| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_coding/include/audio_coding_module.h" |
| |
| #include <assert.h> |
| #include <algorithm> |
| #include <cstdint> |
| |
| #include "absl/strings/match.h" |
| #include "api/array_view.h" |
| #include "modules/audio_coding/acm2/acm_receiver.h" |
| #include "modules/audio_coding/acm2/acm_resampler.h" |
| #include "modules/include/module_common_types.h" |
| #include "modules/include/module_common_types_public.h" |
| #include "rtc_base/buffer.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/critical_section.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "rtc_base/thread_annotations.h" |
| #include "system_wrappers/include/metrics.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| class AudioCodingModuleImpl final : public AudioCodingModule { |
| public: |
| explicit AudioCodingModuleImpl(const AudioCodingModule::Config& config); |
| ~AudioCodingModuleImpl() override; |
| |
| ///////////////////////////////////////// |
| // Sender |
| // |
| |
| void ModifyEncoder(rtc::FunctionView<void(std::unique_ptr<AudioEncoder>*)> |
| modifier) override; |
| |
| // Sets the bitrate to the specified value in bits/sec. In case the codec does |
| // not support the requested value it will choose an appropriate value |
| // instead. |
| void SetBitRate(int bitrate_bps) override; |
| |
| // Register a transport callback which will be |
| // called to deliver the encoded buffers. |
| int RegisterTransportCallback(AudioPacketizationCallback* transport) override; |
| |
| // Add 10 ms of raw (PCM) audio data to the encoder. |
| int Add10MsData(const AudioFrame& audio_frame) override; |
| |
| ///////////////////////////////////////// |
| // (FEC) Forward Error Correction (codec internal) |
| // |
| |
| // Set target packet loss rate |
| int SetPacketLossRate(int loss_rate) override; |
| |
| ///////////////////////////////////////// |
| // (VAD) Voice Activity Detection |
| // and |
| // (CNG) Comfort Noise Generation |
| // |
| |
| int RegisterVADCallback(ACMVADCallback* vad_callback) override; |
| |
| ///////////////////////////////////////// |
| // Receiver |
| // |
| |
| // Initialize receiver, resets codec database etc. |
| int InitializeReceiver() override; |
| |
| // Get current receive frequency. |
| int ReceiveFrequency() const override; |
| |
| // Get current playout frequency. |
| int PlayoutFrequency() const override; |
| |
| void SetReceiveCodecs(const std::map<int, SdpAudioFormat>& codecs) override; |
| |
| // Get current received codec. |
| absl::optional<std::pair<int, SdpAudioFormat>> ReceiveCodec() const override; |
| |
| // Incoming packet from network parsed and ready for decode. |
| int IncomingPacket(const uint8_t* incoming_payload, |
| const size_t payload_length, |
| const RTPHeader& rtp_info) override; |
| |
| // Minimum playout delay. |
| int SetMinimumPlayoutDelay(int time_ms) override; |
| |
| // Maximum playout delay. |
| int SetMaximumPlayoutDelay(int time_ms) override; |
| |
| bool SetBaseMinimumPlayoutDelayMs(int delay_ms) override; |
| |
| int GetBaseMinimumPlayoutDelayMs() const override; |
| |
| absl::optional<uint32_t> PlayoutTimestamp() override; |
| |
| int FilteredCurrentDelayMs() const override; |
| |
| int TargetDelayMs() const override; |
| |
| // Get 10 milliseconds of raw audio data to play out, and |
| // automatic resample to the requested frequency if > 0. |
| int PlayoutData10Ms(int desired_freq_hz, |
| AudioFrame* audio_frame, |
| bool* muted) override; |
| |
| ///////////////////////////////////////// |
| // Statistics |
| // |
| |
| int GetNetworkStatistics(NetworkStatistics* statistics) override; |
| |
