blob: a2597ef51aa6d63dc068ed6c9f5a45632ad7f3f5 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <memory>
#include "api/test/mock_video_decoder.h"
#include "api/test/mock_video_encoder.h"
#include "api/video_codecs/vp8_temporal_layers.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "common_video/test/utilities.h"
#include "modules/video_coding/codecs/test/video_codec_unittest.h"
#include "modules/video_coding/codecs/vp8/include/vp8.h"
#include "modules/video_coding/codecs/vp8/libvpx_vp8_encoder.h"
#include "modules/video_coding/codecs/vp8/test/mock_libvpx_interface.h"
#include "modules/video_coding/utility/vp8_header_parser.h"
#include "rtc_base/time_utils.h"
#include "test/field_trial.h"
#include "test/video_codec_settings.h"
namespace webrtc {
using ::testing::_;
using ::testing::AllOf;
using ::testing::ElementsAreArray;
using ::testing::Field;
using ::testing::Invoke;
using ::testing::NiceMock;
using ::testing::Return;
using EncoderInfo = webrtc::VideoEncoder::EncoderInfo;
using FramerateFractions =
absl::InlinedVector<uint8_t, webrtc::kMaxTemporalStreams>;
namespace {
constexpr uint32_t kLegacyScreenshareTl0BitrateKbps = 200;
constexpr uint32_t kLegacyScreenshareTl1BitrateKbps = 1000;
constexpr uint32_t kInitialTimestampRtp = 123;
constexpr int64_t kTestNtpTimeMs = 456;
constexpr int64_t kInitialTimestampMs = 789;
constexpr int kNumCores = 1;
constexpr size_t kMaxPayloadSize = 1440;
constexpr int kDefaultMinPixelsPerFrame = 320 * 180;
constexpr int kWidth = 172;
constexpr int kHeight = 144;
constexpr float kFramerateFps = 30;
} // namespace
class TestVp8Impl : public VideoCodecUnitTest {
protected:
std::unique_ptr<VideoEncoder> CreateEncoder() override {
return VP8Encoder::Create();
}
std::unique_ptr<VideoDecoder> CreateDecoder() override {
return VP8Decoder::Create();
}
void ModifyCodecSettings(VideoCodec* codec_settings) override {
webrtc::test::CodecSettings(kVideoCodecVP8, codec_settings);
codec_settings->width = kWidth;
codec_settings->height = kHeight;
codec_settings->VP8()->denoisingOn = true;
codec_settings->VP8()->frameDroppingOn = false;
codec_settings->VP8()->automaticResizeOn = false;
codec_settings->VP8()->complexity = VideoCodecComplexity::kComplexityNormal;
}
void EncodeAndWaitForFrame(const VideoFrame& input_frame,
EncodedImage* encoded_frame,
CodecSpecificInfo* codec_specific_info,
bool keyframe = false) {
std::vector<VideoFrameType> frame_types;
if (keyframe) {
frame_types.emplace_back(VideoFrameType::kVideoFrameKey);
} else {
frame_types.emplace_back(VideoFrameType::kVideoFrameDelta);
}
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(input_frame, &frame_types));
ASSERT_TRUE(WaitForEncodedFrame(encoded_frame, codec_specific_info));
VerifyQpParser(*encoded_frame);
VideoEncoder::EncoderInfo encoder_info = encoder_->GetEncoderInfo();
EXPECT_EQ("libvpx", encoder_info.implementation_name);
EXPECT_EQ(false, encoder_info.is_hardware_accelerated);
EXPECT_EQ(false, encoder_info.has_internal_source);
EXPECT_EQ(kVideoCodecVP8, codec_specific_info->codecType);
EXPECT_EQ(0, encoded_frame->SpatialIndex());
}
void EncodeAndExpectFrameWith(const VideoFrame& input_frame,
