| /* |
| * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| * |
| */ |
| |
| #include "modules/video_coding/codecs/h264/h264_encoder_impl.h" |
| |
| #include <limits> |
| #include <string> |
| |
| #include "third_party/openh264/src/codec/api/svc/codec_api.h" |
| #include "third_party/openh264/src/codec/api/svc/codec_app_def.h" |
| #include "third_party/openh264/src/codec/api/svc/codec_def.h" |
| #include "third_party/openh264/src/codec/api/svc/codec_ver.h" |
| |
| #include "absl/strings/match.h" |
| #include "common_video/libyuv/include/webrtc_libyuv.h" |
| #include "modules/video_coding/utility/simulcast_rate_allocator.h" |
| #include "modules/video_coding/utility/simulcast_utility.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/time_utils.h" |
| #include "system_wrappers/include/metrics.h" |
| #include "third_party/libyuv/include/libyuv/convert.h" |
| #include "third_party/libyuv/include/libyuv/scale.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| const bool kOpenH264EncoderDetailedLogging = false; |
| |
| // QP scaling thresholds. |
| static const int kLowH264QpThreshold = 24; |
| static const int kHighH264QpThreshold = 37; |
| |
| // Used by histograms. Values of entries should not be changed. |
| enum H264EncoderImplEvent { |
| kH264EncoderEventInit = 0, |
| kH264EncoderEventError = 1, |
| kH264EncoderEventMax = 16, |
| }; |
| |
| int NumberOfThreads(int width, int height, int number_of_cores) { |
| // TODO(hbos): In Chromium, multiple threads do not work with sandbox on Mac, |
| // see crbug.com/583348. Until further investigated, only use one thread. |
| // if (width * height >= 1920 * 1080 && number_of_cores > 8) { |
| // return 8; // 8 threads for 1080p on high perf machines. |
| // } else if (width * height > 1280 * 960 && number_of_cores >= 6) { |
| // return 3; // 3 threads for 1080p. |
| // } else if (width * height > 640 * 480 && number_of_cores >= 3) { |
| // return 2; // 2 threads for qHD/HD. |
| // } else { |
| // return 1; // 1 thread for VGA or less. |
| // } |
| // TODO(sprang): Also check sSliceArgument.uiSliceNum om GetEncoderPrams(), |
| // before enabling multithreading here. |
| return 1; |
| } |
| |
| VideoFrameType ConvertToVideoFrameType(EVideoFrameType type) { |
| switch (type) { |
| case videoFrameTypeIDR: |
| return VideoFrameType::kVideoFrameKey; |
| case videoFrameTypeSkip: |
| case videoFrameTypeI: |
| case videoFrameTypeP: |
| case videoFrameTypeIPMixed: |
| return VideoFrameType::kVideoFrameDelta; |
| case videoFrameTypeInvalid: |
| break; |
| } |
| RTC_NOTREACHED() << "Unexpected/invalid frame type: " << type; |
| return VideoFrameType::kEmptyFrame; |
| } |
| |
| } // namespace |
| |
| // Helper method used by H264EncoderImpl::Encode. |
| // Copies the encoded bytes from |info| to |encoded_image| and updates the |
| // fragmentation information of |frag_header|. The |encoded_image->_buffer| may |
| // be deleted and reallocated if a bigger buffer is required. |
| // |
| // After OpenH264 encoding, the encoded bytes are stored in |info| spread out |
| // over a number of layers and "NAL units". Each NAL unit is a fragment starting |
| // with the four-byte start code {0,0,0,1}. All of this data (including the |
| // start codes) is copied to the |encoded_image->_buffer| and the |frag_header| |
| // is updated to point to each fragment, with offsets and lengths set as to |
| // exclude the start codes. |
| static void RtpFragmentize(EncodedImage* encoded_image, |
| const VideoFrameBuffer& frame_buffer, |
| SFrameBSInfo* info, |
| RTPFragmentationHeader* frag_header) { |
| // Calculate minimum buffer size required to hold encoded data. |
| size_t required_capacity = 0; |