| // If current send codec is Opus, informs it about the maximum playback rate |
| // the receiver will render. |
| int SetOpusMaxPlaybackRate(int frequency_hz) override; |
| |
| int EnableOpusDtx() override; |
| |
| int DisableOpusDtx() override; |
| |
| int EnableNack(size_t max_nack_list_size) override; |
| |
| void DisableNack() override; |
| |
| std::vector<uint16_t> GetNackList(int64_t round_trip_time_ms) const override; |
| |
| void GetDecodingCallStatistics(AudioDecodingCallStats* stats) const override; |
| |
| ANAStats GetANAStats() const override; |
| |
| private: |
| struct InputData { |
| uint32_t input_timestamp; |
| const int16_t* audio; |
| size_t length_per_channel; |
| size_t audio_channel; |
| // If a re-mix is required (up or down), this buffer will store a re-mixed |
| // version of the input. |
| int16_t buffer[WEBRTC_10MS_PCM_AUDIO]; |
| }; |
| |
| // This member class writes values to the named UMA histogram, but only if |
| // the value has changed since the last time (and always for the first call). |
| class ChangeLogger { |
| public: |
| explicit ChangeLogger(const std::string& histogram_name) |
| : histogram_name_(histogram_name) {} |
| // Logs the new value if it is different from the last logged value, or if |
| // this is the first call. |
| void MaybeLog(int value); |
| |
| private: |
| int last_value_ = 0; |
| int first_time_ = true; |
| const std::string histogram_name_; |
| }; |
| |
| int Add10MsDataInternal(const AudioFrame& audio_frame, InputData* input_data) |
| RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_); |
| int Encode(const InputData& input_data) |
| RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_); |
| |
| int InitializeReceiverSafe() RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_); |
| |
| bool HaveValidEncoder(const char* caller_name) const |
| RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_); |
| |
| // Preprocessing of input audio, including resampling and down-mixing if |
| // required, before pushing audio into encoder's buffer. |
| // |
| // in_frame: input audio-frame |
| // ptr_out: pointer to output audio_frame. If no preprocessing is required |
| // |ptr_out| will be pointing to |in_frame|, otherwise pointing to |
| // |preprocess_frame_|. |
| // |
| // Return value: |
| // -1: if encountering an error. |
| // 0: otherwise. |
| int PreprocessToAddData(const AudioFrame& in_frame, |
| const AudioFrame** ptr_out) |
| RTC_EXCLUSIVE_LOCKS_REQUIRED(acm_crit_sect_); |
| |
| // Change required states after starting to receive the codec corresponding |
| // to |index|. |
| int UpdateUponReceivingCodec(int index); |
| |
| rtc::CriticalSection acm_crit_sect_; |
| rtc::Buffer encode_buffer_ RTC_GUARDED_BY(acm_crit_sect_); |
| uint32_t expected_codec_ts_ RTC_GUARDED_BY(acm_crit_sect_); |
| uint32_t expected_in_ts_ RTC_GUARDED_BY(acm_crit_sect_); |
| acm2::ACMResampler resampler_ RTC_GUARDED_BY(acm_crit_sect_); |
| acm2::AcmReceiver receiver_; // AcmReceiver has it's own internal lock. |
| ChangeLogger bitrate_logger_ RTC_GUARDED_BY(acm_crit_sect_); |
| |
| // Current encoder stack, provided by a call to RegisterEncoder. |
| std::unique_ptr<AudioEncoder> encoder_stack_ RTC_GUARDED_BY(acm_crit_sect_); |
| |
| std::unique_ptr<AudioDecoder> isac_decoder_16k_ |
| RTC_GUARDED_BY(acm_crit_sect_); |
| std::unique_ptr<AudioDecoder> isac_decoder_32k_ |
| RTC_GUARDED_BY(acm_crit_sect_); |
| |
| // This is to keep track of CN instances where we can send DTMFs. |
| uint8_t previous_pltype_ RTC_GUARDED_BY(acm_crit_sect_); |
| |
| bool receiver_initialized_ RTC_GUARDED_BY(acm_crit_sect_); |
| |
| AudioFrame preprocess_frame_ RTC_GUARDED_BY(acm_crit_sect_); |