uint8_t temporal_idx,
bool keyframe = false) {
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
EncodeAndWaitForFrame(input_frame, &encoded_frame, &codec_specific_info,
keyframe);
EXPECT_EQ(temporal_idx, codec_specific_info.codecSpecific.VP8.temporalIdx);
}
void VerifyQpParser(const EncodedImage& encoded_frame) const {
int qp;
EXPECT_GT(encoded_frame.size(), 0u);
ASSERT_TRUE(vp8::GetQp(encoded_frame.data(), encoded_frame.size(), &qp));
EXPECT_EQ(encoded_frame.qp_, qp) << "Encoder QP != parsed bitstream QP.";
}
};
TEST_F(TestVp8Impl, SetRates) {
auto* const vpx = new NiceMock<MockLibvpxVp8Interface>();
LibvpxVp8Encoder encoder((std::unique_ptr<LibvpxInterface>(vpx)));
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder.InitEncode(&codec_settings_, 1, 1000));
const uint32_t kBitrateBps = 300000;
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, kBitrateBps);
EXPECT_CALL(
*vpx,
codec_enc_config_set(
_, AllOf(Field(&vpx_codec_enc_cfg_t::rc_target_bitrate,
kBitrateBps / 1000),
Field(&vpx_codec_enc_cfg_t::rc_undershoot_pct, 100u),
Field(&vpx_codec_enc_cfg_t::rc_overshoot_pct, 15u),
Field(&vpx_codec_enc_cfg_t::rc_buf_sz, 1000u),
Field(&vpx_codec_enc_cfg_t::rc_buf_optimal_sz, 600u),
Field(&vpx_codec_enc_cfg_t::rc_dropframe_thresh, 30u))))
.WillOnce(Return(VPX_CODEC_OK));
encoder.SetRates(VideoEncoder::RateControlParameters(
bitrate_allocation, static_cast<double>(codec_settings_.maxFramerate)));
}
TEST_F(TestVp8Impl, DynamicSetRates) {
test::ScopedFieldTrials field_trials(
"WebRTC-VideoRateControl/vp8_dynamic_rate:true/");
auto* const vpx = new NiceMock<MockLibvpxVp8Interface>();
LibvpxVp8Encoder encoder((std::unique_ptr<LibvpxInterface>(vpx)));
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder.InitEncode(&codec_settings_, 1, 1000));
const uint32_t kBitrateBps = 300000;
VideoEncoder::RateControlParameters rate_settings;
rate_settings.bitrate.SetBitrate(0, 0, kBitrateBps);
rate_settings.framerate_fps =
static_cast<double>(codec_settings_.maxFramerate);
// Set rates with no headroom.
rate_settings.bandwidth_allocation = DataRate::bps(kBitrateBps);
EXPECT_CALL(
*vpx,
codec_enc_config_set(
_, AllOf(Field(&vpx_codec_enc_cfg_t::rc_target_bitrate,
kBitrateBps / 1000),
Field(&vpx_codec_enc_cfg_t::rc_undershoot_pct, 1000u),
Field(&vpx_codec_enc_cfg_t::rc_overshoot_pct, 0u),
Field(&vpx_codec_enc_cfg_t::rc_buf_sz, 100u),
Field(&vpx_codec_enc_cfg_t::rc_buf_optimal_sz, 30u),
Field(&vpx_codec_enc_cfg_t::rc_dropframe_thresh, 40u))))
.WillOnce(Return(VPX_CODEC_OK));
encoder.SetRates(rate_settings);
// Set rates with max headroom.
rate_settings.bandwidth_allocation = DataRate::bps(kBitrateBps * 2);
EXPECT_CALL(
*vpx, codec_enc_config_set(
_, AllOf(Field(&vpx_codec_enc_cfg_t::rc_target_bitrate,
kBitrateBps / 1000),
Field(&vpx_codec_enc_cfg_t::rc_undershoot_pct, 100u),
Field(&vpx_codec_enc_cfg_t::rc_overshoot_pct, 15u),
Field(&vpx_codec_enc_cfg_t::rc_buf_sz, 1000u),
Field(&vpx_codec_enc_cfg_t::rc_buf_optimal_sz, 600u),
Field(&vpx_codec_enc_cfg_t::rc_dropframe_thresh, 5u))))
.WillOnce(Return(VPX_CODEC_OK));
encoder.SetRates(rate_settings);
// Set rates with headroom half way.
