blob: 0697c672ee75ef1611f31ecc8524c32b0c58bb34 [file] [log] [blame]
/*
* Copyright 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "api/jsep.h"
#include "api/jsep_session_description.h"
#include "api/peer_connection_interface.h"
#include "api/rtc_error.h"
#include "api/scoped_refptr.h"
#include "api/task_queue/default_task_queue_factory.h"
#include "api/task_queue/task_queue_factory.h"
#include "api/test/mock_async_dns_resolver.h"
#include "media/base/media_engine.h"
#include "p2p/base/port_allocator.h"
#include "p2p/client/basic_port_allocator.h"
#include "pc/peer_connection.h"
#include "pc/peer_connection_factory.h"
#include "pc/peer_connection_proxy.h"
#include "pc/peer_connection_wrapper.h"
#include "pc/sdp_utils.h"
#include "pc/test/enable_fake_media.h"
#include "pc/test/mock_peer_connection_observers.h"
#include "pc/usage_pattern.h"
#include "pc/webrtc_sdp.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/fake_mdns_responder.h"
#include "rtc_base/fake_network.h"
#include "rtc_base/gunit.h"
#include "rtc_base/mdns_responder_interface.h"
#include "rtc_base/socket_address.h"
#include "rtc_base/thread.h"
#include "rtc_base/virtual_socket_server.h"
#include "system_wrappers/include/metrics.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
using RTCConfiguration = PeerConnectionInterface::RTCConfiguration;
using RTCOfferAnswerOptions = PeerConnectionInterface::RTCOfferAnswerOptions;
using ::testing::NiceMock;
using ::testing::Values;
static const char kUsagePatternMetric[] = "WebRTC.PeerConnection.UsagePattern";
static constexpr int kDefaultTimeout = 10000;
static const rtc::SocketAddress kLocalAddrs[2] = {
rtc::SocketAddress("1.1.1.1", 0), rtc::SocketAddress("2.2.2.2", 0)};
static const rtc::SocketAddress kPrivateLocalAddress("10.1.1.1", 0);
static const rtc::SocketAddress kPrivateIpv6LocalAddress("fd12:3456:789a:1::1",
0);
int MakeUsageFingerprint(std::set<UsageEvent> events) {
int signature = 0;
for (const auto it : events) {
signature |= static_cast<int>(it);
}
return signature;
}
class PeerConnectionFactoryForUsageHistogramTest
: public PeerConnectionFactory {
public:
PeerConnectionFactoryForUsageHistogramTest()
: PeerConnectionFactory([] {
PeerConnectionFactoryDependencies dependencies;
dependencies.network_thread = rtc::Thread::Current();
dependencies.worker_thread = rtc::Thread::Current();
dependencies.signaling_thread = rtc::Thread::Current();
dependencies.task_queue_factory = CreateDefaultTaskQueueFactory();
EnableFakeMedia(dependencies);
return dependencies;
}()) {}
};
class PeerConnectionWrapperForUsageHistogramTest;
typedef PeerConnectionWrapperForUsageHistogramTest* RawWrapperPtr;
class ObserverForUsageHistogramTest : public MockPeerConnectionObserver {
public:
void OnIceCandidate(const IceCandidateInterface* candidate) override;
void OnInterestingUsage(int usage_pattern) override {
interesting_usage_detected_ = usage_pattern;
}
void PrepareToExchangeCandidates(RawWrapperPtr other) {
candidate_target_ = other;
}
bool HaveDataChannel() { return last_datachannel_ != nullptr; }
std::optional<int> interesting_usage_detected() {
return interesting_usage_detected_;
}
void ClearInterestingUsageDetector() {
interesting_usage_detected_ = std::optional<int>();
}
bool candidate_gathered() const { return candidate_gathered_; }
private:
std::optional<int> interesting_usage_detected_;
bool candidate_gathered_ = false;
RawWrapperPtr candidate_target_; // Note: Not thread-safe against deletions.
