| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_coding/neteq/decision_logic.h" |
| |
| #include <stdio.h> |
| |
| #include <cstdint> |
| #include <memory> |
| #include <optional> |
| #include <utility> |
| |
| #include "api/environment/environment.h" |
| #include "api/neteq/neteq.h" |
| #include "api/neteq/neteq_controller.h" |
| #include "modules/audio_coding/neteq/buffer_level_filter.h" |
| #include "modules/audio_coding/neteq/delay_manager.h" |
| #include "modules/audio_coding/neteq/packet_arrival_history.h" |
| #include "modules/audio_coding/neteq/packet_buffer.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| constexpr int kPostponeDecodingLevel = 50; |
| constexpr int kTargetLevelWindowMs = 100; |
| // The granularity of delay adjustments (accelerate/preemptive expand) is 15ms, |
| // but round up since the clock has a granularity of 10ms. |
| constexpr int kDelayAdjustmentGranularityMs = 20; |
| constexpr int kPacketHistorySizeMs = 2000; |
| constexpr size_t kCngTimeoutMs = 1000; |
| |
| std::unique_ptr<DelayManager> CreateDelayManager( |
| const Environment& env, |
| const NetEqController::Config& neteq_config) { |
| DelayManager::Config config(env.field_trials()); |
| config.Log(); |
| return std::make_unique<DelayManager>(config, neteq_config.tick_timer); |
| } |
| |
| bool IsTimestretch(NetEq::Mode mode) { |
| return mode == NetEq::Mode::kAccelerateSuccess || |
| mode == NetEq::Mode::kAccelerateLowEnergy || |
| mode == NetEq::Mode::kPreemptiveExpandSuccess || |
| mode == NetEq::Mode::kPreemptiveExpandLowEnergy; |
| } |
| |
| bool IsCng(NetEq::Mode mode) { |
| return mode == NetEq::Mode::kRfc3389Cng || |
| mode == NetEq::Mode::kCodecInternalCng; |
| } |
| |
| bool IsExpand(NetEq::Mode mode) { |
| return mode == NetEq::Mode::kExpand || mode == NetEq::Mode::kCodecPlc; |
| } |
| |
| } // namespace |
| |
| DecisionLogic::DecisionLogic(const Environment& env, |
| NetEqController::Config config) |
| : DecisionLogic(config, |
| CreateDelayManager(env, config), |
| std::make_unique<BufferLevelFilter>()) {} |
| |
| DecisionLogic::DecisionLogic( |
| NetEqController::Config config, |
| std::unique_ptr<DelayManager> delay_manager, |
| std::unique_ptr<BufferLevelFilter> buffer_level_filter, |
| std::unique_ptr<PacketArrivalHistory> packet_arrival_history) |
| : delay_manager_(std::move(delay_manager)), |
| delay_constraints_(config.max_packets_in_buffer, |
| config.base_min_delay_ms), |
| buffer_level_filter_(std::move(buffer_level_filter)), |
| packet_arrival_history_( |
| packet_arrival_history |
| ? std::move(packet_arrival_history) |
| : std::make_unique<PacketArrivalHistory>(config.tick_timer, |
| kPacketHistorySizeMs)), |
| tick_timer_(config.tick_timer), |
| disallow_time_stretching_(!config.allow_time_stretching), |
| timescale_countdown_( |
| tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1)) {} |
| |
| DecisionLogic::~DecisionLogic() = default; |
| |
| void DecisionLogic::SoftReset() { |
| packet_length_samples_ = 0; |
| sample_memory_ = 0; |
| prev_time_scale_ = false; |
| timescale_countdown_ = |
| tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1); |
| time_stretched_cn_samples_ = 0; |
| delay_manager_->Reset(); |
| buffer_level_filter_->Reset(); |
| packet_arrival_history_->Reset(); |
| } |
| |
| void DecisionLogic::SetSampleRate(int fs_hz, size_t output_size_samples) { |