| size_t fragments_count = 0; |
| for (int layer = 0; layer < info->iLayerNum; ++layer) { |
| const SLayerBSInfo& layerInfo = info->sLayerInfo[layer]; |
| for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++fragments_count) { |
| RTC_CHECK_GE(layerInfo.pNalLengthInByte[nal], 0); |
| // Ensure |required_capacity| will not overflow. |
| RTC_CHECK_LE(layerInfo.pNalLengthInByte[nal], |
| std::numeric_limits<size_t>::max() - required_capacity); |
| required_capacity += layerInfo.pNalLengthInByte[nal]; |
| } |
| } |
| if (encoded_image->capacity() < required_capacity) { |
| // Increase buffer size. Allocate enough to hold an unencoded image, this |
| // should be more than enough to hold any encoded data of future frames of |
| // the same size (avoiding possible future reallocation due to variations in |
| // required size). |
| size_t new_capacity = CalcBufferSize(VideoType::kI420, frame_buffer.width(), |
| frame_buffer.height()); |
| if (new_capacity < required_capacity) { |
| // Encoded data > unencoded data. Allocate required bytes. |
| RTC_LOG(LS_WARNING) |
| << "Encoding produced more bytes than the original image " |
| << "data! Original bytes: " << new_capacity |
| << ", encoded bytes: " << required_capacity << "."; |
| new_capacity = required_capacity; |
| } |
| encoded_image->Allocate(new_capacity); |
| } |
| |
| // Iterate layers and NAL units, note each NAL unit as a fragment and copy |
| // the data to |encoded_image->_buffer|. |
| const uint8_t start_code[4] = {0, 0, 0, 1}; |
| frag_header->VerifyAndAllocateFragmentationHeader(fragments_count); |
| size_t frag = 0; |
| encoded_image->set_size(0); |
| for (int layer = 0; layer < info->iLayerNum; ++layer) { |
| const SLayerBSInfo& layerInfo = info->sLayerInfo[layer]; |
| // Iterate NAL units making up this layer, noting fragments. |
| size_t layer_len = 0; |
| for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++frag) { |
| // Because the sum of all layer lengths, |required_capacity|, fits in a |
| // |size_t|, we know that any indices in-between will not overflow. |
| RTC_DCHECK_GE(layerInfo.pNalLengthInByte[nal], 4); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 0], start_code[0]); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 1], start_code[1]); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 2], start_code[2]); |
| RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len + 3], start_code[3]); |
| frag_header->fragmentationOffset[frag] = |
| encoded_image->size() + layer_len + sizeof(start_code); |
| frag_header->fragmentationLength[frag] = |
| layerInfo.pNalLengthInByte[nal] - sizeof(start_code); |
| layer_len += layerInfo.pNalLengthInByte[nal]; |
| } |
| // Copy the entire layer's data (including start codes). |
| memcpy(encoded_image->data() + encoded_image->size(), layerInfo.pBsBuf, |
| layer_len); |
| encoded_image->set_size(encoded_image->size() + layer_len); |
| } |
| } |
| |
| H264EncoderImpl::H264EncoderImpl(const cricket::VideoCodec& codec) |
| : packetization_mode_(H264PacketizationMode::SingleNalUnit), |
| max_payload_size_(0), |
| number_of_cores_(0), |
| encoded_image_callback_(nullptr), |
| has_reported_init_(false), |
| has_reported_error_(false), |
| num_temporal_layers_(1), |
| tl0sync_limit_(0) { |
| RTC_CHECK(absl::EqualsIgnoreCase(codec.name, cricket::kH264CodecName)); |
| std::string packetization_mode_string; |
| if (codec.GetParam(cricket::kH264FmtpPacketizationMode, |
| &packetization_mode_string) && |
| packetization_mode_string == "1") { |
| packetization_mode_ = H264PacketizationMode::NonInterleaved; |
| } |
| downscaled_buffers_.reserve(kMaxSimulcastStreams - 1); |
| encoded_images_.reserve(kMaxSimulcastStreams); |
