| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/congestion_controller/goog_cc/probe_controller.h" |
| |
| #include <algorithm> |
| #include <initializer_list> |
| #include <memory> |
| #include <string> |
| |
| #include "api/units/data_rate.h" |
| #include "api/units/time_delta.h" |
| #include "api/units/timestamp.h" |
| #include "logging/rtc_event_log/events/rtc_event_probe_cluster_created.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "system_wrappers/include/metrics.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| // The minimum number probing packets used. |
| constexpr int kMinProbePacketsSent = 5; |
| |
| // The minimum probing duration in ms. |
| constexpr int kMinProbeDurationMs = 15; |
| |
| // Maximum waiting time from the time of initiating probing to getting |
| // the measured results back. |
| constexpr int64_t kMaxWaitingTimeForProbingResultMs = 1000; |
| |
| // Value of |min_bitrate_to_probe_further_bps_| that indicates |
| // further probing is disabled. |
| constexpr int kExponentialProbingDisabled = 0; |
| |
| // Default probing bitrate limit. Applied only when the application didn't |
| // specify max bitrate. |
| constexpr int64_t kDefaultMaxProbingBitrateBps = 5000000; |
| |
| // If the bitrate drops to a factor |kBitrateDropThreshold| or lower |
| // and we recover within |kBitrateDropTimeoutMs|, then we'll send |
| // a probe at a fraction |kProbeFractionAfterDrop| of the original bitrate. |
| constexpr double kBitrateDropThreshold = 0.66; |
| constexpr int kBitrateDropTimeoutMs = 5000; |
| constexpr double kProbeFractionAfterDrop = 0.85; |
| |
| // Timeout for probing after leaving ALR. If the bitrate drops significantly, |
| // (as determined by the delay based estimator) and we leave ALR, then we will |
| // send a probe if we recover within |kLeftAlrTimeoutMs| ms. |
| constexpr int kAlrEndedTimeoutMs = 3000; |
| |
| // The expected uncertainty of probe result (as a fraction of the target probe |
| // This is a limit on how often probing can be done when there is a BW |
| // drop detected in ALR. |
| constexpr int64_t kMinTimeBetweenAlrProbesMs = 5000; |
| |
| // bitrate). Used to avoid probing if the probe bitrate is close to our current |
| // estimate. |
| constexpr double kProbeUncertainty = 0.05; |
| |
| // Use probing to recover faster after large bitrate estimate drops. |
| constexpr char kBweRapidRecoveryExperiment[] = |
| "WebRTC-BweRapidRecoveryExperiment"; |
| |
| // Never probe higher than configured by OnMaxTotalAllocatedBitrate(). |
| constexpr char kCappedProbingFieldTrialName[] = "WebRTC-BweCappedProbing"; |
| |
| void MaybeLogProbeClusterCreated(RtcEventLog* event_log, |
| const ProbeClusterConfig& probe) { |
| RTC_DCHECK(event_log); |
| if (!event_log) { |
| return; |
| } |
| |
| size_t min_bytes = static_cast<int32_t>(probe.target_data_rate.bps() * |
| probe.target_duration.ms() / 8000); |
| event_log->Log(std::make_unique<RtcEventProbeClusterCreated>( |
| probe.id, probe.target_data_rate.bps(), probe.target_probe_count, |
| min_bytes)); |
| } |
| |
| } // namespace |
| |
| ProbeControllerConfig::ProbeControllerConfig( |
| const WebRtcKeyValueConfig* key_value_config) |
| : first_exponential_probe_scale("p1", 3.0), |
| second_exponential_probe_scale("p2", 6.0), |
| further_exponential_probe_scale("step_size", 2), |
| further_probe_threshold("further_probe_threshold", 0.7), |