};
class PeerConnectionWrapperForUsageHistogramTest
: public PeerConnectionWrapper {
public:
using PeerConnectionWrapper::PeerConnectionWrapper;
PeerConnection* GetInternalPeerConnection() {
auto* pci =
static_cast<PeerConnectionProxyWithInternal<PeerConnectionInterface>*>(
pc());
return static_cast<PeerConnection*>(pci->internal());
}
// Override with different return type
ObserverForUsageHistogramTest* observer() {
return static_cast<ObserverForUsageHistogramTest*>(
PeerConnectionWrapper::observer());
}
void PrepareToExchangeCandidates(
PeerConnectionWrapperForUsageHistogramTest* other) {
observer()->PrepareToExchangeCandidates(other);
other->observer()->PrepareToExchangeCandidates(this);
}
bool IsConnected() {
return pc()->ice_connection_state() ==
PeerConnectionInterface::kIceConnectionConnected ||
pc()->ice_connection_state() ==
PeerConnectionInterface::kIceConnectionCompleted;
}
bool HaveDataChannel() {
return static_cast<ObserverForUsageHistogramTest*>(observer())
->HaveDataChannel();
}
void BufferIceCandidate(const IceCandidateInterface* candidate) {
std::string sdp;
EXPECT_TRUE(candidate->ToString(&sdp));
std::unique_ptr<IceCandidateInterface> candidate_copy(CreateIceCandidate(
candidate->sdp_mid(), candidate->sdp_mline_index(), sdp, nullptr));
buffered_candidates_.push_back(std::move(candidate_copy));
}
void AddBufferedIceCandidates() {
for (const auto& candidate : buffered_candidates_) {
EXPECT_TRUE(pc()->AddIceCandidate(candidate.get()));
}
buffered_candidates_.clear();
}
// This method performs the following actions in sequence:
// 1. Exchange Offer and Answer.
// 2. Exchange ICE candidates after both caller and callee complete
// gathering.
// 3. Wait for ICE to connect.
//
// This guarantees a deterministic sequence of events and also rules out the
// occurrence of prflx candidates if the offer/answer signaling and the
// candidate trickling race in order. In case prflx candidates need to be
// simulated, see the approach used by tests below for that.
bool ConnectTo(PeerConnectionWrapperForUsageHistogramTest* callee) {
PrepareToExchangeCandidates(callee);
if (!ExchangeOfferAnswerWith(callee)) {
return false;
}
// Wait until the gathering completes before we signal the candidate.
WAIT(observer()->ice_gathering_complete_, kDefaultTimeout);
WAIT(callee->observer()->ice_gathering_complete_, kDefaultTimeout);
AddBufferedIceCandidates();
callee->AddBufferedIceCandidates();
WAIT(IsConnected(), kDefaultTimeout);
WAIT(callee->IsConnected(), kDefaultTimeout);
return IsConnected() && callee->IsConnected();
}
bool GenerateOfferAndCollectCandidates() {
auto offer = CreateOffer(RTCOfferAnswerOptions());
if (!offer) {
return false;
}
bool set_local_offer =
SetLocalDescription(CloneSessionDescription(offer.get()));
EXPECT_TRUE(set_local_offer);
if (!set_local_offer) {
return false;
}
EXPECT_TRUE_WAIT(observer()->ice_gathering_complete_, kDefaultTimeout);
return true;
}
PeerConnectionInterface::IceGatheringState ice_gathering_state() {
return pc()->ice_gathering_state();
}
private:
// Candidates that have been sent but not yet configured
std::vector<std::unique_ptr<IceCandidateInterface>> buffered_candidates_;
};
// Buffers candidates until we add them via AddBufferedIceCandidates.
void ObserverForUsageHistogramTest::OnIceCandidate(
const IceCandidateInterface* candidate) {
// If target is not set, ignore. This happens in one-ended unit tests.