rate_settings.bandwidth_allocation = DataRate::bps((3 * kBitrateBps) / 2);
EXPECT_CALL(
*vpx,
codec_enc_config_set(
_, AllOf(Field(&vpx_codec_enc_cfg_t::rc_target_bitrate,
kBitrateBps / 1000),
Field(&vpx_codec_enc_cfg_t::rc_undershoot_pct, 550u),
Field(&vpx_codec_enc_cfg_t::rc_overshoot_pct, 8u),
Field(&vpx_codec_enc_cfg_t::rc_buf_sz, 550u),
Field(&vpx_codec_enc_cfg_t::rc_buf_optimal_sz, 315u),
Field(&vpx_codec_enc_cfg_t::rc_dropframe_thresh, 23u))))
.WillOnce(Return(VPX_CODEC_OK));
encoder.SetRates(rate_settings);
}
TEST_F(TestVp8Impl, EncodeFrameAndRelease) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, encoder_->Release());
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
EncodeAndWaitForFrame(*NextInputFrame(), &encoded_frame,
&codec_specific_info);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, encoder_->Release());
EXPECT_EQ(WEBRTC_VIDEO_CODEC_UNINITIALIZED,
encoder_->Encode(*NextInputFrame(), nullptr));
}
TEST_F(TestVp8Impl, InitDecode) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, decoder_->Release());
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
decoder_->InitDecode(&codec_settings_, kNumCores));
}
TEST_F(TestVp8Impl, OnEncodedImageReportsInfo) {
VideoFrame* input_frame = NextInputFrame();
input_frame->set_timestamp(kInitialTimestampRtp);
input_frame->set_timestamp_us(kInitialTimestampMs *
rtc::kNumMicrosecsPerMillisec);
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
EncodeAndWaitForFrame(*input_frame, &encoded_frame, &codec_specific_info);
EXPECT_EQ(kInitialTimestampRtp, encoded_frame.Timestamp());
EXPECT_EQ(kInitialTimestampMs, encoded_frame.capture_time_ms_);
EXPECT_EQ(kWidth, static_cast<int>(encoded_frame._encodedWidth));
EXPECT_EQ(kHeight, static_cast<int>(encoded_frame._encodedHeight));
}
// We only test the encoder here, since the decoded frame rotation is set based
// on the CVO RTP header extension in VCMDecodedFrameCallback::Decoded.
// TODO(brandtr): Consider passing through the rotation flag through the decoder
// in the same way as done in the encoder.
TEST_F(TestVp8Impl, EncodedRotationEqualsInputRotation) {
VideoFrame* input_frame = NextInputFrame();
input_frame->set_rotation(kVideoRotation_0);
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
EncodeAndWaitForFrame(*input_frame, &encoded_frame, &codec_specific_info);
EXPECT_EQ(kVideoRotation_0, encoded_frame.rotation_);
input_frame->set_rotation(kVideoRotation_90);
EncodeAndWaitForFrame(*input_frame, &encoded_frame, &codec_specific_info);
EXPECT_EQ(kVideoRotation_90, encoded_frame.rotation_);
}
TEST_F(TestVp8Impl, EncodedColorSpaceEqualsInputColorSpace) {
// Video frame without explicit color space information.
VideoFrame* input_frame = NextInputFrame();
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
EncodeAndWaitForFrame(*input_frame, &encoded_frame, &codec_specific_info);
EXPECT_FALSE(encoded_frame.ColorSpace());
// Video frame with explicit color space information.
ColorSpace color_space = CreateTestColorSpace(/*with_hdr_metadata=*/false);
VideoFrame input_frame_w_color_space =
VideoFrame::Builder()
.set_video_frame_buffer(input_frame->video_frame_buffer())
.set_color_space(color_space)
.build();
EncodeAndWaitForFrame(input_frame_w_color_space, &encoded_frame,
&codec_specific_info);
ASSERT_TRUE(encoded_frame.ColorSpace());
EXPECT_EQ(*encoded_frame.ColorSpace(), color_space);
}
TEST_F(TestVp8Impl, DecodedQpEqualsEncodedQp) {
VideoFrame* input_frame = NextInputFrame();
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
EncodeAndWaitForFrame(*input_frame, &encoded_frame, &codec_specific_info);
// First frame should be a key frame.
encoded_frame._frameType = VideoFrameType::kVideoFrameKey;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, decoder_->Decode(encoded_frame, false, -1));
std::unique_ptr<VideoFrame> decoded_frame;
absl::optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
ASSERT_TRUE(decoded_qp);
EXPECT_GT(I420PSNR(input_frame, decoded_frame.get()), 36);
EXPECT_EQ(encoded_frame.qp_, *decoded_qp);
}
TEST_F(TestVp8Impl, DecodedColorSpaceEqualsEncodedColorSpace) {
VideoFrame* input_frame = NextInputFrame();
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
EncodeAndWaitForFrame(*input_frame, &encoded_frame, &codec_specific_info);
// Encoded frame with explicit color space information.