| encoders_.reserve(kMaxSimulcastStreams); |
| configurations_.reserve(kMaxSimulcastStreams); |
| } |
| |
| H264EncoderImpl::~H264EncoderImpl() { |
| Release(); |
| } |
| |
| int32_t H264EncoderImpl::InitEncode(const VideoCodec* inst, |
| int32_t number_of_cores, |
| size_t max_payload_size) { |
| ReportInit(); |
| if (!inst || inst->codecType != kVideoCodecH264) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (inst->maxFramerate == 0) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| if (inst->width < 1 || inst->height < 1) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERR_PARAMETER; |
| } |
| |
| int32_t release_ret = Release(); |
| if (release_ret != WEBRTC_VIDEO_CODEC_OK) { |
| ReportError(); |
| return release_ret; |
| } |
| |
| int number_of_streams = SimulcastUtility::NumberOfSimulcastStreams(*inst); |
| bool doing_simulcast = (number_of_streams > 1); |
| |
| if (doing_simulcast && |
| !SimulcastUtility::ValidSimulcastParameters(*inst, number_of_streams)) { |
| return WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED; |
| } |
| downscaled_buffers_.resize(number_of_streams - 1); |
| encoded_images_.resize(number_of_streams); |
| encoders_.resize(number_of_streams); |
| pictures_.resize(number_of_streams); |
| configurations_.resize(number_of_streams); |
| |
| number_of_cores_ = number_of_cores; |
| max_payload_size_ = max_payload_size; |
| codec_ = *inst; |
| |
| // Code expects simulcastStream resolutions to be correct, make sure they are |
| // filled even when there are no simulcast layers. |
| if (codec_.numberOfSimulcastStreams == 0) { |
| codec_.simulcastStream[0].width = codec_.width; |
| codec_.simulcastStream[0].height = codec_.height; |
| } |
| |
| num_temporal_layers_ = codec_.H264()->numberOfTemporalLayers; |
| |
| for (int i = 0, idx = number_of_streams - 1; i < number_of_streams; |
| ++i, --idx) { |
| ISVCEncoder* openh264_encoder; |
| // Create encoder. |
| if (WelsCreateSVCEncoder(&openh264_encoder) != 0) { |
| // Failed to create encoder. |
| RTC_LOG(LS_ERROR) << "Failed to create OpenH264 encoder"; |
| RTC_DCHECK(!openh264_encoder); |
| Release(); |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| RTC_DCHECK(openh264_encoder); |
| if (kOpenH264EncoderDetailedLogging) { |
| int trace_level = WELS_LOG_DETAIL; |
| openh264_encoder->SetOption(ENCODER_OPTION_TRACE_LEVEL, &trace_level); |
| } |
| // else WELS_LOG_DEFAULT is used by default. |
| |
| // Store h264 encoder. |
| encoders_[i] = openh264_encoder; |
| |
| // Set internal settings from codec_settings |
| configurations_[i].simulcast_idx = idx; |
| configurations_[i].sending = false; |
| configurations_[i].width = codec_.simulcastStream[idx].width; |
| configurations_[i].height = codec_.simulcastStream[idx].height; |
| configurations_[i].max_frame_rate = static_cast<float>(codec_.maxFramerate); |
| configurations_[i].frame_dropping_on = codec_.H264()->frameDroppingOn; |
| configurations_[i].key_frame_interval = codec_.H264()->keyFrameInterval; |
| |
| // Create downscaled image buffers. |
| if (i > 0) { |
| downscaled_buffers_[i - 1] = I420Buffer::Create( |
| configurations_[i].width, configurations_[i].height, |
| configurations_[i].width, configurations_[i].width / 2, |
| configurations_[i].width / 2); |
| } |
| |
| // Codec_settings uses kbits/second; encoder uses bits/second. |
| configurations_[i].max_bps = codec_.maxBitrate * 1000; |
| configurations_[i].target_bps = codec_.startBitrate * 1000; |
| |
| // Create encoder parameters based on the layer configuration. |
| SEncParamExt encoder_params = CreateEncoderParams(i); |
| |
| // Initialize. |
| if (openh264_encoder->InitializeExt(&encoder_params) != 0) { |