| alr_probing_interval("alr_interval", TimeDelta::seconds(5)), |
| alr_probe_scale("alr_scale", 2), |
| first_allocation_probe_scale("alloc_p1", 1), |
| second_allocation_probe_scale("alloc_p2", 2), |
| allocation_allow_further_probing("alloc_probe_further", false) { |
| ParseFieldTrial( |
| {&first_exponential_probe_scale, &second_exponential_probe_scale, |
| &further_exponential_probe_scale, &further_probe_threshold, |
| &alr_probing_interval, &alr_probe_scale, &first_allocation_probe_scale, |
| &second_allocation_probe_scale, &allocation_allow_further_probing}, |
| key_value_config->Lookup("WebRTC-Bwe-ProbingConfiguration")); |
| |
| // Specialized keys overriding subsets of WebRTC-Bwe-ProbingConfiguration |
| ParseFieldTrial( |
| {&first_exponential_probe_scale, &second_exponential_probe_scale}, |
| key_value_config->Lookup("WebRTC-Bwe-InitialProbing")); |
| ParseFieldTrial({&further_exponential_probe_scale, &further_probe_threshold}, |
| key_value_config->Lookup("WebRTC-Bwe-ExponentialProbing")); |
| ParseFieldTrial({&alr_probing_interval, &alr_probe_scale}, |
| key_value_config->Lookup("WebRTC-Bwe-AlrProbing")); |
| ParseFieldTrial( |
| {&first_allocation_probe_scale, &second_allocation_probe_scale, |
| &allocation_allow_further_probing}, |
| key_value_config->Lookup("WebRTC-Bwe-AllocationProbing")); |
| } |
| |
| ProbeControllerConfig::ProbeControllerConfig(const ProbeControllerConfig&) = |
| default; |
| ProbeControllerConfig::~ProbeControllerConfig() = default; |
| |
| ProbeController::ProbeController(const WebRtcKeyValueConfig* key_value_config, |
| RtcEventLog* event_log) |
| : enable_periodic_alr_probing_(false), |
| in_rapid_recovery_experiment_( |
| key_value_config->Lookup(kBweRapidRecoveryExperiment) |
| .find("Enabled") == 0), |
| limit_probes_with_allocateable_rate_( |
| key_value_config->Lookup(kCappedProbingFieldTrialName) |
| .find("Disabled") != 0), |
| event_log_(event_log), |
| config_(ProbeControllerConfig(key_value_config)) { |
| Reset(0); |
| } |
| |
| ProbeController::~ProbeController() {} |
| |
| std::vector<ProbeClusterConfig> ProbeController::SetBitrates( |
| int64_t min_bitrate_bps, |
| int64_t start_bitrate_bps, |
| int64_t max_bitrate_bps, |
| int64_t at_time_ms) { |
| if (start_bitrate_bps > 0) { |
| start_bitrate_bps_ = start_bitrate_bps; |
| estimated_bitrate_bps_ = start_bitrate_bps; |
| } else if (start_bitrate_bps_ == 0) { |
| start_bitrate_bps_ = min_bitrate_bps; |
| } |
| |
| // The reason we use the variable |old_max_bitrate_pbs| is because we |
| // need to set |max_bitrate_bps_| before we call InitiateProbing. |
| int64_t old_max_bitrate_bps = max_bitrate_bps_; |
| max_bitrate_bps_ = max_bitrate_bps; |
| |
| switch (state_) { |
| case State::kInit: |
| if (network_available_) |
| return InitiateExponentialProbing(at_time_ms); |
| break; |
| |
| case State::kWaitingForProbingResult: |
| break; |
| |
| case State::kProbingComplete: |
| // If the new max bitrate is higher than both the old max bitrate and the |
| // estimate then initiate probing. |
| if (estimated_bitrate_bps_ != 0 && |
| old_max_bitrate_bps < max_bitrate_bps_ && |
| estimated_bitrate_bps_ < max_bitrate_bps_) { |
| // The assumption is that if we jump more than 20% in the bandwidth |
| // estimate or if the bandwidth estimate is within 90% of the new |
| // max bitrate then the probing attempt was successful. |
