blob: 6904e8e53a5a04ed7fca3ea6b079e8f1aa6126d2 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "common_video/h264/sps_parser.h"
#include "common_video/h264/h264_common.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/bit_buffer.h"
#include "rtc_base/buffer.h"
#include "test/gtest.h"
namespace webrtc {
// Example SPS can be generated with ffmpeg. Here's an example set of commands,
// runnable on OS X:
// 1) Generate a video, from the camera:
// ffmpeg -f avfoundation -i "0" -video_size 640x360 camera.mov
//
// 2) Scale the video to the desired size:
// ffmpeg -i camera.mov -vf scale=640x360 scaled.mov
//
// 3) Get just the H.264 bitstream in AnnexB:
// ffmpeg -i scaled.mov -vcodec copy -vbsf h264_mp4toannexb -an out.h264
//
// 4) Open out.h264 and find the SPS, generally everything between the first
// two start codes (0 0 0 1 or 0 0 1). The first byte should be 0x67,
// which should be stripped out before being passed to the parser.
static const size_t kSpsBufferMaxSize = 256;
// Generates a fake SPS with basically everything empty but the width/height.
// Pass in a buffer of at least kSpsBufferMaxSize.
// The fake SPS that this generates also always has at least one emulation byte
// at offset 2, since the first two bytes are always 0, and has a 0x3 as the
// level_idc, to make sure the parser doesn't eat all 0x3 bytes.
void GenerateFakeSps(uint16_t width,
uint16_t height,
int id,
uint32_t log2_max_frame_num_minus4,
uint32_t log2_max_pic_order_cnt_lsb_minus4,
rtc::Buffer* out_buffer) {
uint8_t rbsp[kSpsBufferMaxSize] = {0};
rtc::BitBufferWriter writer(rbsp, kSpsBufferMaxSize);
// Profile byte.
writer.WriteUInt8(0);
// Constraint sets and reserved zero bits.
writer.WriteUInt8(0);
// level_idc.
writer.WriteUInt8(0x3u);
// seq_paramter_set_id.
writer.WriteExponentialGolomb(id);
// Profile is not special, so we skip all the chroma format settings.
// Now some bit magic.
// log2_max_frame_num_minus4: ue(v).
writer.WriteExponentialGolomb(log2_max_frame_num_minus4);
// pic_order_cnt_type: ue(v). 0 is the type we want.
writer.WriteExponentialGolomb(0);
// log2_max_pic_order_cnt_lsb_minus4: ue(v). 0 is fine.
writer.WriteExponentialGolomb(log2_max_pic_order_cnt_lsb_minus4);
// max_num_ref_frames: ue(v). 0 is fine.
writer.WriteExponentialGolomb(0);
// gaps_in_frame_num_value_allowed_flag: u(1).
writer.WriteBits(0, 1);
// Next are width/height. First, calculate the mbs/map_units versions.
uint16_t width_in_mbs_minus1 = (width + 15) / 16 - 1;
// For the height, we're going to define frame_mbs_only_flag, so we need to
// divide by 2. See the parser for the full calculation.
uint16_t height_in_map_units_minus1 = ((height + 15) / 16 - 1) / 2;
// Write each as ue(v).
writer.WriteExponentialGolomb(width_in_mbs_minus1);
writer.WriteExponentialGolomb(height_in_map_units_minus1);
// frame_mbs_only_flag: u(1). Needs to be false.
writer.WriteBits(0, 1);
// mb_adaptive_frame_field_flag: u(1).
writer.WriteBits(0, 1);
// direct_8x8_inferene_flag: u(1).
writer.WriteBits(0, 1);
// frame_cropping_flag: u(1). 1, so we can supply crop.
writer.WriteBits(1, 1);
// Now we write the left/right/top/bottom crop. For simplicity, we'll put all
// the crop at the left/top.
// We picked a 4:2:0 format, so the crops are 1/2 the pixel crop values.
// Left/right.
writer.WriteExponentialGolomb(((16 - (width % 16)) % 16) / 2);
writer.WriteExponentialGolomb(0);
// Top/bottom.
writer.WriteExponentialGolomb(((16 - (height % 16)) % 16) / 2);
writer.WriteExponentialGolomb(0);
// vui_parameters_present_flag: u(1)
writer.WriteBits(0, 1);
// Get the number of bytes written (including the last partial byte).
size_t byte_count, bit_offset;
writer.GetCurrentOffset(&byte_count, &bit_offset);
if (bit_offset > 0) {
byte_count++;
}
out_buffer->Clear();
H264::WriteRbsp(rtc::MakeArrayView(rbsp, byte_count), out_buffer);
}
TEST(H264SpsParserTest, TestSampleSPSHdLandscape) {
// SPS for a 1280x720 camera capture from ffmpeg on osx. Contains
// emulation bytes but no cropping.
const uint8_t buffer[] = {0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50, 0x05,
0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, 0x00,
0x00, 0x2A, 0xE0, 0xF1, 0x83, 0x19, 0x60};
std::optional<SpsParser::SpsState> sps = SpsParser::ParseSps(buffer);
ASSERT_TRUE(sps.has_value());
EXPECT_EQ(1280u, sps->width);
EXPECT_EQ(720u, sps->height);
}
TEST(H264SpsParserTest, TestSampleSPSVgaLandscape) {
// SPS for a 640x360 camera capture from ffmpeg on osx. Contains emulation
// bytes and cropping (360 isn't divisible by 16).
