),
[this, config](std::unique_ptr<PulsedPeaksCrossTraffic> traffic) {
auto* traffic_ptr = traffic.get();
pulsed_cross_traffics_.push_back(std::move(traffic));
RepeatingTaskHandle::Start(task_queue_.Get(),
[this, config, traffic_ptr] {
traffic_ptr->Process(Now());
return config.min_packet_interval;
});
}));
return out;
}
void NetworkEmulationManagerImpl::StartFakeTcpCrossTraffic(
EmulatedRoute* send_route,
EmulatedRoute* ret_route,
FakeTcpConfig config) {
task_queue_.PostTask([=]() {
auto traffic =
absl::make_unique<FakeTcpCrossTraffic>(config, send_route, ret_route);
auto* traffic_ptr = traffic.get();
tcp_cross_traffics_.push_back(std::move(traffic));
TimeDelta process_interval = config.process_interval;
RepeatingTaskHandle::Start(task_queue_.Get(),
[this, process_interval, traffic_ptr] {
traffic_ptr->Process(Now());
return process_interval;
});
});
}
EmulatedNetworkManagerInterface*
NetworkEmulationManagerImpl::CreateEmulatedNetworkManagerInterface(
const std::vector<EmulatedEndpoint*>& endpoints) {
auto endpoints_container = absl::make_unique<EndpointsContainer>(endpoints);
auto network_manager = absl::make_unique<EmulatedNetworkManager>(
clock_, &task_queue_, endpoints_container.get());
for (auto* endpoint : endpoints) {
// Associate endpoint with network manager.
bool insertion_result =
endpoint_to_network_manager_.insert({endpoint, network_manager.get()})
.second;
RTC_CHECK(insertion_result)
<< "Endpoint ip=" << endpoint->GetPeerLocalAddress().ToString()
<< " is already used for another network";
}
EmulatedNetworkManagerInterface* out = network_manager.get();
endpoints_containers_.push_back(std::move(endpoints_container));
network_managers_.push_back(std::move(network_manager));
return out;
}
absl::optional<rtc::IPAddress>
NetworkEmulationManagerImpl::GetNextIPv4Address() {
uint32_t addresses_count = kMaxIPv4Address - kMinIPv4Address;
for (uint32_t i = 0; i < addresses_count; i++) {
rtc::IPAddress ip(next_ip4_address_);
if (next_ip4_address_ == kMaxIPv4Address) {
next_ip4_address_ = kMinIPv4Address;
} else {
next_ip4_address_++;
}
if (used_ip_addresses_.find(ip) == used_ip_addresses_.end()) {
return ip;
}
}
return absl::nullopt;
}
Timestamp NetworkEmulationManagerImpl::Now() const {
return clock_->CurrentTime();
}
} // namespace test
} // namespace webrtc