| /* |
| * Copyright 2018 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| #ifndef RTC_BASE_UNITS_UNIT_BASE_H_ |
| #define RTC_BASE_UNITS_UNIT_BASE_H_ |
| |
| #include <stdint.h> |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| #include <type_traits> |
| |
| #include "rtc_base/checks.h" |
| #include "rtc_base/numerics/divide_round.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| |
| namespace webrtc { |
| namespace rtc_units_impl { |
| |
| // UnitBase is a base class for implementing custom value types with a specific |
| // unit. It provides type safety and commonly useful operations. The underlying |
| // storage is always an int64_t, it's up to the unit implementation to choose |
| // what scale it represents. |
| // |
| // It's used like: |
| // class MyUnit: public UnitBase<MyUnit> {...}; |
| // |
| // Unit_T is the subclass representing the specific unit. |
| template <class Unit_T> |
| class UnitBase { |
| public: |
| UnitBase() = delete; |
| static constexpr Unit_T Zero() { return Unit_T(0); } |
| static constexpr Unit_T PlusInfinity() { return Unit_T(PlusInfinityVal()); } |
| static constexpr Unit_T MinusInfinity() { return Unit_T(MinusInfinityVal()); } |
| |
| constexpr bool IsZero() const { return value_ == 0; } |
| constexpr bool IsFinite() const { return !IsInfinite(); } |
| constexpr bool IsInfinite() const { |
| return value_ == PlusInfinityVal() || value_ == MinusInfinityVal(); |
| } |
| constexpr bool IsPlusInfinity() const { return value_ == PlusInfinityVal(); } |
| constexpr bool IsMinusInfinity() const { |
| return value_ == MinusInfinityVal(); |
| } |
| |
| constexpr bool operator==(const UnitBase<Unit_T>& other) const { |
| return value_ == other.value_; |
| } |
| constexpr bool operator!=(const UnitBase<Unit_T>& other) const { |
| return value_ != other.value_; |
| } |
| constexpr bool operator<=(const UnitBase<Unit_T>& other) const { |
| return value_ <= other.value_; |
| } |
| constexpr bool operator>=(const UnitBase<Unit_T>& other) const { |
| return value_ >= other.value_; |
| } |
| constexpr bool operator>(const UnitBase<Unit_T>& other) const { |
| return value_ > other.value_; |
| } |
| constexpr bool operator<(const UnitBase<Unit_T>& other) const { |
| return value_ < other.value_; |
| } |
| constexpr Unit_T RoundTo(const Unit_T& resolution) const { |
| RTC_DCHECK(IsFinite()); |
| RTC_DCHECK(resolution.IsFinite()); |
| RTC_DCHECK_GT(resolution.value_, 0); |
| return Unit_T((value_ + resolution.value_ / 2) / resolution.value_) * |
| resolution.value_; |
| } |
| constexpr Unit_T RoundUpTo(const Unit_T& resolution) const { |
| RTC_DCHECK(IsFinite()); |
| RTC_DCHECK(resolution.IsFinite()); |
| RTC_DCHECK_GT(resolution.value_, 0); |
| return Unit_T((value_ + resolution.value_ - 1) / resolution.value_) * |
| resolution.value_; |
| } |
| constexpr Unit_T RoundDownTo(const Unit_T& resolution) const { |
| RTC_DCHECK(IsFinite()); |
| RTC_DCHECK(resolution.IsFinite()); |
| RTC_DCHECK_GT(resolution.value_, 0); |
| return Unit_T(value_ / resolution.value_) * resolution.value_; |
| } |
| |
| protected: |
| template < |
| typename T, |
| typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> |
| static constexpr Unit_T FromValue(T value) { |
| if (Unit_T::one_sided) |
| RTC_DCHECK_GE(value, 0); |
| RTC_DCHECK_GT(value, MinusInfinityVal()); |
| RTC_DCHECK_LT(value, PlusInfinityVal()); |
| return Unit_T(rtc::dchecked_cast<int64_t>(value)); |
| } |
| template <typename T, |
| typename std::enable_if<std::is_floating_point<T>::value>::type* = |
| nullptr> |
| static constexpr Unit_T FromValue(T value) { |