ColorSpace color_space = CreateTestColorSpace(/*with_hdr_metadata=*/false);
encoded_frame.SetColorSpace(color_space);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, decoder_->Decode(encoded_frame, false, -1));
std::unique_ptr<VideoFrame> decoded_frame;
absl::optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
ASSERT_TRUE(decoded_frame->color_space());
EXPECT_EQ(color_space, *decoded_frame->color_space());
}
TEST_F(TestVp8Impl, ChecksSimulcastSettings) {
codec_settings_.numberOfSimulcastStreams = 2;
// Resolutions are not in ascending order, temporal layers do not match.
codec_settings_.simulcastStream[0] = {kWidth, kHeight, kFramerateFps, 2,
4000, 3000, 2000, 80};
codec_settings_.simulcastStream[1] = {kWidth / 2, kHeight / 2, 30, 3,
4000, 3000, 2000, 80};
EXPECT_EQ(WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
codec_settings_.numberOfSimulcastStreams = 3;
// Resolutions are not in ascending order.
codec_settings_.simulcastStream[0] = {
kWidth / 2, kHeight / 2, kFramerateFps, 1, 4000, 3000, 2000, 80};
codec_settings_.simulcastStream[1] = {
kWidth / 2 - 1, kHeight / 2 - 1, kFramerateFps, 1, 4000, 3000, 2000, 80};
codec_settings_.simulcastStream[2] = {kWidth, kHeight, 30, 1,
4000, 3000, 2000, 80};
EXPECT_EQ(WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
// Resolutions are not in ascending order.
codec_settings_.simulcastStream[0] = {kWidth, kHeight, kFramerateFps, 1,
4000, 3000, 2000, 80};
codec_settings_.simulcastStream[1] = {kWidth, kHeight, kFramerateFps, 1,
4000, 3000, 2000, 80};
codec_settings_.simulcastStream[2] = {
kWidth - 1, kHeight - 1, kFramerateFps, 1, 4000, 3000, 2000, 80};
EXPECT_EQ(WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
// Temporal layers do not match.
codec_settings_.simulcastStream[0] = {
kWidth / 4, kHeight / 4, kFramerateFps, 1, 4000, 3000, 2000, 80};
codec_settings_.simulcastStream[1] = {
kWidth / 2, kHeight / 2, kFramerateFps, 2, 4000, 3000, 2000, 80};
codec_settings_.simulcastStream[2] = {kWidth, kHeight, kFramerateFps, 3,
4000, 3000, 2000, 80};
EXPECT_EQ(WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
// Resolutions do not match codec config.
codec_settings_.simulcastStream[0] = {
kWidth / 4 + 1, kHeight / 4 + 1, kFramerateFps, 1, 4000, 3000, 2000, 80};
codec_settings_.simulcastStream[1] = {
kWidth / 2 + 2, kHeight / 2 + 2, kFramerateFps, 1, 4000, 3000, 2000, 80};
codec_settings_.simulcastStream[2] = {
kWidth + 4, kHeight + 4, kFramerateFps, 1, 4000, 3000, 2000, 80};
EXPECT_EQ(WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
// Everything fine: scaling by 2, top resolution matches video, temporal
// settings are the same for all layers.
codec_settings_.simulcastStream[0] = {
kWidth / 4, kHeight / 4, kFramerateFps, 1, 4000, 3000, 2000, 80};
codec_settings_.simulcastStream[1] = {
kWidth / 2, kHeight / 2, kFramerateFps, 1, 4000, 3000, 2000, 80};
codec_settings_.simulcastStream[2] = {kWidth, kHeight, kFramerateFps, 1,
4000, 3000, 2000, 80};
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
// Everything fine: custom scaling, top resolution matches video, temporal
// settings are the same for all layers.