| // TODO(hlundin): Change to an enumerator and skip assert. |
| RTC_DCHECK(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 || |
| fs_hz == 48000); |
| sample_rate_khz_ = fs_hz / 1000; |
| output_size_samples_ = output_size_samples; |
| packet_arrival_history_->set_sample_rate(fs_hz); |
| } |
| |
| NetEq::Operation DecisionLogic::GetDecision(const NetEqStatus& status, |
| bool* /* reset_decoder */) { |
| prev_time_scale_ = prev_time_scale_ && IsTimestretch(status.last_mode); |
| if (prev_time_scale_) { |
| timescale_countdown_ = tick_timer_->GetNewCountdown(kMinTimescaleInterval); |
| } |
| if (!IsCng(status.last_mode) && !IsExpand(status.last_mode)) { |
| FilterBufferLevel(status.packet_buffer_info.span_samples); |
| } |
| |
| // Guard for errors, to avoid getting stuck in error mode. |
| if (status.last_mode == NetEq::Mode::kError) { |
| if (!status.next_packet) { |
| return NetEq::Operation::kExpand; |
| } else { |
| // Use kUndefined to flag for a reset. |
| return NetEq::Operation::kUndefined; |
| } |
| } |
| |
| if (status.next_packet && status.next_packet->is_cng) { |
| return CngOperation(status); |
| } |
| |
| // Handle the case with no packet at all available (except maybe DTMF). |
| if (!status.next_packet) { |
| return NoPacket(status); |
| } |
| |
| if (PostponeDecode(status)) { |
| return NoPacket(status); |
| } |
| |
| const uint32_t five_seconds_samples = |
| static_cast<uint32_t>(5000 * sample_rate_khz_); |
| // Check if the required packet is available. |
| if (status.target_timestamp == status.next_packet->timestamp) { |
| return ExpectedPacketAvailable(status); |
| } |
| if (!PacketBuffer::IsObsoleteTimestamp(status.next_packet->timestamp, |
| status.target_timestamp, |
| five_seconds_samples)) { |
| return FuturePacketAvailable(status); |
| } |
| // This implies that available_timestamp < target_timestamp, which can |
| // happen when a new stream or codec is received. Signal for a reset. |
| return NetEq::Operation::kUndefined; |
| } |
| |
| int DecisionLogic::TargetLevelMs() const { |
| return delay_constraints_.Clamp(UnlimitedTargetLevelMs()); |
| } |
| |
| int DecisionLogic::UnlimitedTargetLevelMs() const { |
| return delay_manager_->TargetDelayMs(); |
| } |
| |
| int DecisionLogic::GetFilteredBufferLevel() const { |
| return buffer_level_filter_->filtered_current_level(); |
| } |
| |
| std::optional<int> DecisionLogic::PacketArrived(int fs_hz, |
| bool should_update_stats, |
| const PacketArrivedInfo& info) { |
| buffer_flush_ = buffer_flush_ || info.buffer_flush; |
| if (!should_update_stats || info.is_cng_or_dtmf) { |
| return std::nullopt; |
| } |
| if (info.packet_length_samples > 0 && fs_hz > 0 && |
| info.packet_length_samples != packet_length_samples_) { |
| packet_length_samples_ = info.packet_length_samples; |
| delay_constraints_.SetPacketAudioLength(packet_length_samples_ * 1000 / |
| fs_hz); |
| } |
| bool inserted = packet_arrival_history_->Insert(info.main_timestamp, |
| info.packet_length_samples); |
| if (!inserted || packet_arrival_history_->size() < 2) { |
| // No meaningful delay estimate unless at least 2 packets have arrived. |
| return std::nullopt; |
| } |
| int arrival_delay_ms = |
| packet_arrival_history_->GetDelayMs(info.main_timestamp); |
| bool reordered = |
| !packet_arrival_history_->IsNewestRtpTimestamp(info.main_timestamp); |