| bool first_10ms_data_ RTC_GUARDED_BY(acm_crit_sect_); |
| |
| bool first_frame_ RTC_GUARDED_BY(acm_crit_sect_); |
| uint32_t last_timestamp_ RTC_GUARDED_BY(acm_crit_sect_); |
| uint32_t last_rtp_timestamp_ RTC_GUARDED_BY(acm_crit_sect_); |
| |
| rtc::CriticalSection callback_crit_sect_; |
| AudioPacketizationCallback* packetization_callback_ |
| RTC_GUARDED_BY(callback_crit_sect_); |
| ACMVADCallback* vad_callback_ RTC_GUARDED_BY(callback_crit_sect_); |
| |
| int codec_histogram_bins_log_[static_cast<size_t>( |
| AudioEncoder::CodecType::kMaxLoggedAudioCodecTypes)]; |
| int number_of_consecutive_empty_packets_; |
| }; |
| |
| // Adds a codec usage sample to the histogram. |
| void UpdateCodecTypeHistogram(size_t codec_type) { |
| RTC_HISTOGRAM_ENUMERATION( |
| "WebRTC.Audio.Encoder.CodecType", static_cast<int>(codec_type), |
| static_cast<int>( |
| webrtc::AudioEncoder::CodecType::kMaxLoggedAudioCodecTypes)); |
| } |
| |
| // Stereo-to-mono can be used as in-place. |
| int DownMix(const AudioFrame& frame, |
| size_t length_out_buff, |
| int16_t* out_buff) { |
| RTC_DCHECK_EQ(frame.num_channels_, 2); |
| RTC_DCHECK_GE(length_out_buff, frame.samples_per_channel_); |
| |
| if (!frame.muted()) { |
| const int16_t* frame_data = frame.data(); |
| for (size_t n = 0; n < frame.samples_per_channel_; ++n) { |
| out_buff[n] = |
| static_cast<int16_t>((static_cast<int32_t>(frame_data[2 * n]) + |
| static_cast<int32_t>(frame_data[2 * n + 1])) >> |
| 1); |
| } |
| } else { |
| std::fill(out_buff, out_buff + frame.samples_per_channel_, 0); |
| } |
| return 0; |
| } |
| |
| // Mono-to-stereo can be used as in-place. |
| int UpMix(const AudioFrame& frame, size_t length_out_buff, int16_t* out_buff) { |
| RTC_DCHECK_EQ(frame.num_channels_, 1); |
| RTC_DCHECK_GE(length_out_buff, 2 * frame.samples_per_channel_); |
| |
| if (!frame.muted()) { |
| const int16_t* frame_data = frame.data(); |
| for (size_t n = frame.samples_per_channel_; n != 0; --n) { |
| size_t i = n - 1; |
| int16_t sample = frame_data[i]; |
| out_buff[2 * i + 1] = sample; |
| out_buff[2 * i] = sample; |
| } |
| } else { |
| std::fill(out_buff, out_buff + frame.samples_per_channel_ * 2, 0); |
| } |
| return 0; |
| } |
| |
| void ConvertEncodedInfoToFragmentationHeader( |
| const AudioEncoder::EncodedInfo& info, |
| RTPFragmentationHeader* frag) { |
| if (info.redundant.empty()) { |
| frag->fragmentationVectorSize = 0; |
| return; |
| } |
| |
| frag->VerifyAndAllocateFragmentationHeader( |
| static_cast<uint16_t>(info.redundant.size())); |
| frag->fragmentationVectorSize = static_cast<uint16_t>(info.redundant.size()); |
| size_t offset = 0; |
| for (size_t i = 0; i < info.redundant.size(); ++i) { |
| frag->fragmentationOffset[i] = offset; |
| offset += info.redundant[i].encoded_bytes; |
| frag->fragmentationLength[i] = info.redundant[i].encoded_bytes; |
| frag->fragmentationTimeDiff[i] = rtc::dchecked_cast<uint16_t>( |
| info.encoded_timestamp - info.redundant[i].encoded_timestamp); |
| frag->fragmentationPlType[i] = info.redundant[i].payload_type; |
| } |
| } |
| |
| void AudioCodingModuleImpl::ChangeLogger::MaybeLog(int value) { |
| if (value != last_value_ || first_time_) { |
| first_time_ = false; |
| last_value_ = value; |
| RTC_HISTOGRAM_COUNTS_SPARSE_100(histogram_name_, value); |
| } |
| } |
| |
| AudioCodingModuleImpl::AudioCodingModuleImpl( |
| const AudioCodingModule::Config& config) |
| : expected_codec_ts_(0xD87F3F9F), |
| expected_in_ts_(0xD87F3F9F), |
| receiver_(config), |
| bitrate_logger_("WebRTC.Audio.TargetBitrateInKbps"), |
| encoder_stack_(nullptr), |
| previous_pltype_(255), |
| receiver_initialized_(false), |
| first_10ms_data_(false), |