| mid_call_probing_succcess_threshold_ = |
| std::min(estimated_bitrate_bps_ * 1.2, max_bitrate_bps_ * 0.9); |
| mid_call_probing_waiting_for_result_ = true; |
| mid_call_probing_bitrate_bps_ = max_bitrate_bps_; |
| |
| RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Initiated", |
| max_bitrate_bps_ / 1000); |
| |
| return InitiateProbing(at_time_ms, {max_bitrate_bps_}, false); |
| } |
| break; |
| } |
| return std::vector<ProbeClusterConfig>(); |
| } |
| |
| std::vector<ProbeClusterConfig> ProbeController::OnMaxTotalAllocatedBitrate( |
| int64_t max_total_allocated_bitrate, |
| int64_t at_time_ms) { |
| const bool in_alr = alr_start_time_ms_.has_value(); |
| const bool allow_allocation_probe = in_alr; |
| |
| if (state_ == State::kProbingComplete && |
| max_total_allocated_bitrate != max_total_allocated_bitrate_ && |
| estimated_bitrate_bps_ != 0 && |
| (max_bitrate_bps_ <= 0 || estimated_bitrate_bps_ < max_bitrate_bps_) && |
| estimated_bitrate_bps_ < max_total_allocated_bitrate && |
| allow_allocation_probe) { |
| max_total_allocated_bitrate_ = max_total_allocated_bitrate; |
| |
| if (!config_.first_allocation_probe_scale) |
| return std::vector<ProbeClusterConfig>(); |
| |
| std::vector<int64_t> probes = { |
| static_cast<int64_t>(config_.first_allocation_probe_scale.Value() * |
| max_total_allocated_bitrate)}; |
| if (config_.second_allocation_probe_scale) { |
| probes.push_back(config_.second_allocation_probe_scale.Value() * |
| max_total_allocated_bitrate); |
| } |
| return InitiateProbing(at_time_ms, probes, |
| config_.allocation_allow_further_probing); |
| } |
| max_total_allocated_bitrate_ = max_total_allocated_bitrate; |
| return std::vector<ProbeClusterConfig>(); |
| } |
| |
| std::vector<ProbeClusterConfig> ProbeController::OnNetworkAvailability( |
| NetworkAvailability msg) { |
| network_available_ = msg.network_available; |
| |
| if (!network_available_ && state_ == State::kWaitingForProbingResult) { |
| state_ = State::kProbingComplete; |
| min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; |
| } |
| |
| if (network_available_ && state_ == State::kInit && start_bitrate_bps_ > 0) |
| return InitiateExponentialProbing(msg.at_time.ms()); |
| return std::vector<ProbeClusterConfig>(); |
| } |
| |
| std::vector<ProbeClusterConfig> ProbeController::InitiateExponentialProbing( |
| int64_t at_time_ms) { |
| RTC_DCHECK(network_available_); |
| RTC_DCHECK(state_ == State::kInit); |
| RTC_DCHECK_GT(start_bitrate_bps_, 0); |
| |
| // When probing at 1.8 Mbps ( 6x 300), this represents a threshold of |
| // 1.2 Mbps to continue probing. |
| std::vector<int64_t> probes = {static_cast<int64_t>( |
| config_.first_exponential_probe_scale * start_bitrate_bps_)}; |
| if (config_.second_exponential_probe_scale) { |
| probes.push_back(config_.second_exponential_probe_scale.Value() * |
| start_bitrate_bps_); |
| } |
| return InitiateProbing(at_time_ms, probes, true); |
| } |
| |
| std::vector<ProbeClusterConfig> ProbeController::SetEstimatedBitrate( |
| int64_t bitrate_bps, |
| int64_t at_time_ms) { |
| if (mid_call_probing_waiting_for_result_ && |
| bitrate_bps >= mid_call_probing_succcess_threshold_) { |
| RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Success", |
| mid_call_probing_bitrate_bps_ / 1000); |
| RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.ProbedKbps", |
| bitrate_bps / 1000); |