if (candidate_target_) {
this->candidate_target_->BufferIceCandidate(candidate);
}
candidate_gathered_ = true;
}
class PeerConnectionUsageHistogramTest : public ::testing::Test {
protected:
typedef std::unique_ptr<PeerConnectionWrapperForUsageHistogramTest>
WrapperPtr;
PeerConnectionUsageHistogramTest()
: vss_(new rtc::VirtualSocketServer()),
socket_factory_(new rtc::BasicPacketSocketFactory(vss_.get())),
main_(vss_.get()) {
metrics::Reset();
}
WrapperPtr CreatePeerConnection() {
RTCConfiguration config;
config.sdp_semantics = SdpSemantics::kUnifiedPlan;
return CreatePeerConnection(
config, PeerConnectionFactoryInterface::Options(), nullptr);
}
WrapperPtr CreatePeerConnection(const RTCConfiguration& config) {
return CreatePeerConnection(
config, PeerConnectionFactoryInterface::Options(), nullptr);
}
WrapperPtr CreatePeerConnectionWithMdns(const RTCConfiguration& config) {
auto resolver_factory =
std::make_unique<NiceMock<MockAsyncDnsResolverFactory>>();
PeerConnectionDependencies deps(nullptr /* observer_in */);
auto fake_network = NewFakeNetwork();
fake_network->set_mdns_responder(
std::make_unique<FakeMdnsResponder>(rtc::Thread::Current()));
fake_network->AddInterface(NextLocalAddress());
std::unique_ptr<cricket::BasicPortAllocator> port_allocator(
new cricket::BasicPortAllocator(fake_network, socket_factory_.get()));
deps.async_dns_resolver_factory = std::move(resolver_factory);
deps.allocator = std::move(port_allocator);
return CreatePeerConnection(
config, PeerConnectionFactoryInterface::Options(), std::move(deps));
}
WrapperPtr CreatePeerConnectionWithImmediateReport() {
RTCConfiguration configuration;
configuration.sdp_semantics = SdpSemantics::kUnifiedPlan;
configuration.report_usage_pattern_delay_ms = 0;
return CreatePeerConnection(
configuration, PeerConnectionFactoryInterface::Options(), nullptr);
}
WrapperPtr CreatePeerConnectionWithPrivateLocalAddresses() {
auto* fake_network = NewFakeNetwork();
fake_network->AddInterface(NextLocalAddress());
fake_network->AddInterface(kPrivateLocalAddress);
auto port_allocator = std::make_unique<cricket::BasicPortAllocator>(
fake_network, socket_factory_.get());
RTCConfiguration config;
config.sdp_semantics = SdpSemantics::kUnifiedPlan;
return CreatePeerConnection(config,
PeerConnectionFactoryInterface::Options(),
std::move(port_allocator));
}
WrapperPtr CreatePeerConnectionWithPrivateIpv6LocalAddresses() {
auto* fake_network = NewFakeNetwork();
fake_network->AddInterface(NextLocalAddress());
fake_network->AddInterface(kPrivateIpv6LocalAddress);
auto port_allocator = std::make_unique<cricket::BasicPortAllocator>(
fake_network, socket_factory_.get());
RTCConfiguration config;
config.sdp_semantics = SdpSemantics::kUnifiedPlan;
return CreatePeerConnection(config,
PeerConnectionFactoryInterface::Options(),
std::move(port_allocator));
}
WrapperPtr CreatePeerConnection(
const RTCConfiguration& config,
const PeerConnectionFactoryInterface::Options factory_options,
std::unique_ptr<cricket::PortAllocator> allocator) {
PeerConnectionDependencies deps(nullptr);
deps.allocator = std::move(allocator);
return CreatePeerConnection(config, factory_options, std::move(deps));
}
WrapperPtr CreatePeerConnection(
const RTCConfiguration& config,
const PeerConnectionFactoryInterface::Options factory_options,
PeerConnectionDependencies deps) {
auto pc_factory =
rtc::make_ref_counted<PeerConnectionFactoryForUsageHistogramTest>();
pc_factory->SetOptions(factory_options);
// If no allocator is provided, one will be created using a network manager
// that uses the host network. This doesn't work on all trybots.
if (!deps.allocator) {
auto fake_network = NewFakeNetwork();
fake_network->AddInterface(NextLocalAddress());
deps.allocator = std::make_unique<cricket::BasicPortAllocator>(
fake_network, socket_factory_.get());
}
auto observer = std::make_unique<ObserverForUsageHistogramTest>();
deps.observer = observer.get();
auto result =
pc_factory->CreatePeerConnectionOrError(config, std::move(deps));
if (!result.ok()) {
return nullptr;
}
observer->SetPeerConnectionInterface(result.value().get());
auto wrapper = std::make_unique<PeerConnectionWrapperForUsageHistogramTest>(
pc_factory, result.MoveValue(), std::move(observer));
return wrapper;
}
int ObservedFingerprint() {
// This works correctly only if there is only one sample value
// that has been counted.