| first_frame_(true), |
| packetization_callback_(NULL), |
| vad_callback_(NULL), |
| codec_histogram_bins_log_(), |
| number_of_consecutive_empty_packets_(0) { |
| if (InitializeReceiverSafe() < 0) { |
| RTC_LOG(LS_ERROR) << "Cannot initialize receiver"; |
| } |
| RTC_LOG(LS_INFO) << "Created"; |
| } |
| |
| AudioCodingModuleImpl::~AudioCodingModuleImpl() = default; |
| |
| int32_t AudioCodingModuleImpl::Encode(const InputData& input_data) { |
| AudioEncoder::EncodedInfo encoded_info; |
| uint8_t previous_pltype; |
| |
| // Check if there is an encoder before. |
| if (!HaveValidEncoder("Process")) |
| return -1; |
| |
| if (!first_frame_) { |
| RTC_DCHECK(IsNewerTimestamp(input_data.input_timestamp, last_timestamp_)) |
| << "Time should not move backwards"; |
| } |
| |
| // Scale the timestamp to the codec's RTP timestamp rate. |
| uint32_t rtp_timestamp = |
| first_frame_ ? input_data.input_timestamp |
| : last_rtp_timestamp_ + |
| rtc::CheckedDivExact( |
| input_data.input_timestamp - last_timestamp_, |
| static_cast<uint32_t>(rtc::CheckedDivExact( |
| encoder_stack_->SampleRateHz(), |
| encoder_stack_->RtpTimestampRateHz()))); |
| last_timestamp_ = input_data.input_timestamp; |
| last_rtp_timestamp_ = rtp_timestamp; |
| first_frame_ = false; |
| |
| // Clear the buffer before reuse - encoded data will get appended. |
| encode_buffer_.Clear(); |
| encoded_info = encoder_stack_->Encode( |
| rtp_timestamp, |
| rtc::ArrayView<const int16_t>( |
| input_data.audio, |
| input_data.audio_channel * input_data.length_per_channel), |
| &encode_buffer_); |
| |
| bitrate_logger_.MaybeLog(encoder_stack_->GetTargetBitrate() / 1000); |
| if (encode_buffer_.size() == 0 && !encoded_info.send_even_if_empty) { |
| // Not enough data. |
| return 0; |
| } |
| previous_pltype = previous_pltype_; // Read it while we have the critsect. |
| |
| // Log codec type to histogram once every 500 packets. |
| if (encoded_info.encoded_bytes == 0) { |
| ++number_of_consecutive_empty_packets_; |
| } else { |
| size_t codec_type = static_cast<size_t>(encoded_info.encoder_type); |
| codec_histogram_bins_log_[codec_type] += |
| number_of_consecutive_empty_packets_ + 1; |
| number_of_consecutive_empty_packets_ = 0; |
| if (codec_histogram_bins_log_[codec_type] >= 500) { |
| codec_histogram_bins_log_[codec_type] -= 500; |
| UpdateCodecTypeHistogram(codec_type); |
| } |
| } |
| |
| RTPFragmentationHeader my_fragmentation; |
| ConvertEncodedInfoToFragmentationHeader(encoded_info, &my_fragmentation); |
| AudioFrameType frame_type; |
| if (encode_buffer_.size() == 0 && encoded_info.send_even_if_empty) { |
| frame_type = AudioFrameType::kEmptyFrame; |
| encoded_info.payload_type = previous_pltype; |
| } else { |
| RTC_DCHECK_GT(encode_buffer_.size(), 0); |
| frame_type = encoded_info.speech ? AudioFrameType::kAudioFrameSpeech |
| : AudioFrameType::kAudioFrameCN; |
| } |
| |
| { |
| rtc::CritScope lock(&callback_crit_sect_); |
| if (packetization_callback_) { |
| packetization_callback_->SendData( |
| frame_type, encoded_info.payload_type, encoded_info.encoded_timestamp, |
| encode_buffer_.data(), encode_buffer_.size(), |
| my_fragmentation.fragmentationVectorSize > 0 ? &my_fragmentation |
| : nullptr); |
| } |
| |
| if (vad_callback_) { |
| // Callback with VAD decision. |
| vad_callback_->InFrameType(frame_type); |
| } |
| } |
| previous_pltype_ = encoded_info.payload_type; |
| return static_cast<int32_t>(encode_buffer_.size()); |
| } |
| |
| ///////////////////////////////////////// |
| // Sender |
| // |
| |
| void AudioCodingModuleImpl::ModifyEncoder( |
| rtc::FunctionView<void(std::unique_ptr<AudioEncoder>*)> modifier) { |