| mid_call_probing_waiting_for_result_ = false; |
| } |
| std::vector<ProbeClusterConfig> pending_probes; |
| if (state_ == State::kWaitingForProbingResult) { |
| // Continue probing if probing results indicate channel has greater |
| // capacity. |
| RTC_LOG(LS_INFO) << "Measured bitrate: " << bitrate_bps |
| << " Minimum to probe further: " |
| << min_bitrate_to_probe_further_bps_; |
| |
| if (min_bitrate_to_probe_further_bps_ != kExponentialProbingDisabled && |
| bitrate_bps > min_bitrate_to_probe_further_bps_) { |
| pending_probes = InitiateProbing( |
| at_time_ms, |
| {static_cast<int64_t>(config_.further_exponential_probe_scale * |
| bitrate_bps)}, |
| true); |
| } |
| } |
| |
| if (bitrate_bps < kBitrateDropThreshold * estimated_bitrate_bps_) { |
| time_of_last_large_drop_ms_ = at_time_ms; |
| bitrate_before_last_large_drop_bps_ = estimated_bitrate_bps_; |
| } |
| |
| estimated_bitrate_bps_ = bitrate_bps; |
| return pending_probes; |
| } |
| |
| void ProbeController::EnablePeriodicAlrProbing(bool enable) { |
| enable_periodic_alr_probing_ = enable; |
| } |
| |
| void ProbeController::SetAlrStartTimeMs( |
| absl::optional<int64_t> alr_start_time_ms) { |
| alr_start_time_ms_ = alr_start_time_ms; |
| } |
| void ProbeController::SetAlrEndedTimeMs(int64_t alr_end_time_ms) { |
| alr_end_time_ms_.emplace(alr_end_time_ms); |
| } |
| |
| std::vector<ProbeClusterConfig> ProbeController::RequestProbe( |
| int64_t at_time_ms) { |
| // Called once we have returned to normal state after a large drop in |
| // estimated bandwidth. The current response is to initiate a single probe |
| // session (if not already probing) at the previous bitrate. |
| // |
| // If the probe session fails, the assumption is that this drop was a |
| // real one from a competing flow or a network change. |
| bool in_alr = alr_start_time_ms_.has_value(); |
| bool alr_ended_recently = |
| (alr_end_time_ms_.has_value() && |
| at_time_ms - alr_end_time_ms_.value() < kAlrEndedTimeoutMs); |
| if (in_alr || alr_ended_recently || in_rapid_recovery_experiment_) { |
| if (state_ == State::kProbingComplete) { |
| uint32_t suggested_probe_bps = |
| kProbeFractionAfterDrop * bitrate_before_last_large_drop_bps_; |
| uint32_t min_expected_probe_result_bps = |
| (1 - kProbeUncertainty) * suggested_probe_bps; |
| int64_t time_since_drop_ms = at_time_ms - time_of_last_large_drop_ms_; |
| int64_t time_since_probe_ms = at_time_ms - last_bwe_drop_probing_time_ms_; |
| if (min_expected_probe_result_bps > estimated_bitrate_bps_ && |
| time_since_drop_ms < kBitrateDropTimeoutMs && |
| time_since_probe_ms > kMinTimeBetweenAlrProbesMs) { |
| RTC_LOG(LS_INFO) << "Detected big bandwidth drop, start probing."; |
| // Track how often we probe in response to bandwidth drop in ALR. |
| RTC_HISTOGRAM_COUNTS_10000( |
| "WebRTC.BWE.BweDropProbingIntervalInS", |
| (at_time_ms - last_bwe_drop_probing_time_ms_) / 1000); |
| last_bwe_drop_probing_time_ms_ = at_time_ms; |
| return InitiateProbing(at_time_ms, {suggested_probe_bps}, false); |
| } |
| } |
| } |
| return std::vector<ProbeClusterConfig>(); |
| } |
| |
| void ProbeController::SetMaxBitrate(int64_t max_bitrate_bps) { |
| max_bitrate_bps_ = max_bitrate_bps; |
| } |
| |
| void ProbeController::Reset(int64_t at_time_ms) { |
| network_available_ = true; |
| state_ = State::kInit; |
| min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; |
| time_last_probing_initiated_ms_ = 0; |