| RTC_LOG(LS_ERROR) << "Failed to initialize OpenH264 encoder"; |
| Release(); |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| // TODO(pbos): Base init params on these values before submitting. |
| int video_format = EVideoFormatType::videoFormatI420; |
| openh264_encoder->SetOption(ENCODER_OPTION_DATAFORMAT, &video_format); |
| |
| // Initialize encoded image. Default buffer size: size of unencoded data. |
| |
| const size_t new_capacity = |
| CalcBufferSize(VideoType::kI420, codec_.simulcastStream[idx].width, |
| codec_.simulcastStream[idx].height); |
| encoded_images_[i].Allocate(new_capacity); |
| encoded_images_[i]._completeFrame = true; |
| encoded_images_[i]._encodedWidth = codec_.simulcastStream[idx].width; |
| encoded_images_[i]._encodedHeight = codec_.simulcastStream[idx].height; |
| encoded_images_[i].set_size(0); |
| } |
| |
| SimulcastRateAllocator init_allocator(codec_); |
| VideoBitrateAllocation allocation = init_allocator.GetAllocation( |
| codec_.startBitrate * 1000, codec_.maxFramerate); |
| SetRates(RateControlParameters(allocation, codec_.maxFramerate)); |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int32_t H264EncoderImpl::Release() { |
| while (!encoders_.empty()) { |
| ISVCEncoder* openh264_encoder = encoders_.back(); |
| if (openh264_encoder) { |
| RTC_CHECK_EQ(0, openh264_encoder->Uninitialize()); |
| WelsDestroySVCEncoder(openh264_encoder); |
| } |
| encoders_.pop_back(); |
| } |
| downscaled_buffers_.clear(); |
| configurations_.clear(); |
| encoded_images_.clear(); |
| pictures_.clear(); |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| int32_t H264EncoderImpl::RegisterEncodeCompleteCallback( |
| EncodedImageCallback* callback) { |
| encoded_image_callback_ = callback; |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| void H264EncoderImpl::SetRates(const RateControlParameters& parameters) { |
| if (encoders_.empty()) { |
| RTC_LOG(LS_WARNING) << "SetRates() while uninitialized."; |
| return; |
| } |
| |
| if (parameters.framerate_fps < 1.0) { |
| RTC_LOG(LS_WARNING) << "Invalid frame rate: " << parameters.framerate_fps; |
| return; |
| } |
| |
| if (parameters.bitrate.get_sum_bps() == 0) { |
| // Encoder paused, turn off all encoding. |
| for (size_t i = 0; i < configurations_.size(); ++i) |
| configurations_[i].SetStreamState(false); |
| return; |
| } |
| |
| // At this point, bitrate allocation should already match codec settings. |
| if (codec_.maxBitrate > 0) |
| RTC_DCHECK_LE(parameters.bitrate.get_sum_kbps(), codec_.maxBitrate); |
| RTC_DCHECK_GE(parameters.bitrate.get_sum_kbps(), codec_.minBitrate); |
| if (codec_.numberOfSimulcastStreams > 0) |
| RTC_DCHECK_GE(parameters.bitrate.get_sum_kbps(), |
| codec_.simulcastStream[0].minBitrate); |
| |
| codec_.maxFramerate = static_cast<uint32_t>(parameters.framerate_fps); |
| |
| size_t stream_idx = encoders_.size() - 1; |
| for (size_t i = 0; i < encoders_.size(); ++i, --stream_idx) { |
| // Update layer config. |
| configurations_[i].target_bps = |
| parameters.bitrate.GetSpatialLayerSum(stream_idx); |
| configurations_[i].max_frame_rate = parameters.framerate_fps; |
| |
| if (configurations_[i].target_bps) { |
| configurations_[i].SetStreamState(true); |
| |
| // Update h264 encoder. |
| SBitrateInfo target_bitrate; |
| memset(&target_bitrate, 0, sizeof(SBitrateInfo)); |
| target_bitrate.iLayer = SPATIAL_LAYER_ALL, |
| target_bitrate.iBitrate = configurations_[i].target_bps; |
| encoders_[i]->SetOption(ENCODER_OPTION_BITRATE, &target_bitrate); |
| encoders_[i]->SetOption(ENCODER_OPTION_FRAME_RATE, |
| &configurations_[i].max_frame_rate); |
| } else { |
| configurations_[i].SetStreamState(false); |
| } |
| } |
| } |
| |