| rtc::CritScope lock(&acm_crit_sect_); |
| modifier(&encoder_stack_); |
| } |
| |
| void AudioCodingModuleImpl::SetBitRate(int bitrate_bps) { |
| rtc::CritScope lock(&acm_crit_sect_); |
| if (encoder_stack_) { |
| encoder_stack_->OnReceivedUplinkBandwidth(bitrate_bps, absl::nullopt); |
| } |
| } |
| |
| // Register a transport callback which will be called to deliver |
| // the encoded buffers. |
| int AudioCodingModuleImpl::RegisterTransportCallback( |
| AudioPacketizationCallback* transport) { |
| rtc::CritScope lock(&callback_crit_sect_); |
| packetization_callback_ = transport; |
| return 0; |
| } |
| |
| // Add 10MS of raw (PCM) audio data to the encoder. |
| int AudioCodingModuleImpl::Add10MsData(const AudioFrame& audio_frame) { |
| InputData input_data; |
| rtc::CritScope lock(&acm_crit_sect_); |
| int r = Add10MsDataInternal(audio_frame, &input_data); |
| return r < 0 ? r : Encode(input_data); |
| } |
| |
| int AudioCodingModuleImpl::Add10MsDataInternal(const AudioFrame& audio_frame, |
| InputData* input_data) { |
| if (audio_frame.samples_per_channel_ == 0) { |
| assert(false); |
| RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, payload length is zero"; |
| return -1; |
| } |
| |
| if (audio_frame.sample_rate_hz_ > 48000) { |
| assert(false); |
| RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, input frequency not valid"; |
| return -1; |
| } |
| |
| // If the length and frequency matches. We currently just support raw PCM. |
| if (static_cast<size_t>(audio_frame.sample_rate_hz_ / 100) != |
| audio_frame.samples_per_channel_) { |
| RTC_LOG(LS_ERROR) |
| << "Cannot Add 10 ms audio, input frequency and length doesn't match"; |
| return -1; |
| } |
| |
| if (audio_frame.num_channels_ != 1 && audio_frame.num_channels_ != 2 && |
| audio_frame.num_channels_ != 4 && audio_frame.num_channels_ != 6 && |
| audio_frame.num_channels_ != 8) { |
| RTC_LOG(LS_ERROR) << "Cannot Add 10 ms audio, invalid number of channels."; |
| return -1; |
| } |
| |
| // Do we have a codec registered? |
| if (!HaveValidEncoder("Add10MsData")) { |
| return -1; |
| } |
| |
| const AudioFrame* ptr_frame; |
| // Perform a resampling, also down-mix if it is required and can be |
| // performed before resampling (a down mix prior to resampling will take |
| // place if both primary and secondary encoders are mono and input is in |
| // stereo). |
| if (PreprocessToAddData(audio_frame, &ptr_frame) < 0) { |
| return -1; |
| } |
| |
| // Check whether we need an up-mix or down-mix? |
| const size_t current_num_channels = encoder_stack_->NumChannels(); |
| const bool same_num_channels = |
| ptr_frame->num_channels_ == current_num_channels; |
| |
| if (!same_num_channels) { |
| if (ptr_frame->num_channels_ == 1) { |
| if (UpMix(*ptr_frame, WEBRTC_10MS_PCM_AUDIO, input_data->buffer) < 0) |
| return -1; |
| } else { |
| if (DownMix(*ptr_frame, WEBRTC_10MS_PCM_AUDIO, input_data->buffer) < 0) |
| return -1; |
| } |
| } |
| |
| // When adding data to encoders this pointer is pointing to an audio buffer |
| // with correct number of channels. |
| const int16_t* ptr_audio = ptr_frame->data(); |
| |
| // For pushing data to primary, point the |ptr_audio| to correct buffer. |
| if (!same_num_channels) |
| ptr_audio = input_data->buffer; |
| |
| // TODO(yujo): Skip encode of muted frames. |
| input_data->input_timestamp = ptr_frame->timestamp_; |
| input_data->audio = ptr_audio; |
| input_data->length_per_channel = ptr_frame->samples_per_channel_; |
| input_data->audio_channel = current_num_channels; |
| |
| return 0; |
| } |
| |
| // Perform a resampling and down-mix if required. We down-mix only if |
| // encoder is mono and input is stereo. In case of dual-streaming, both |