codec_settings_.simulcastStream[0] = {
kWidth / 4, kHeight / 4, kFramerateFps, 1, 4000, 3000, 2000, 80};
codec_settings_.simulcastStream[1] = {kWidth, kHeight, kFramerateFps, 1,
4000, 3000, 2000, 80};
codec_settings_.simulcastStream[2] = {kWidth, kHeight, kFramerateFps, 1,
4000, 3000, 2000, 80};
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
}
#if defined(WEBRTC_ANDROID)
#define MAYBE_AlignedStrideEncodeDecode DISABLED_AlignedStrideEncodeDecode
#else
#define MAYBE_AlignedStrideEncodeDecode AlignedStrideEncodeDecode
#endif
TEST_F(TestVp8Impl, MAYBE_AlignedStrideEncodeDecode) {
VideoFrame* input_frame = NextInputFrame();
input_frame->set_timestamp(kInitialTimestampRtp);
input_frame->set_timestamp_us(kInitialTimestampMs *
rtc::kNumMicrosecsPerMillisec);
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
EncodeAndWaitForFrame(*input_frame, &encoded_frame, &codec_specific_info);
// First frame should be a key frame.
encoded_frame._frameType = VideoFrameType::kVideoFrameKey;
encoded_frame.ntp_time_ms_ = kTestNtpTimeMs;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, decoder_->Decode(encoded_frame, false, -1));
std::unique_ptr<VideoFrame> decoded_frame;
absl::optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
// Compute PSNR on all planes (faster than SSIM).
EXPECT_GT(I420PSNR(input_frame, decoded_frame.get()), 36);
EXPECT_EQ(kInitialTimestampRtp, decoded_frame->timestamp());
EXPECT_EQ(kTestNtpTimeMs, decoded_frame->ntp_time_ms());
}
#if defined(WEBRTC_ANDROID)
#define MAYBE_DecodeWithACompleteKeyFrame DISABLED_DecodeWithACompleteKeyFrame
#else
#define MAYBE_DecodeWithACompleteKeyFrame DecodeWithACompleteKeyFrame
#endif
TEST_F(TestVp8Impl, MAYBE_DecodeWithACompleteKeyFrame) {
VideoFrame* input_frame = NextInputFrame();
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
EncodeAndWaitForFrame(*input_frame, &encoded_frame, &codec_specific_info);
// Setting complete to false -> should return an error.
encoded_frame._completeFrame = false;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_ERROR,
decoder_->Decode(encoded_frame, false, -1));
// Setting complete back to true. Forcing a delta frame.
encoded_frame._frameType = VideoFrameType::kVideoFrameDelta;
encoded_frame._completeFrame = true;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_ERROR,
decoder_->Decode(encoded_frame, false, -1));
// Now setting a key frame.
encoded_frame._frameType = VideoFrameType::kVideoFrameKey;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, decoder_->Decode(encoded_frame, false, -1));
std::unique_ptr<VideoFrame> decoded_frame;
absl::optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
EXPECT_GT(I420PSNR(input_frame, decoded_frame.get()), 36);
}
TEST_F(TestVp8Impl, EncoderWith2TemporalLayers) {
codec_settings_.VP8()->numberOfTemporalLayers = 2;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
// Temporal layer 0.
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
EncodeAndWaitForFrame(*NextInputFrame(), &encoded_frame,
&codec_specific_info);
EXPECT_EQ(0, codec_specific_info.codecSpecific.VP8.temporalIdx);
// Temporal layer 1.
EncodeAndExpectFrameWith(*NextInputFrame(), 1);
// Temporal layer 0.
EncodeAndExpectFrameWith(*NextInputFrame(), 0);
// Temporal layer 1.
EncodeAndExpectFrameWith(*NextInputFrame(), 1);
}
TEST_F(TestVp8Impl, ScalingDisabledIfAutomaticResizeOff) {
codec_settings_.VP8()->frameDroppingOn = true;
codec_settings_.VP8()->automaticResizeOn = false;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
VideoEncoder::ScalingSettings settings =
encoder_->GetEncoderInfo().scaling_settings;
EXPECT_FALSE(settings.thresholds.has_value());
}
TEST_F(TestVp8Impl, ScalingEnabledIfAutomaticResizeOn) {
codec_settings_.VP8()->frameDroppingOn = true;
codec_settings_.VP8()->automaticResizeOn = true;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
VideoEncoder::ScalingSettings settings =
encoder_->GetEncoderInfo().scaling_settings;
EXPECT_TRUE(settings.thresholds.has_value());
EXPECT_EQ(kDefaultMinPixelsPerFrame, settings.min_pixels_per_frame);
}
TEST_F(TestVp8Impl, DontDropKeyframes) {
// Set very high resolution to trigger overuse more easily.