// Returns -1 for "not found".
return metrics::MinSample(kUsagePatternMetric);
}
// The PeerConnection's port allocator is tied to the PeerConnection's
// lifetime and expects the underlying NetworkManager to outlive it. That
// prevents us from having the PeerConnectionWrapper own the fake network.
// Therefore, the test fixture will own all the fake networks even though
// tests should access the fake network through the PeerConnectionWrapper.
rtc::FakeNetworkManager* NewFakeNetwork() {
fake_networks_.emplace_back(std::make_unique<rtc::FakeNetworkManager>());
return fake_networks_.back().get();
}
rtc::SocketAddress NextLocalAddress() {
RTC_DCHECK(next_local_address_ < (int)arraysize(kLocalAddrs));
return kLocalAddrs[next_local_address_++];
}
std::vector<std::unique_ptr<rtc::FakeNetworkManager>> fake_networks_;
int next_local_address_ = 0;
std::unique_ptr<rtc::VirtualSocketServer> vss_;
std::unique_ptr<rtc::BasicPacketSocketFactory> socket_factory_;
rtc::AutoSocketServerThread main_;
};
TEST_F(PeerConnectionUsageHistogramTest, UsageFingerprintHistogramFromTimeout) {
auto pc = CreatePeerConnectionWithImmediateReport();
int expected_fingerprint = MakeUsageFingerprint({});
EXPECT_METRIC_EQ_WAIT(1, metrics::NumSamples(kUsagePatternMetric),
kDefaultTimeout);
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint));
}
#ifndef WEBRTC_ANDROID
// These tests do not work on Android. Why is unclear.
// https://bugs.webrtc.org/9461
// Test getting the usage fingerprint for an audio/video connection.
TEST_F(PeerConnectionUsageHistogramTest, FingerprintAudioVideo) {
auto caller = CreatePeerConnection();
auto callee = CreatePeerConnection();
caller->AddAudioTrack("audio");
caller->AddVideoTrack("video");
ASSERT_TRUE(caller->ConnectTo(callee.get()));
caller->pc()->Close();
callee->pc()->Close();
int expected_fingerprint = MakeUsageFingerprint(
{UsageEvent::AUDIO_ADDED, UsageEvent::VIDEO_ADDED,
UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::ADD_ICE_CANDIDATE_SUCCEEDED,
UsageEvent::ICE_STATE_CONNECTED, UsageEvent::REMOTE_CANDIDATE_ADDED,
UsageEvent::DIRECT_CONNECTION_SELECTED, UsageEvent::CLOSE_CALLED});
// In this case, we may or may not have PRIVATE_CANDIDATE_COLLECTED,
// depending on the machine configuration.
EXPECT_METRIC_EQ(2, metrics::NumSamples(kUsagePatternMetric));
EXPECT_METRIC_TRUE(
metrics::NumEvents(kUsagePatternMetric, expected_fingerprint) == 2 ||
metrics::NumEvents(
kUsagePatternMetric,
expected_fingerprint |
static_cast<int>(UsageEvent::PRIVATE_CANDIDATE_COLLECTED)) == 2);
}
// Test getting the usage fingerprint when the caller collects an mDNS
// candidate.
TEST_F(PeerConnectionUsageHistogramTest, FingerprintWithMdnsCaller) {
RTCConfiguration config;
config.sdp_semantics = SdpSemantics::kUnifiedPlan;
// Enable hostname candidates with mDNS names.
auto caller = CreatePeerConnectionWithMdns(config);
auto callee = CreatePeerConnection(config);
caller->AddAudioTrack("audio");
caller->AddVideoTrack("video");
ASSERT_TRUE(caller->ConnectTo(callee.get()));
caller->pc()->Close();
callee->pc()->Close();
int expected_fingerprint_caller = MakeUsageFingerprint(
{UsageEvent::AUDIO_ADDED, UsageEvent::VIDEO_ADDED,
UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::MDNS_CANDIDATE_COLLECTED,
UsageEvent::ADD_ICE_CANDIDATE_SUCCEEDED, UsageEvent::ICE_STATE_CONNECTED,
UsageEvent::REMOTE_CANDIDATE_ADDED,
UsageEvent::DIRECT_CONNECTION_SELECTED, UsageEvent::CLOSE_CALLED});
// Without a resolver, the callee cannot resolve the received mDNS candidate
// but can still connect with the caller via a prflx candidate. As a result,
// the bit for the direct connection should not be logged.