| int32_t H264EncoderImpl::Encode( |
| const VideoFrame& input_frame, |
| const std::vector<VideoFrameType>* frame_types) { |
| if (encoders_.empty()) { |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| if (!encoded_image_callback_) { |
| RTC_LOG(LS_WARNING) |
| << "InitEncode() has been called, but a callback function " |
| << "has not been set with RegisterEncodeCompleteCallback()"; |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_UNINITIALIZED; |
| } |
| |
| rtc::scoped_refptr<const I420BufferInterface> frame_buffer = |
| input_frame.video_frame_buffer()->ToI420(); |
| |
| bool send_key_frame = false; |
| for (size_t i = 0; i < configurations_.size(); ++i) { |
| if (configurations_[i].key_frame_request && configurations_[i].sending) { |
| send_key_frame = true; |
| break; |
| } |
| } |
| if (!send_key_frame && frame_types) { |
| for (size_t i = 0; i < frame_types->size() && i < configurations_.size(); |
| ++i) { |
| if ((*frame_types)[i] == VideoFrameType::kVideoFrameKey && |
| configurations_[i].sending) { |
| send_key_frame = true; |
| break; |
| } |
| } |
| } |
| |
| RTC_DCHECK_EQ(configurations_[0].width, frame_buffer->width()); |
| RTC_DCHECK_EQ(configurations_[0].height, frame_buffer->height()); |
| |
| // Encode image for each layer. |
| for (size_t i = 0; i < encoders_.size(); ++i) { |
| // EncodeFrame input. |
| pictures_[i] = {0}; |
| pictures_[i].iPicWidth = configurations_[i].width; |
| pictures_[i].iPicHeight = configurations_[i].height; |
| pictures_[i].iColorFormat = EVideoFormatType::videoFormatI420; |
| pictures_[i].uiTimeStamp = input_frame.ntp_time_ms(); |
| // Downscale images on second and ongoing layers. |
| if (i == 0) { |
| pictures_[i].iStride[0] = frame_buffer->StrideY(); |
| pictures_[i].iStride[1] = frame_buffer->StrideU(); |
| pictures_[i].iStride[2] = frame_buffer->StrideV(); |
| pictures_[i].pData[0] = const_cast<uint8_t*>(frame_buffer->DataY()); |
| pictures_[i].pData[1] = const_cast<uint8_t*>(frame_buffer->DataU()); |
| pictures_[i].pData[2] = const_cast<uint8_t*>(frame_buffer->DataV()); |
| } else { |
| pictures_[i].iStride[0] = downscaled_buffers_[i - 1]->StrideY(); |
| pictures_[i].iStride[1] = downscaled_buffers_[i - 1]->StrideU(); |
| pictures_[i].iStride[2] = downscaled_buffers_[i - 1]->StrideV(); |
| pictures_[i].pData[0] = |
| const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataY()); |
| pictures_[i].pData[1] = |
| const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataU()); |
| pictures_[i].pData[2] = |
| const_cast<uint8_t*>(downscaled_buffers_[i - 1]->DataV()); |
| // Scale the image down a number of times by downsampling factor. |
| libyuv::I420Scale(pictures_[i - 1].pData[0], pictures_[i - 1].iStride[0], |
| pictures_[i - 1].pData[1], pictures_[i - 1].iStride[1], |
| pictures_[i - 1].pData[2], pictures_[i - 1].iStride[2], |
| configurations_[i - 1].width, |
| configurations_[i - 1].height, pictures_[i].pData[0], |
| pictures_[i].iStride[0], pictures_[i].pData[1], |
| pictures_[i].iStride[1], pictures_[i].pData[2], |
| pictures_[i].iStride[2], configurations_[i].width, |
| configurations_[i].height, libyuv::kFilterBilinear); |
| } |
| |
| if (!configurations_[i].sending) { |
| continue; |
| } |
| if (frame_types != nullptr) { |
| // Skip frame? |
| if ((*frame_types)[i] == VideoFrameType::kEmptyFrame) { |
| continue; |
| } |
| } |
| if (send_key_frame) { |
| // API doc says ForceIntraFrame(false) does nothing, but calling this |
| // function forces a key frame regardless of the |bIDR| argument's value. |
| // (If every frame is a key frame we get lag/delays.) |
| encoders_[i]->ForceIntraFrame(true); |
| configurations_[i].key_frame_request = false; |
| } |