const int kScreenWidth = 1920;
const int kScreenHeight = 1080;
codec_settings_.width = kScreenWidth;
codec_settings_.height = kScreenHeight;
// Screensharing has the internal frame dropper off, and instead per frame
// asks ScreenshareLayers to decide if it should be dropped or not.
codec_settings_.VP8()->frameDroppingOn = false;
codec_settings_.mode = VideoCodecMode::kScreensharing;
// ScreenshareLayers triggers on 2 temporal layers and 1000kbps max bitrate.
codec_settings_.VP8()->numberOfTemporalLayers = 2;
codec_settings_.maxBitrate = 1000;
// Reset the frame generator with large number of squares, leading to lots of
// details and high probability of overshoot.
input_frame_generator_ = test::FrameGenerator::CreateSquareGenerator(
codec_settings_.width, codec_settings_.height,
test::FrameGenerator::OutputType::I420,
/* num_squares = */ absl::optional<int>(300));
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
VideoBitrateAllocation bitrate_allocation;
// Bitrate only enough for TL0.
bitrate_allocation.SetBitrate(0, 0, 200000);
encoder_->SetRates(
VideoEncoder::RateControlParameters(bitrate_allocation, 5.0));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
EncodeAndWaitForFrame(*NextInputFrame(), &encoded_frame, &codec_specific_info,
true);
EncodeAndExpectFrameWith(*NextInputFrame(), 0, true);
EncodeAndExpectFrameWith(*NextInputFrame(), 0, true);
EncodeAndExpectFrameWith(*NextInputFrame(), 0, true);
}
TEST_F(TestVp8Impl, KeepsTimestampOnReencode) {
auto* const vpx = new NiceMock<MockLibvpxVp8Interface>();
LibvpxVp8Encoder encoder((std::unique_ptr<LibvpxInterface>(vpx)));
// Settings needed to trigger ScreenshareLayers usage, which is required for
// overshoot-drop-reencode logic.
codec_settings_.maxBitrate = 1000;
codec_settings_.mode = VideoCodecMode::kScreensharing;
codec_settings_.VP8()->numberOfTemporalLayers = 2;
EXPECT_CALL(*vpx, img_wrap(_, _, _, _, _, _))
.WillOnce(Invoke([](vpx_image_t* img, vpx_img_fmt_t fmt, unsigned int d_w,
unsigned int d_h, unsigned int stride_align,
unsigned char* img_data) {
img->fmt = fmt;
img->d_w = d_w;
img->d_h = d_h;
img->img_data = img_data;
return img;
}));
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder.InitEncode(&codec_settings_, 1, 1000));
MockEncodedImageCallback callback;
encoder.RegisterEncodeCompleteCallback(&callback);
// Simulate overshoot drop, re-encode: encode function will be called twice
// with the same parameters. codec_get_cx_data() will by default return no
// image data and be interpreted as drop.