| delay_manager_->Update(arrival_delay_ms, reordered); |
| return arrival_delay_ms; |
| } |
| |
| void DecisionLogic::FilterBufferLevel(size_t buffer_size_samples) { |
| buffer_level_filter_->SetTargetBufferLevel(TargetLevelMs()); |
| |
| int time_stretched_samples = time_stretched_cn_samples_; |
| if (prev_time_scale_) { |
| time_stretched_samples += sample_memory_; |
| } |
| |
| if (buffer_flush_) { |
| buffer_level_filter_->SetFilteredBufferLevel(buffer_size_samples); |
| buffer_flush_ = false; |
| } else { |
| buffer_level_filter_->Update(buffer_size_samples, time_stretched_samples); |
| } |
| prev_time_scale_ = false; |
| time_stretched_cn_samples_ = 0; |
| } |
| |
| NetEq::Operation DecisionLogic::CngOperation( |
| NetEqController::NetEqStatus status) { |
| // Signed difference between target and available timestamp. |
| int32_t timestamp_diff = static_cast<int32_t>( |
| static_cast<uint32_t>(status.generated_noise_samples + |
| status.target_timestamp) - |
| status.next_packet->timestamp); |
| int optimal_level_samp = TargetLevelMs() * sample_rate_khz_; |
| const int64_t excess_waiting_time_samp = |
| -static_cast<int64_t>(timestamp_diff) - optimal_level_samp; |
| |
| if (excess_waiting_time_samp > optimal_level_samp / 2) { |
| // The waiting time for this packet will be longer than 1.5 |
| // times the wanted buffer delay. Apply fast-forward to cut the |
| // waiting time down to the optimal. |
| noise_fast_forward_ = rtc::saturated_cast<size_t>(noise_fast_forward_ + |
| excess_waiting_time_samp); |
| timestamp_diff = |
| rtc::saturated_cast<int32_t>(timestamp_diff + excess_waiting_time_samp); |
| } |
| |
| if (timestamp_diff < 0 && status.last_mode == NetEq::Mode::kRfc3389Cng) { |
| // Not time to play this packet yet. Wait another round before using this |
| // packet. Keep on playing CNG from previous CNG parameters. |
| return NetEq::Operation::kRfc3389CngNoPacket; |
| } else { |
| // Otherwise, go for the CNG packet now. |
| noise_fast_forward_ = 0; |
| return NetEq::Operation::kRfc3389Cng; |
| } |
| } |
| |
| NetEq::Operation DecisionLogic::NoPacket(NetEqController::NetEqStatus status) { |
| switch (status.last_mode) { |
| case NetEq::Mode::kRfc3389Cng: |
| return NetEq::Operation::kRfc3389CngNoPacket; |
| case NetEq::Mode::kCodecInternalCng: { |
| // Stop CNG after a timeout. |
| if (status.generated_noise_samples > kCngTimeoutMs * sample_rate_khz_) { |
| return NetEq::Operation::kExpand; |
| } |
| return NetEq::Operation::kCodecInternalCng; |
| } |
| default: |
| return status.play_dtmf ? NetEq::Operation::kDtmf |
| : NetEq::Operation::kExpand; |
| } |
| } |
| |
| NetEq::Operation DecisionLogic::ExpectedPacketAvailable( |
| NetEqController::NetEqStatus status) { |
| if (!disallow_time_stretching_ && status.last_mode != NetEq::Mode::kExpand && |
| !status.play_dtmf) { |
| const int playout_delay_ms = GetPlayoutDelayMs(status); |
| const int64_t low_limit = TargetLevelMs(); |
| const int64_t high_limit = low_limit + |
| packet_arrival_history_->GetMaxDelayMs() + |
| kDelayAdjustmentGranularityMs; |
| if (playout_delay_ms >= high_limit * 4) { |
| return NetEq::Operation::kFastAccelerate; |
| } |
| if (TimescaleAllowed()) { |
| if (playout_delay_ms >= high_limit) { |
| return NetEq::Operation::kAccelerate; |
| } |
| if (playout_delay_ms < low_limit) { |