| // EncodeFrame output. |
| SFrameBSInfo info; |
| memset(&info, 0, sizeof(SFrameBSInfo)); |
| |
| // Encode! |
| int enc_ret = encoders_[i]->EncodeFrame(&pictures_[i], &info); |
| if (enc_ret != 0) { |
| RTC_LOG(LS_ERROR) |
| << "OpenH264 frame encoding failed, EncodeFrame returned " << enc_ret |
| << "."; |
| ReportError(); |
| return WEBRTC_VIDEO_CODEC_ERROR; |
| } |
| |
| encoded_images_[i]._encodedWidth = configurations_[i].width; |
| encoded_images_[i]._encodedHeight = configurations_[i].height; |
| encoded_images_[i].SetTimestamp(input_frame.timestamp()); |
| encoded_images_[i].ntp_time_ms_ = input_frame.ntp_time_ms(); |
| encoded_images_[i].capture_time_ms_ = input_frame.render_time_ms(); |
| encoded_images_[i].rotation_ = input_frame.rotation(); |
| encoded_images_[i].SetColorSpace(input_frame.color_space()); |
| encoded_images_[i].content_type_ = |
| (codec_.mode == VideoCodecMode::kScreensharing) |
| ? VideoContentType::SCREENSHARE |
| : VideoContentType::UNSPECIFIED; |
| encoded_images_[i].timing_.flags = VideoSendTiming::kInvalid; |
| encoded_images_[i]._frameType = ConvertToVideoFrameType(info.eFrameType); |
| encoded_images_[i].SetSpatialIndex(configurations_[i].simulcast_idx); |
| |
| // Split encoded image up into fragments. This also updates |
| // |encoded_image_|. |
| RTPFragmentationHeader frag_header; |
| RtpFragmentize(&encoded_images_[i], *frame_buffer, &info, &frag_header); |
| |
| // Encoder can skip frames to save bandwidth in which case |
| // |encoded_images_[i]._length| == 0. |
| if (encoded_images_[i].size() > 0) { |
| // Parse QP. |
| h264_bitstream_parser_.ParseBitstream(encoded_images_[i].data(), |
| encoded_images_[i].size()); |
| h264_bitstream_parser_.GetLastSliceQp(&encoded_images_[i].qp_); |
| |
| // Deliver encoded image. |
| CodecSpecificInfo codec_specific; |
| codec_specific.codecType = kVideoCodecH264; |
| codec_specific.codecSpecific.H264.packetization_mode = |
| packetization_mode_; |
| codec_specific.codecSpecific.H264.temporal_idx = kNoTemporalIdx; |
| codec_specific.codecSpecific.H264.idr_frame = |
| info.eFrameType == videoFrameTypeIDR; |
| codec_specific.codecSpecific.H264.base_layer_sync = false; |
| if (num_temporal_layers_ > 1) { |
| const uint8_t tid = info.sLayerInfo[0].uiTemporalId; |
| codec_specific.codecSpecific.H264.temporal_idx = tid; |
| codec_specific.codecSpecific.H264.base_layer_sync = |
| tid > 0 && tid < tl0sync_limit_; |
| if (codec_specific.codecSpecific.H264.base_layer_sync) { |
| tl0sync_limit_ = tid; |
| } |
| if (tid == 0) { |
| tl0sync_limit_ = num_temporal_layers_; |
| } |
| } |
| encoded_image_callback_->OnEncodedImage(encoded_images_[i], |
| &codec_specific, &frag_header); |
| } |
| } |
| return WEBRTC_VIDEO_CODEC_OK; |
| } |
| |
| // Initialization parameters. |
| // There are two ways to initialize. There is SEncParamBase (cleared with |
| // memset(&p, 0, sizeof(SEncParamBase)) used in Initialize, and SEncParamExt |
| // which is a superset of SEncParamBase (cleared with GetDefaultParams) used |
| // in InitializeExt. |
| SEncParamExt H264EncoderImpl::CreateEncoderParams(size_t i) const { |
| SEncParamExt encoder_params; |
| encoders_[i]->GetDefaultParams(&encoder_params); |
| if (codec_.mode == VideoCodecMode::kRealtimeVideo) { |
| encoder_params.iUsageType = CAMERA_VIDEO_REAL_TIME; |
| } else if (codec_.mode == VideoCodecMode::kScreensharing) { |
| encoder_params.iUsageType = SCREEN_CONTENT_REAL_TIME; |
| } else { |
| RTC_NOTREACHED(); |
| } |
| encoder_params.iPicWidth = configurations_[i].width; |
| encoder_params.iPicHeight = configurations_[i].height; |
| encoder_params.iTargetBitrate = configurations_[i].target_bps; |