int expected_fingerprint_callee = MakeUsageFingerprint(
{UsageEvent::AUDIO_ADDED, UsageEvent::VIDEO_ADDED,
UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::ADD_ICE_CANDIDATE_SUCCEEDED,
UsageEvent::REMOTE_MDNS_CANDIDATE_ADDED, UsageEvent::ICE_STATE_CONNECTED,
UsageEvent::REMOTE_CANDIDATE_ADDED, UsageEvent::CLOSE_CALLED});
EXPECT_METRIC_EQ(2, metrics::NumSamples(kUsagePatternMetric));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint_caller));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint_callee));
}
// Test getting the usage fingerprint when the callee collects an mDNS
// candidate.
TEST_F(PeerConnectionUsageHistogramTest, FingerprintWithMdnsCallee) {
RTCConfiguration config;
config.sdp_semantics = SdpSemantics::kUnifiedPlan;
// Enable hostname candidates with mDNS names.
auto caller = CreatePeerConnection(config);
auto callee = CreatePeerConnectionWithMdns(config);
caller->AddAudioTrack("audio");
caller->AddVideoTrack("video");
ASSERT_TRUE(caller->ConnectTo(callee.get()));
caller->pc()->Close();
callee->pc()->Close();
// Similar to the test above, the caller connects with the callee via a prflx
// candidate.
int expected_fingerprint_caller = MakeUsageFingerprint(
{UsageEvent::AUDIO_ADDED, UsageEvent::VIDEO_ADDED,
UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::ADD_ICE_CANDIDATE_SUCCEEDED,
UsageEvent::REMOTE_MDNS_CANDIDATE_ADDED, UsageEvent::ICE_STATE_CONNECTED,
UsageEvent::REMOTE_CANDIDATE_ADDED, UsageEvent::CLOSE_CALLED});
int expected_fingerprint_callee = MakeUsageFingerprint(
{UsageEvent::AUDIO_ADDED, UsageEvent::VIDEO_ADDED,
UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::MDNS_CANDIDATE_COLLECTED,
UsageEvent::ADD_ICE_CANDIDATE_SUCCEEDED, UsageEvent::ICE_STATE_CONNECTED,
UsageEvent::REMOTE_CANDIDATE_ADDED,
UsageEvent::DIRECT_CONNECTION_SELECTED, UsageEvent::CLOSE_CALLED});
EXPECT_METRIC_EQ(2, metrics::NumSamples(kUsagePatternMetric));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint_caller));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint_callee));
}
#ifdef WEBRTC_HAVE_SCTP
TEST_F(PeerConnectionUsageHistogramTest, FingerprintDataOnly) {
auto caller = CreatePeerConnection();
auto callee = CreatePeerConnection();
caller->CreateDataChannel("foodata");
ASSERT_TRUE(caller->ConnectTo(callee.get()));
ASSERT_TRUE_WAIT(callee->HaveDataChannel(), kDefaultTimeout);
caller->pc()->Close();
callee->pc()->Close();
int expected_fingerprint = MakeUsageFingerprint(
{UsageEvent::DATA_ADDED, UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::ADD_ICE_CANDIDATE_SUCCEEDED,
UsageEvent::ICE_STATE_CONNECTED, UsageEvent::REMOTE_CANDIDATE_ADDED,
UsageEvent::DIRECT_CONNECTION_SELECTED, UsageEvent::CLOSE_CALLED});
EXPECT_METRIC_EQ(2, metrics::NumSamples(kUsagePatternMetric));
EXPECT_METRIC_TRUE(
metrics::NumEvents(kUsagePatternMetric, expected_fingerprint) == 2 ||
metrics::NumEvents(
kUsagePatternMetric,
expected_fingerprint |
static_cast<int>(UsageEvent::PRIVATE_CANDIDATE_COLLECTED)) == 2);
}
#endif // WEBRTC_HAVE_SCTP
#endif // WEBRTC_ANDROID
TEST_F(PeerConnectionUsageHistogramTest, FingerprintStunTurn) {
RTCConfiguration configuration;
configuration.sdp_semantics = SdpSemantics::kUnifiedPlan;
PeerConnection::IceServer server;
server.urls = {"stun:dummy.stun.server"};
configuration.servers.push_back(server);
server.urls = {"turn:dummy.turn.server"};
server.username = "username";
server.password = "password";
configuration.servers.push_back(server);
auto caller = CreatePeerConnection(configuration);
ASSERT_TRUE(caller);
caller->pc()->Close();
int expected_fingerprint = MakeUsageFingerprint(
{UsageEvent::STUN_SERVER_ADDED, UsageEvent::TURN_SERVER_ADDED,
UsageEvent::CLOSE_CALLED});