EXPECT_CALL(*vpx, codec_encode(_, _, /* pts = */ 0, _, _, _))
.Times(2)
.WillRepeatedly(Return(vpx_codec_err_t::VPX_CODEC_OK));
auto delta_frame =
std::vector<VideoFrameType>{VideoFrameType::kVideoFrameDelta};
encoder.Encode(*NextInputFrame(), &delta_frame);
}
TEST_F(TestVp8Impl, GetEncoderInfoFpsAllocationNoLayers) {
FramerateFractions expected_fps_allocation[kMaxSpatialLayers] = {
FramerateFractions(1, EncoderInfo::kMaxFramerateFraction)};
EXPECT_THAT(encoder_->GetEncoderInfo().fps_allocation,
::testing::ElementsAreArray(expected_fps_allocation));
}
TEST_F(TestVp8Impl, GetEncoderInfoFpsAllocationTwoTemporalLayers) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, encoder_->Release());
codec_settings_.numberOfSimulcastStreams = 1;
codec_settings_.simulcastStream[0].active = true;
codec_settings_.simulcastStream[0].targetBitrate = 100;
codec_settings_.simulcastStream[0].maxBitrate = 100;
codec_settings_.simulcastStream[0].numberOfTemporalLayers = 2;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
FramerateFractions expected_fps_allocation[kMaxSpatialLayers];
expected_fps_allocation[0].push_back(EncoderInfo::kMaxFramerateFraction / 2);
expected_fps_allocation[0].push_back(EncoderInfo::kMaxFramerateFraction);
EXPECT_THAT(encoder_->GetEncoderInfo().fps_allocation,
::testing::ElementsAreArray(expected_fps_allocation));
}
TEST_F(TestVp8Impl, GetEncoderInfoFpsAllocationThreeTemporalLayers) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, encoder_->Release());
codec_settings_.numberOfSimulcastStreams = 1;
codec_settings_.simulcastStream[0].active = true;
codec_settings_.simulcastStream[0].targetBitrate = 100;
codec_settings_.simulcastStream[0].maxBitrate = 100;
codec_settings_.simulcastStream[0].numberOfTemporalLayers = 3;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
FramerateFractions expected_fps_allocation[kMaxSpatialLayers];
expected_fps_allocation[0].push_back(EncoderInfo::kMaxFramerateFraction / 4);
expected_fps_allocation[0].push_back(EncoderInfo::kMaxFramerateFraction / 2);
expected_fps_allocation[0].push_back(EncoderInfo::kMaxFramerateFraction);
EXPECT_THAT(encoder_->GetEncoderInfo().fps_allocation,
::testing::ElementsAreArray(expected_fps_allocation));
}
TEST_F(TestVp8Impl, GetEncoderInfoFpsAllocationScreenshareLayers) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, encoder_->Release());
codec_settings_.numberOfSimulcastStreams = 1;
codec_settings_.mode = VideoCodecMode::kScreensharing;
codec_settings_.simulcastStream[0].active = true;
codec_settings_.simulcastStream[0].minBitrate = 30;
codec_settings_.simulcastStream[0].targetBitrate =
kLegacyScreenshareTl0BitrateKbps;
codec_settings_.simulcastStream[0].maxBitrate =
kLegacyScreenshareTl1BitrateKbps;
codec_settings_.simulcastStream[0].numberOfTemporalLayers = 2;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
// Expect empty vector, since this mode doesn't have a fixed framerate.
FramerateFractions expected_fps_allocation[kMaxSpatialLayers];
EXPECT_THAT(encoder_->GetEncoderInfo().fps_allocation,
::testing::ElementsAreArray(expected_fps_allocation));
}
TEST_F(TestVp8Impl, GetEncoderInfoFpsAllocationSimulcastVideo) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK, encoder_->Release());
// Set up three simulcast streams with three temporal layers each.
codec_settings_.numberOfSimulcastStreams = 3;
for (int i = 0; i < codec_settings_.numberOfSimulcastStreams; ++i) {
codec_settings_.simulcastStream[i].active = true;
codec_settings_.simulcastStream[i].minBitrate = 30;
codec_settings_.simulcastStream[i].targetBitrate = 30;
codec_settings_.simulcastStream[i].maxBitrate = 30;
codec_settings_.simulcastStream[i].numberOfTemporalLayers = 3;
codec_settings_.simulcastStream[i].width =
codec_settings_.width >>
(codec_settings_.numberOfSimulcastStreams - i - 1);
codec_settings_.simulcastStream[i].height =
codec_settings_.height >>
(codec_settings_.numberOfSimulcastStreams - i - 1);
}
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, kNumCores, kMaxPayloadSize));
FramerateFractions expected_fps_allocation[kMaxSpatialLayers];
expected_fps_allocation[0].push_back(EncoderInfo::kMaxFramerateFraction / 4);
expected_fps_allocation[0].push_back(EncoderInfo::kMaxFramerateFraction / 2);
expected_fps_allocation[0].push_back(EncoderInfo::kMaxFramerateFraction);
expected_fps_allocation[1] = expected_fps_allocation[0];
expected_fps_allocation[2] = expected_fps_allocation[0];
EXPECT_THAT(encoder_->GetEncoderInfo().fps_allocation,
::testing::ElementsAreArray(expected_fps_allocation));
}
} // namespace webrtc