const uint8_t buffer[] = {0x7A, 0x00, 0x1E, 0xBC, 0xD9, 0x40, 0xA0, 0x2F,
0xF8, 0x98, 0x40, 0x00, 0x00, 0x03, 0x01, 0x80,
0x00, 0x00, 0x56, 0x83, 0xC5, 0x8B, 0x65, 0x80};
std::optional<SpsParser::SpsState> sps = SpsParser::ParseSps(buffer);
ASSERT_TRUE(sps.has_value());
EXPECT_EQ(640u, sps->width);
EXPECT_EQ(360u, sps->height);
}
TEST(H264SpsParserTest, TestSampleSPSWeirdResolution) {
// SPS for a 200x400 camera capture from ffmpeg on osx. Horizontal and
// veritcal crop (neither dimension is divisible by 16).
const uint8_t buffer[] = {0x7A, 0x00, 0x0D, 0xBC, 0xD9, 0x43, 0x43, 0x3E,
0x5E, 0x10, 0x00, 0x00, 0x03, 0x00, 0x60, 0x00,
0x00, 0x15, 0xA0, 0xF1, 0x42, 0x99, 0x60};
std::optional<SpsParser::SpsState> sps = SpsParser::ParseSps(buffer);
ASSERT_TRUE(sps.has_value());
EXPECT_EQ(200u, sps->width);
EXPECT_EQ(400u, sps->height);
}
TEST(H264SpsParserTest, TestSyntheticSPSQvgaLandscape) {
rtc::Buffer buffer;
GenerateFakeSps(320u, 180u, 1, 0, 0, &buffer);
std::optional<SpsParser::SpsState> sps = SpsParser::ParseSps(buffer);
ASSERT_TRUE(sps.has_value());
EXPECT_EQ(320u, sps->width);
EXPECT_EQ(180u, sps->height);
EXPECT_EQ(1u, sps->id);
}
TEST(H264SpsParserTest, TestSyntheticSPSWeirdResolution) {
rtc::Buffer buffer;
GenerateFakeSps(156u, 122u, 2, 0, 0, &buffer);
std::optional<SpsParser::SpsState> sps = SpsParser::ParseSps(buffer);
ASSERT_TRUE(sps.has_value());
EXPECT_EQ(156u, sps->width);
EXPECT_EQ(122u, sps->height);
EXPECT_EQ(2u, sps->id);
}
TEST(H264SpsParserTest, TestSampleSPSWithScalingLists) {
// SPS from a 1920x1080 video. Contains scaling lists (and vertical cropping).
const uint8_t buffer[] = {0x64, 0x00, 0x2a, 0xad, 0x84, 0x01, 0x0c, 0x20,
0x08, 0x61, 0x00, 0x43, 0x08, 0x02, 0x18, 0x40,
0x10, 0xc2, 0x00, 0x84, 0x3b, 0x50, 0x3c, 0x01,
0x13, 0xf2, 0xcd, 0xc0, 0x40, 0x40, 0x50, 0x00,
0x00, 0x00, 0x10, 0x00, 0x00, 0x01, 0xe8, 0x40};
std::optional<SpsParser::SpsState> sps = SpsParser::ParseSps(buffer);
ASSERT_TRUE(sps.has_value());
EXPECT_EQ(1920u, sps->width);
EXPECT_EQ(1080u, sps->height);
}
TEST(H264SpsParserTest, TestLog2MaxFrameNumMinus4) {
rtc::Buffer buffer;
GenerateFakeSps(320u, 180u, 1, 0, 0, &buffer);
std::optional<SpsParser::SpsState> sps = SpsParser::ParseSps(buffer);
ASSERT_TRUE(sps.has_value());
EXPECT_EQ(320u, sps->width);
EXPECT_EQ(180u, sps->height);
EXPECT_EQ(1u, sps->id);
EXPECT_EQ(4u, sps->log2_max_frame_num);
GenerateFakeSps(320u, 180u, 1, 12, 0, &buffer);
sps = SpsParser::ParseSps(buffer);
ASSERT_TRUE(sps.has_value());
EXPECT_EQ(320u, sps->width);
EXPECT_EQ(180u, sps->height);
EXPECT_EQ(1u, sps->id);
EXPECT_EQ(16u, sps->log2_max_frame_num);
GenerateFakeSps(320u, 180u, 1, 13, 0, &buffer);
EXPECT_FALSE(SpsParser::ParseSps(buffer));
}
TEST(H264SpsParserTest, TestLog2MaxPicOrderCntMinus4) {
rtc::Buffer buffer;
GenerateFakeSps(320u, 180u, 1, 0, 0, &buffer);
std::optional<SpsParser::SpsState> sps = SpsParser::ParseSps(buffer);
ASSERT_TRUE(sps.has_value());
EXPECT_EQ(320u, sps->width);
EXPECT_EQ(180u, sps->height);
EXPECT_EQ(1u, sps->id);
EXPECT_EQ(4u, sps->log2_max_pic_order_cnt_lsb);
GenerateFakeSps(320u, 180u, 1, 0, 12, &buffer);
EXPECT_TRUE(static_cast<bool>(sps = SpsParser::ParseSps(buffer)));
EXPECT_EQ(320u, sps->width);
EXPECT_EQ(180u, sps->height);
EXPECT_EQ(1u, sps->id);
EXPECT_EQ(16u, sps->log2_max_pic_order_cnt_lsb);
GenerateFakeSps(320u, 180u, 1, 0, 13, &buffer);
EXPECT_FALSE(SpsParser::ParseSps(buffer));
}
} // namespace webrtc