| return NetEq::Operation::kPreemptiveExpand; |
| } |
| } |
| } |
| return NetEq::Operation::kNormal; |
| } |
| |
| NetEq::Operation DecisionLogic::FuturePacketAvailable( |
| NetEqController::NetEqStatus status) { |
| // Required packet is not available, but a future packet is. |
| // Check if we should continue with an ongoing concealment because the new |
| // packet is too far into the future. |
| const int buffer_delay_samples = |
| status.packet_buffer_info.span_samples_wait_time; |
| const int buffer_delay_ms = buffer_delay_samples / sample_rate_khz_; |
| const int high_limit = TargetLevelMs() + kTargetLevelWindowMs / 2; |
| const bool above_target_delay = buffer_delay_ms > high_limit; |
| if ((PacketTooEarly(status) && !above_target_delay)) { |
| return NoPacket(status); |
| } |
| uint32_t timestamp_leap = |
| status.next_packet->timestamp - status.target_timestamp; |
| if (timestamp_leap != status.generated_noise_samples) { |
| // The delay was adjusted, reinitialize the buffer level filter. |
| buffer_level_filter_->SetFilteredBufferLevel(buffer_delay_samples); |
| } |
| |
| // Time to play the next packet. |
| switch (status.last_mode) { |
| case NetEq::Mode::kExpand: |
| return NetEq::Operation::kMerge; |
| case NetEq::Mode::kCodecPlc: |
| case NetEq::Mode::kRfc3389Cng: |
| case NetEq::Mode::kCodecInternalCng: |
| return NetEq::Operation::kNormal; |
| default: |
| return status.play_dtmf ? NetEq::Operation::kDtmf |
| : NetEq::Operation::kExpand; |
| } |
| } |
| |
| bool DecisionLogic::UnderTargetLevel() const { |
| return buffer_level_filter_->filtered_current_level() < |
| TargetLevelMs() * sample_rate_khz_; |
| } |
| |
| bool DecisionLogic::PostponeDecode(NetEqController::NetEqStatus status) const { |
| // Make sure we don't restart audio too soon after CNG or expand to avoid |
| // running out of data right away again. |
| const size_t min_buffer_level_samples = |
| TargetLevelMs() * sample_rate_khz_ * kPostponeDecodingLevel / 100; |
| const size_t buffer_level_samples = |
| status.packet_buffer_info.span_samples_wait_time; |
| if (buffer_level_samples >= min_buffer_level_samples) { |
| return false; |
| } |
| // Don't postpone decoding if there is a future DTX packet in the packet |
| // buffer. |
| if (status.packet_buffer_info.dtx_or_cng) { |
| return false; |
| } |
| // Continue CNG until the buffer is at least at the minimum level. |
| if (IsCng(status.last_mode)) { |
| return true; |
| } |
| // Only continue expand if the mute factor is low enough (otherwise the |
| // expansion was short enough to not be noticable). Note that the MuteFactor |
| // is in Q14, so a value of 16384 corresponds to 1. |
| if (IsExpand(status.last_mode) && status.expand_mutefactor < 16384 / 2) { |
| return true; |
| } |
| return false; |
| } |
| |
| bool DecisionLogic::PacketTooEarly(NetEqController::NetEqStatus status) const { |
| const uint32_t timestamp_leap = |
| status.next_packet->timestamp - status.target_timestamp; |
| return timestamp_leap > status.generated_noise_samples; |
| } |
| |
| int DecisionLogic::GetPlayoutDelayMs( |
| NetEqController::NetEqStatus status) const { |
| uint32_t playout_timestamp = |
| status.target_timestamp - status.sync_buffer_samples; |
| return packet_arrival_history_->GetDelayMs(playout_timestamp); |
| } |
| |
| } // namespace webrtc |