EXPECT_METRIC_EQ(1, metrics::NumSamples(kUsagePatternMetric));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint));
}
TEST_F(PeerConnectionUsageHistogramTest, FingerprintStunTurnInReconfiguration) {
RTCConfiguration configuration;
configuration.sdp_semantics = SdpSemantics::kUnifiedPlan;
PeerConnection::IceServer server;
server.urls = {"stun:dummy.stun.server"};
configuration.servers.push_back(server);
server.urls = {"turn:dummy.turn.server"};
server.username = "username";
server.password = "password";
configuration.servers.push_back(server);
auto caller = CreatePeerConnection();
ASSERT_TRUE(caller);
ASSERT_TRUE(caller->pc()->SetConfiguration(configuration).ok());
caller->pc()->Close();
int expected_fingerprint = MakeUsageFingerprint(
{UsageEvent::STUN_SERVER_ADDED, UsageEvent::TURN_SERVER_ADDED,
UsageEvent::CLOSE_CALLED});
EXPECT_METRIC_EQ(1, metrics::NumSamples(kUsagePatternMetric));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint));
}
TEST_F(PeerConnectionUsageHistogramTest, FingerprintWithPrivateIPCaller) {
auto caller = CreatePeerConnectionWithPrivateLocalAddresses();
auto callee = CreatePeerConnection();
caller->AddAudioTrack("audio");
ASSERT_TRUE(caller->ConnectTo(callee.get()));
caller->pc()->Close();
callee->pc()->Close();
int expected_fingerprint_caller = MakeUsageFingerprint(
{UsageEvent::AUDIO_ADDED, UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::PRIVATE_CANDIDATE_COLLECTED,
UsageEvent::ADD_ICE_CANDIDATE_SUCCEEDED, UsageEvent::ICE_STATE_CONNECTED,
UsageEvent::REMOTE_CANDIDATE_ADDED,
UsageEvent::DIRECT_CONNECTION_SELECTED, UsageEvent::CLOSE_CALLED});
int expected_fingerprint_callee = MakeUsageFingerprint(
{UsageEvent::AUDIO_ADDED, UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::ADD_ICE_CANDIDATE_SUCCEEDED,
UsageEvent::REMOTE_PRIVATE_CANDIDATE_ADDED,
UsageEvent::ICE_STATE_CONNECTED, UsageEvent::REMOTE_CANDIDATE_ADDED,
UsageEvent::DIRECT_CONNECTION_SELECTED, UsageEvent::CLOSE_CALLED});
EXPECT_METRIC_EQ(2, metrics::NumSamples(kUsagePatternMetric));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint_caller));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint_callee));
}
TEST_F(PeerConnectionUsageHistogramTest, FingerprintWithPrivateIpv6Callee) {
auto caller = CreatePeerConnection();
auto callee = CreatePeerConnectionWithPrivateIpv6LocalAddresses();
caller->AddAudioTrack("audio");
ASSERT_TRUE(caller->ConnectTo(callee.get()));
caller->pc()->Close();
callee->pc()->Close();
int expected_fingerprint_caller = MakeUsageFingerprint(
{UsageEvent::AUDIO_ADDED, UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::ADD_ICE_CANDIDATE_SUCCEEDED,
UsageEvent::REMOTE_PRIVATE_CANDIDATE_ADDED,
UsageEvent::ICE_STATE_CONNECTED, UsageEvent::REMOTE_CANDIDATE_ADDED,
UsageEvent::REMOTE_IPV6_CANDIDATE_ADDED,
UsageEvent::DIRECT_CONNECTION_SELECTED, UsageEvent::CLOSE_CALLED});
int expected_fingerprint_callee = MakeUsageFingerprint(
{UsageEvent::AUDIO_ADDED, UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::PRIVATE_CANDIDATE_COLLECTED,
UsageEvent::IPV6_CANDIDATE_COLLECTED,
UsageEvent::ADD_ICE_CANDIDATE_SUCCEEDED,
UsageEvent::REMOTE_CANDIDATE_ADDED, UsageEvent::ICE_STATE_CONNECTED,
UsageEvent::DIRECT_CONNECTION_SELECTED, UsageEvent::CLOSE_CALLED});
EXPECT_METRIC_EQ(2, metrics::NumSamples(kUsagePatternMetric));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint_caller));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint_callee));
}
#ifndef WEBRTC_ANDROID
#ifdef WEBRTC_HAVE_SCTP
// Test that the usage pattern bits for adding remote (private IPv6) candidates
// are set when the remote candidates are retrieved from the Offer SDP instead
// of trickled ICE messages.