| // encoders has to be mono for down-mix to take place. |
| // |*ptr_out| will point to the pre-processed audio-frame. If no pre-processing |
| // is required, |*ptr_out| points to |in_frame|. |
| // TODO(yujo): Make this more efficient for muted frames. |
| int AudioCodingModuleImpl::PreprocessToAddData(const AudioFrame& in_frame, |
| const AudioFrame** ptr_out) { |
| const bool resample = |
| in_frame.sample_rate_hz_ != encoder_stack_->SampleRateHz(); |
| |
| // This variable is true if primary codec and secondary codec (if exists) |
| // are both mono and input is stereo. |
| // TODO(henrik.lundin): This condition should probably be |
| // in_frame.num_channels_ > encoder_stack_->NumChannels() |
| const bool down_mix = |
| in_frame.num_channels_ == 2 && encoder_stack_->NumChannels() == 1; |
| |
| if (!first_10ms_data_) { |
| expected_in_ts_ = in_frame.timestamp_; |
| expected_codec_ts_ = in_frame.timestamp_; |
| first_10ms_data_ = true; |
| } else if (in_frame.timestamp_ != expected_in_ts_) { |
| RTC_LOG(LS_WARNING) << "Unexpected input timestamp: " << in_frame.timestamp_ |
| << ", expected: " << expected_in_ts_; |
| expected_codec_ts_ += |
| (in_frame.timestamp_ - expected_in_ts_) * |
| static_cast<uint32_t>( |
| static_cast<double>(encoder_stack_->SampleRateHz()) / |
| static_cast<double>(in_frame.sample_rate_hz_)); |
| expected_in_ts_ = in_frame.timestamp_; |
| } |
| |
| if (!down_mix && !resample) { |
| // No pre-processing is required. |
| if (expected_in_ts_ == expected_codec_ts_) { |
| // If we've never resampled, we can use the input frame as-is |
| *ptr_out = &in_frame; |
| } else { |
| // Otherwise we'll need to alter the timestamp. Since in_frame is const, |
| // we'll have to make a copy of it. |
| preprocess_frame_.CopyFrom(in_frame); |
| preprocess_frame_.timestamp_ = expected_codec_ts_; |
| *ptr_out = &preprocess_frame_; |
| } |
| |
| expected_in_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_); |
| expected_codec_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_); |
| return 0; |
| } |
| |
| *ptr_out = &preprocess_frame_; |
| preprocess_frame_.num_channels_ = in_frame.num_channels_; |
| int16_t audio[WEBRTC_10MS_PCM_AUDIO]; |
| const int16_t* src_ptr_audio = in_frame.data(); |
| if (down_mix) { |
| // If a resampling is required the output of a down-mix is written into a |
| // local buffer, otherwise, it will be written to the output frame. |
| int16_t* dest_ptr_audio = |
| resample ? audio : preprocess_frame_.mutable_data(); |
| if (DownMix(in_frame, WEBRTC_10MS_PCM_AUDIO, dest_ptr_audio) < 0) |
| return -1; |
| preprocess_frame_.num_channels_ = 1; |
| // Set the input of the resampler is the down-mixed signal. |
| src_ptr_audio = audio; |
| } |
| |
| preprocess_frame_.timestamp_ = expected_codec_ts_; |
| preprocess_frame_.samples_per_channel_ = in_frame.samples_per_channel_; |
| preprocess_frame_.sample_rate_hz_ = in_frame.sample_rate_hz_; |
| // If it is required, we have to do a resampling. |
| if (resample) { |
| // The result of the resampler is written to output frame. |
| int16_t* dest_ptr_audio = preprocess_frame_.mutable_data(); |
| |
| int samples_per_channel = resampler_.Resample10Msec( |
| src_ptr_audio, in_frame.sample_rate_hz_, encoder_stack_->SampleRateHz(), |
| preprocess_frame_.num_channels_, AudioFrame::kMaxDataSizeSamples, |
| dest_ptr_audio); |
| |
| if (samples_per_channel < 0) { |
| RTC_LOG(LS_ERROR) << "Cannot add 10 ms audio, resampling failed"; |
| return -1; |
| } |
| preprocess_frame_.samples_per_channel_ = |
| static_cast<size_t>(samples_per_channel); |
| preprocess_frame_.sample_rate_hz_ = encoder_stack_->SampleRateHz(); |