| estimated_bitrate_bps_ = 0; |
| start_bitrate_bps_ = 0; |
| max_bitrate_bps_ = 0; |
| int64_t now_ms = at_time_ms; |
| last_bwe_drop_probing_time_ms_ = now_ms; |
| alr_end_time_ms_.reset(); |
| mid_call_probing_waiting_for_result_ = false; |
| time_of_last_large_drop_ms_ = now_ms; |
| bitrate_before_last_large_drop_bps_ = 0; |
| max_total_allocated_bitrate_ = 0; |
| } |
| |
| std::vector<ProbeClusterConfig> ProbeController::Process(int64_t at_time_ms) { |
| if (at_time_ms - time_last_probing_initiated_ms_ > |
| kMaxWaitingTimeForProbingResultMs) { |
| mid_call_probing_waiting_for_result_ = false; |
| |
| if (state_ == State::kWaitingForProbingResult) { |
| RTC_LOG(LS_INFO) << "kWaitingForProbingResult: timeout"; |
| state_ = State::kProbingComplete; |
| min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; |
| } |
| } |
| |
| if (enable_periodic_alr_probing_ && state_ == State::kProbingComplete) { |
| // Probe bandwidth periodically when in ALR state. |
| if (alr_start_time_ms_ && estimated_bitrate_bps_ > 0) { |
| int64_t next_probe_time_ms = |
| std::max(*alr_start_time_ms_, time_last_probing_initiated_ms_) + |
| config_.alr_probing_interval->ms(); |
| if (at_time_ms >= next_probe_time_ms) { |
| return InitiateProbing(at_time_ms, |
| {static_cast<int64_t>(estimated_bitrate_bps_ * |
| config_.alr_probe_scale)}, |
| true); |
| } |
| } |
| } |
| return std::vector<ProbeClusterConfig>(); |
| } |
| |
| std::vector<ProbeClusterConfig> ProbeController::InitiateProbing( |
| int64_t now_ms, |
| std::vector<int64_t> bitrates_to_probe, |
| bool probe_further) { |
| int64_t max_probe_bitrate_bps = |
| max_bitrate_bps_ > 0 ? max_bitrate_bps_ : kDefaultMaxProbingBitrateBps; |
| if (limit_probes_with_allocateable_rate_ && |
| max_total_allocated_bitrate_ > 0) { |
| // If a max allocated bitrate has been configured, allow probing up to 2x |
| // that rate. This allows some overhead to account for bursty streams, |
| // which otherwise would have to ramp up when the overshoot is already in |
| // progress. |
| // It also avoids minor quality reduction caused by probes often being |
| // received at slightly less than the target probe bitrate. |
| max_probe_bitrate_bps = |
| std::min(max_probe_bitrate_bps, max_total_allocated_bitrate_ * 2); |
| } |
| |
| std::vector<ProbeClusterConfig> pending_probes; |
| for (int64_t bitrate : bitrates_to_probe) { |
| RTC_DCHECK_GT(bitrate, 0); |
| |
| if (bitrate > max_probe_bitrate_bps) { |
| bitrate = max_probe_bitrate_bps; |
| probe_further = false; |
| } |
| |
| ProbeClusterConfig config; |
| config.at_time = Timestamp::ms(now_ms); |
| config.target_data_rate = DataRate::bps(rtc::dchecked_cast<int>(bitrate)); |
| config.target_duration = TimeDelta::ms(kMinProbeDurationMs); |
| config.target_probe_count = kMinProbePacketsSent; |
| config.id = next_probe_cluster_id_; |
| next_probe_cluster_id_++; |
| MaybeLogProbeClusterCreated(event_log_, config); |
| pending_probes.push_back(config); |
| } |
| time_last_probing_initiated_ms_ = now_ms; |
| if (probe_further) { |
| state_ = State::kWaitingForProbingResult; |
| min_bitrate_to_probe_further_bps_ = |
| (*(bitrates_to_probe.end() - 1)) * config_.further_probe_threshold; |
| } else { |
| state_ = State::kProbingComplete; |
| min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; |
| } |
| return pending_probes; |
| } |
| |
| } // namespace webrtc |