TEST_F(PeerConnectionUsageHistogramTest,
AddRemoteCandidatesFromRemoteDescription) {
// We construct the following data-channel-only scenario. The caller collects
// IPv6 private local candidates and appends them in the Offer as in
// non-trickled sessions. The callee collects mDNS candidates that are not
// contained in the Answer as in Trickle ICE. Only the Offer and Answer are
// signaled and we expect a connection with prflx remote candidates at the
// caller side.
auto caller = CreatePeerConnectionWithPrivateIpv6LocalAddresses();
RTCConfiguration config;
config.sdp_semantics = SdpSemantics::kUnifiedPlan;
auto callee = CreatePeerConnectionWithMdns(config);
caller->CreateDataChannel("test_channel");
ASSERT_TRUE(caller->SetLocalDescription(caller->CreateOffer()));
// Wait until the gathering completes so that the session description would
// have contained ICE candidates.
EXPECT_EQ_WAIT(PeerConnectionInterface::kIceGatheringComplete,
caller->ice_gathering_state(), kDefaultTimeout);
EXPECT_TRUE(caller->observer()->candidate_gathered());
// Get the current offer that contains candidates and pass it to the callee.
//
// Note that we cannot use CloneSessionDescription on `cur_offer` to obtain an
// SDP with candidates. The method above does not strictly copy everything, in
// particular, not copying the ICE candidates.
// TODO(qingsi): Technically, this is a bug. Fix it.
auto cur_offer = caller->pc()->local_description();
ASSERT_TRUE(cur_offer);
std::string sdp_with_candidates_str;
cur_offer->ToString(&sdp_with_candidates_str);
auto offer = std::make_unique<JsepSessionDescription>(SdpType::kOffer);
ASSERT_TRUE(SdpDeserialize(sdp_with_candidates_str, offer.get(),
nullptr /* error */));
ASSERT_TRUE(callee->SetRemoteDescription(std::move(offer)));
// By default, the Answer created does not contain ICE candidates.
auto answer = callee->CreateAnswer();
callee->SetLocalDescription(CloneSessionDescription(answer.get()));
caller->SetRemoteDescription(std::move(answer));
EXPECT_TRUE_WAIT(caller->IsConnected(), kDefaultTimeout);
EXPECT_TRUE_WAIT(callee->IsConnected(), kDefaultTimeout);
// The callee needs to process the open message to have the data channel open.
EXPECT_TRUE_WAIT(callee->observer()->last_datachannel_ != nullptr,
kDefaultTimeout);
caller->pc()->Close();
callee->pc()->Close();
// The caller should not have added any remote candidate either via
// AddIceCandidate or from the remote description. Also, the caller connects
// with the callee via a prflx candidate and hence no direct connection bit
// should be set.