| } |
| |
| expected_codec_ts_ += |
| static_cast<uint32_t>(preprocess_frame_.samples_per_channel_); |
| expected_in_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_); |
| |
| return 0; |
| } |
| |
| ///////////////////////////////////////// |
| // (FEC) Forward Error Correction (codec internal) |
| // |
| |
| int AudioCodingModuleImpl::SetPacketLossRate(int loss_rate) { |
| rtc::CritScope lock(&acm_crit_sect_); |
| if (HaveValidEncoder("SetPacketLossRate")) { |
| encoder_stack_->OnReceivedUplinkPacketLossFraction(loss_rate / 100.0); |
| } |
| return 0; |
| } |
| |
| ///////////////////////////////////////// |
| // Receiver |
| // |
| |
| int AudioCodingModuleImpl::InitializeReceiver() { |
| rtc::CritScope lock(&acm_crit_sect_); |
| return InitializeReceiverSafe(); |
| } |
| |
| // Initialize receiver, resets codec database etc. |
| int AudioCodingModuleImpl::InitializeReceiverSafe() { |
| // If the receiver is already initialized then we want to destroy any |
| // existing decoders. After a call to this function, we should have a clean |
| // start-up. |
| if (receiver_initialized_) |
| receiver_.RemoveAllCodecs(); |
| receiver_.FlushBuffers(); |
| |
| receiver_initialized_ = true; |
| return 0; |
| } |
| |
| // Get current receive frequency. |
| int AudioCodingModuleImpl::ReceiveFrequency() const { |
| const auto last_packet_sample_rate = receiver_.last_packet_sample_rate_hz(); |
| return last_packet_sample_rate ? *last_packet_sample_rate |
| : receiver_.last_output_sample_rate_hz(); |
| } |
| |
| // Get current playout frequency. |
| int AudioCodingModuleImpl::PlayoutFrequency() const { |
| return receiver_.last_output_sample_rate_hz(); |
| } |
| |
| void AudioCodingModuleImpl::SetReceiveCodecs( |
| const std::map<int, SdpAudioFormat>& codecs) { |
| rtc::CritScope lock(&acm_crit_sect_); |
| receiver_.SetCodecs(codecs); |
| } |
| |
| absl::optional<std::pair<int, SdpAudioFormat>> |
| AudioCodingModuleImpl::ReceiveCodec() const { |
| rtc::CritScope lock(&acm_crit_sect_); |
| return receiver_.LastDecoder(); |
| } |
| |
| // Incoming packet from network parsed and ready for decode. |
| int AudioCodingModuleImpl::IncomingPacket(const uint8_t* incoming_payload, |
| const size_t payload_length, |
| const RTPHeader& rtp_header) { |
| RTC_DCHECK_EQ(payload_length == 0, incoming_payload == nullptr); |
| return receiver_.InsertPacket( |
| rtp_header, |
| rtc::ArrayView<const uint8_t>(incoming_payload, payload_length)); |
| } |
| |
| // Minimum playout delay (Used for lip-sync). |
| int AudioCodingModuleImpl::SetMinimumPlayoutDelay(int time_ms) { |
| if ((time_ms < 0) || (time_ms > 10000)) { |
| RTC_LOG(LS_ERROR) << "Delay must be in the range of 0-10000 milliseconds."; |
| return -1; |
| } |
| return receiver_.SetMinimumDelay(time_ms); |
| } |
| |
| int AudioCodingModuleImpl::SetMaximumPlayoutDelay(int time_ms) { |
| if ((time_ms < 0) || (time_ms > 10000)) { |
| RTC_LOG(LS_ERROR) << "Delay must be in the range of 0-10000 milliseconds."; |
| return -1; |
| } |
| return receiver_.SetMaximumDelay(time_ms); |
| } |
| |
| bool AudioCodingModuleImpl::SetBaseMinimumPlayoutDelayMs(int delay_ms) { |
| // All necessary validation happens on NetEq level. |
| return receiver_.SetBaseMinimumDelayMs(delay_ms); |
| } |
| |
| int AudioCodingModuleImpl::GetBaseMinimumPlayoutDelayMs() const { |
| return receiver_.GetBaseMinimumDelayMs(); |
| } |
| |
| // Get 10 milliseconds of raw audio data to play out. |
| // Automatic resample to the requested frequency. |
| int AudioCodingModuleImpl::PlayoutData10Ms(int desired_freq_hz, |
| AudioFrame* audio_frame, |
| bool* muted) { |
| // GetAudio always returns 10 ms, at the requested sample rate. |