| encoder_params.iMaxBitrate = configurations_[i].max_bps; |
| // Rate Control mode |
| encoder_params.iRCMode = RC_BITRATE_MODE; |
| encoder_params.fMaxFrameRate = configurations_[i].max_frame_rate; |
| |
| // The following parameters are extension parameters (they're in SEncParamExt, |
| // not in SEncParamBase). |
| encoder_params.bEnableFrameSkip = configurations_[i].frame_dropping_on; |
| // |uiIntraPeriod| - multiple of GOP size |
| // |keyFrameInterval| - number of frames |
| encoder_params.uiIntraPeriod = configurations_[i].key_frame_interval; |
| encoder_params.uiMaxNalSize = 0; |
| // Threading model: use auto. |
| // 0: auto (dynamic imp. internal encoder) |
| // 1: single thread (default value) |
| // >1: number of threads |
| encoder_params.iMultipleThreadIdc = NumberOfThreads( |
| encoder_params.iPicWidth, encoder_params.iPicHeight, number_of_cores_); |
| // The base spatial layer 0 is the only one we use. |
| encoder_params.sSpatialLayers[0].iVideoWidth = encoder_params.iPicWidth; |
| encoder_params.sSpatialLayers[0].iVideoHeight = encoder_params.iPicHeight; |
| encoder_params.sSpatialLayers[0].fFrameRate = encoder_params.fMaxFrameRate; |
| encoder_params.sSpatialLayers[0].iSpatialBitrate = |
| encoder_params.iTargetBitrate; |
| encoder_params.sSpatialLayers[0].iMaxSpatialBitrate = |
| encoder_params.iMaxBitrate; |
| encoder_params.iTemporalLayerNum = num_temporal_layers_; |
| if (encoder_params.iTemporalLayerNum > 1) { |
| encoder_params.iNumRefFrame = 1; |
| } |
| RTC_LOG(INFO) << "OpenH264 version is " << OPENH264_MAJOR << "." |
| << OPENH264_MINOR; |
| switch (packetization_mode_) { |
| case H264PacketizationMode::SingleNalUnit: |
| // Limit the size of the packets produced. |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1; |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode = |
| SM_SIZELIMITED_SLICE; |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceSizeConstraint = |
| static_cast<unsigned int>(max_payload_size_); |
| RTC_LOG(INFO) << "Encoder is configured with NALU constraint: " |
| << max_payload_size_ << " bytes"; |
| break; |
| case H264PacketizationMode::NonInterleaved: |
| // When uiSliceMode = SM_FIXEDSLCNUM_SLICE, uiSliceNum = 0 means auto |
| // design it with cpu core number. |
| // TODO(sprang): Set to 0 when we understand why the rate controller borks |
| // when uiSliceNum > 1. |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1; |
| encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode = |
| SM_FIXEDSLCNUM_SLICE; |
| break; |
| } |
| return encoder_params; |
| } |
| |
| void H264EncoderImpl::ReportInit() { |
| if (has_reported_init_) |
| return; |
| RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event", |
| kH264EncoderEventInit, kH264EncoderEventMax); |
| has_reported_init_ = true; |
| } |
| |
| void H264EncoderImpl::ReportError() { |
| if (has_reported_error_) |
| return; |
| RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event", |
| kH264EncoderEventError, kH264EncoderEventMax); |
| has_reported_error_ = true; |
| } |
| |
| VideoEncoder::EncoderInfo H264EncoderImpl::GetEncoderInfo() const { |
| EncoderInfo info; |
| info.supports_native_handle = false; |
| info.implementation_name = "OpenH264"; |
| info.scaling_settings = |
| VideoEncoder::ScalingSettings(kLowH264QpThreshold, kHighH264QpThreshold); |
| info.is_hardware_accelerated = false; |
| info.has_internal_source = false; |
| return info; |
| } |
| |
| void H264EncoderImpl::LayerConfig::SetStreamState(bool send_stream) { |
| if (send_stream && !sending) { |
| // Need a key frame if we have not sent this stream before. |
| key_frame_request = true; |
| } |
| sending = send_stream; |
| } |
| |
| } // namespace webrtc |