int expected_fingerprint_caller = MakeUsageFingerprint(
{UsageEvent::DATA_ADDED, UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::PRIVATE_CANDIDATE_COLLECTED,
UsageEvent::IPV6_CANDIDATE_COLLECTED, UsageEvent::ICE_STATE_CONNECTED,
UsageEvent::CLOSE_CALLED});
int expected_fingerprint_callee = MakeUsageFingerprint(
{UsageEvent::DATA_ADDED, UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::SET_REMOTE_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::MDNS_CANDIDATE_COLLECTED,
UsageEvent::REMOTE_CANDIDATE_ADDED,
UsageEvent::REMOTE_PRIVATE_CANDIDATE_ADDED,
UsageEvent::REMOTE_IPV6_CANDIDATE_ADDED, UsageEvent::ICE_STATE_CONNECTED,
UsageEvent::DIRECT_CONNECTION_SELECTED, UsageEvent::CLOSE_CALLED});
EXPECT_METRIC_EQ(2, metrics::NumSamples(kUsagePatternMetric));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint_caller));
EXPECT_METRIC_EQ(
1, metrics::NumEvents(kUsagePatternMetric, expected_fingerprint_callee));
}
TEST_F(PeerConnectionUsageHistogramTest, NotableUsageNoted) {
auto caller = CreatePeerConnection();
caller->CreateDataChannel("foo");
caller->GenerateOfferAndCollectCandidates();
caller->pc()->Close();
int expected_fingerprint = MakeUsageFingerprint(
{UsageEvent::DATA_ADDED, UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::CLOSE_CALLED});
EXPECT_METRIC_EQ(1, metrics::NumSamples(kUsagePatternMetric));
EXPECT_METRIC_TRUE(
expected_fingerprint == ObservedFingerprint() ||
(expected_fingerprint |
static_cast<int>(UsageEvent::PRIVATE_CANDIDATE_COLLECTED)) ==
ObservedFingerprint());
EXPECT_METRIC_EQ(std::make_optional(ObservedFingerprint()),
caller->observer()->interesting_usage_detected());
}
TEST_F(PeerConnectionUsageHistogramTest, NotableUsageOnEventFiring) {
auto caller = CreatePeerConnection();
caller->CreateDataChannel("foo");
caller->GenerateOfferAndCollectCandidates();
int expected_fingerprint = MakeUsageFingerprint(
{UsageEvent::DATA_ADDED, UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED});
EXPECT_METRIC_EQ(0, metrics::NumSamples(kUsagePatternMetric));
caller->GetInternalPeerConnection()->RequestUsagePatternReportForTesting();
EXPECT_METRIC_EQ_WAIT(1, metrics::NumSamples(kUsagePatternMetric),
kDefaultTimeout);
EXPECT_METRIC_TRUE(
expected_fingerprint == ObservedFingerprint() ||
(expected_fingerprint |
static_cast<int>(UsageEvent::PRIVATE_CANDIDATE_COLLECTED)) ==
ObservedFingerprint());
EXPECT_METRIC_EQ(std::make_optional(ObservedFingerprint()),
caller->observer()->interesting_usage_detected());
}
TEST_F(PeerConnectionUsageHistogramTest,
NoNotableUsageOnEventFiringAfterClose) {
auto caller = CreatePeerConnection();
caller->CreateDataChannel("foo");
caller->GenerateOfferAndCollectCandidates();
int expected_fingerprint = MakeUsageFingerprint(
{UsageEvent::DATA_ADDED, UsageEvent::SET_LOCAL_DESCRIPTION_SUCCEEDED,
UsageEvent::CANDIDATE_COLLECTED, UsageEvent::CLOSE_CALLED});
EXPECT_METRIC_EQ(0, metrics::NumSamples(kUsagePatternMetric));
caller->pc()->Close();
EXPECT_METRIC_EQ(1, metrics::NumSamples(kUsagePatternMetric));
caller->GetInternalPeerConnection()->RequestUsagePatternReportForTesting();
caller->observer()->ClearInterestingUsageDetector();
EXPECT_METRIC_EQ_WAIT(2, metrics::NumSamples(kUsagePatternMetric),
kDefaultTimeout);
EXPECT_METRIC_TRUE(
expected_fingerprint == ObservedFingerprint() ||
(expected_fingerprint |
static_cast<int>(UsageEvent::PRIVATE_CANDIDATE_COLLECTED)) ==
ObservedFingerprint());
// After close, the usage-detection callback should NOT have been called.
EXPECT_METRIC_FALSE(caller->observer()->interesting_usage_detected());
}
#endif
#endif
} // namespace webrtc