| if (receiver_.GetAudio(desired_freq_hz, audio_frame, muted) != 0) { |
| RTC_LOG(LS_ERROR) << "PlayoutData failed, RecOut Failed"; |
| return -1; |
| } |
| return 0; |
| } |
| |
| ///////////////////////////////////////// |
| // Statistics |
| // |
| |
| // TODO(turajs) change the return value to void. Also change the corresponding |
| // NetEq function. |
| int AudioCodingModuleImpl::GetNetworkStatistics(NetworkStatistics* statistics) { |
| receiver_.GetNetworkStatistics(statistics); |
| return 0; |
| } |
| |
| int AudioCodingModuleImpl::RegisterVADCallback(ACMVADCallback* vad_callback) { |
| RTC_LOG(LS_VERBOSE) << "RegisterVADCallback()"; |
| rtc::CritScope lock(&callback_crit_sect_); |
| vad_callback_ = vad_callback; |
| return 0; |
| } |
| |
| // Informs Opus encoder of the maximum playback rate the receiver will render. |
| int AudioCodingModuleImpl::SetOpusMaxPlaybackRate(int frequency_hz) { |
| rtc::CritScope lock(&acm_crit_sect_); |
| if (!HaveValidEncoder("SetOpusMaxPlaybackRate")) { |
| return -1; |
| } |
| encoder_stack_->SetMaxPlaybackRate(frequency_hz); |
| return 0; |
| } |
| |
| int AudioCodingModuleImpl::EnableOpusDtx() { |
| rtc::CritScope lock(&acm_crit_sect_); |
| if (!HaveValidEncoder("EnableOpusDtx")) { |
| return -1; |
| } |
| return encoder_stack_->SetDtx(true) ? 0 : -1; |
| } |
| |
| int AudioCodingModuleImpl::DisableOpusDtx() { |
| rtc::CritScope lock(&acm_crit_sect_); |
| if (!HaveValidEncoder("DisableOpusDtx")) { |
| return -1; |
| } |
| return encoder_stack_->SetDtx(false) ? 0 : -1; |
| } |
| |
| absl::optional<uint32_t> AudioCodingModuleImpl::PlayoutTimestamp() { |
| return receiver_.GetPlayoutTimestamp(); |
| } |
| |
| int AudioCodingModuleImpl::FilteredCurrentDelayMs() const { |
| return receiver_.FilteredCurrentDelayMs(); |
| } |
| |
| int AudioCodingModuleImpl::TargetDelayMs() const { |
| return receiver_.TargetDelayMs(); |
| } |
| |
| bool AudioCodingModuleImpl::HaveValidEncoder(const char* caller_name) const { |
| if (!encoder_stack_) { |
| RTC_LOG(LS_ERROR) << caller_name << " failed: No send codec is registered."; |
| return false; |
| } |
| return true; |
| } |
| |
| int AudioCodingModuleImpl::EnableNack(size_t max_nack_list_size) { |
| return receiver_.EnableNack(max_nack_list_size); |
| } |
| |
| void AudioCodingModuleImpl::DisableNack() { |
| receiver_.DisableNack(); |
| } |
| |
| std::vector<uint16_t> AudioCodingModuleImpl::GetNackList( |
| int64_t round_trip_time_ms) const { |
| return receiver_.GetNackList(round_trip_time_ms); |
| } |
| |
| void AudioCodingModuleImpl::GetDecodingCallStatistics( |
| AudioDecodingCallStats* call_stats) const { |
| receiver_.GetDecodingCallStatistics(call_stats); |
| } |
| |
| ANAStats AudioCodingModuleImpl::GetANAStats() const { |
| rtc::CritScope lock(&acm_crit_sect_); |
| if (encoder_stack_) |
| return encoder_stack_->GetANAStats(); |
| // If no encoder is set, return default stats. |
| return ANAStats(); |
| } |
| |
| } // namespace |
| |
| AudioCodingModule::Config::Config( |
| rtc::scoped_refptr<AudioDecoderFactory> decoder_factory) |
| : neteq_config(), |
| clock(Clock::GetRealTimeClock()), |
| decoder_factory(decoder_factory) { |
| // Post-decode VAD is disabled by default in NetEq, however, Audio |
| // Conference Mixer relies on VAD decisions and fails without them. |
| neteq_config.enable_post_decode_vad = true; |
| } |
| |
| AudioCodingModule::Config::Config(const Config&) = default; |
| AudioCodingModule::Config::~Config() = default; |
| |
| AudioCodingModule* AudioCodingModule::Create(const Config& config) { |
| return new AudioCodingModuleImpl(config); |
| } |
| |
| } // namespace webrtc |