| if (value == std::numeric_limits<T>::infinity()) { |
| return PlusInfinity(); |
| } else if (value == -std::numeric_limits<T>::infinity()) { |
| return MinusInfinity(); |
| } else { |
| return FromValue(rtc::dchecked_cast<int64_t>(value)); |
| } |
| } |
| |
| template < |
| typename T, |
| typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> |
| static constexpr Unit_T FromFraction(int64_t denominator, T value) { |
| if (Unit_T::one_sided) |
| RTC_DCHECK_GE(value, 0); |
| RTC_DCHECK_GT(value, MinusInfinityVal() / denominator); |
| RTC_DCHECK_LT(value, PlusInfinityVal() / denominator); |
| return Unit_T(rtc::dchecked_cast<int64_t>(value * denominator)); |
| } |
| template <typename T, |
| typename std::enable_if<std::is_floating_point<T>::value>::type* = |
| nullptr> |
| static constexpr Unit_T FromFraction(int64_t denominator, T value) { |
| return FromValue(value * denominator); |
| } |
| |
| template <typename T = int64_t> |
| constexpr typename std::enable_if<std::is_integral<T>::value, T>::type |
| ToValue() const { |
| RTC_DCHECK(IsFinite()); |
| return rtc::dchecked_cast<T>(value_); |
| } |
| template <typename T> |
| constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type |
| ToValue() const { |
| return IsPlusInfinity() ? std::numeric_limits<T>::infinity() |
| : IsMinusInfinity() ? -std::numeric_limits<T>::infinity() |
| : value_; |
| } |
| template <typename T> |
| constexpr T ToValueOr(T fallback_value) const { |
| return IsFinite() ? value_ : fallback_value; |
| } |
| |
| template <int64_t Denominator, typename T = int64_t> |
| constexpr typename std::enable_if<std::is_integral<T>::value, T>::type |
| ToFraction() const { |
| RTC_DCHECK(IsFinite()); |
| return rtc::dchecked_cast<T>(DivideRoundToNearest(value_, Denominator)); |
| } |
| template <int64_t Denominator, typename T> |
| constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type |
| ToFraction() const { |
| return ToValue<T>() * (1 / static_cast<T>(Denominator)); |
| } |
| |
| template <int64_t Denominator> |
| constexpr int64_t ToFractionOr(int64_t fallback_value) const { |
| return IsFinite() ? DivideRoundToNearest(value_, Denominator) |
| : fallback_value; |
| } |
| |
| template <int64_t Factor, typename T = int64_t> |
| constexpr typename std::enable_if<std::is_integral<T>::value, T>::type |
| ToMultiple() const { |
| RTC_DCHECK_GE(ToValue(), std::numeric_limits<T>::min() / Factor); |
| RTC_DCHECK_LE(ToValue(), std::numeric_limits<T>::max() / Factor); |
| return rtc::dchecked_cast<T>(ToValue() * Factor); |
| } |
| template <int64_t Factor, typename T> |
| constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type |
| ToMultiple() const { |
| return ToValue<T>() * Factor; |
| } |
| |
| explicit constexpr UnitBase(int64_t value) : value_(value) {} |
| |
| private: |
| template <class RelativeUnit_T> |
| friend class RelativeUnit; |
| |
| static inline constexpr int64_t PlusInfinityVal() { |
| return std::numeric_limits<int64_t>::max(); |
| } |
| static inline constexpr int64_t MinusInfinityVal() { |
| return std::numeric_limits<int64_t>::min(); |
| } |
| |
| constexpr Unit_T& AsSubClassRef() { return static_cast<Unit_T&>(*this); } |
| constexpr const Unit_T& AsSubClassRef() const { |
| return static_cast<const Unit_T&>(*this); |
| } |
| |
| int64_t value_; |
| }; |
| |
| // Extends UnitBase to provide operations for relative units, that is, units |
| // that have a meaningful relation between values such that a += b is a |
| // sensible thing to do. For a,b <- same unit. |
| template <class Unit_T> |
| class RelativeUnit : public UnitBase<Unit_T> { |
| public: |
| constexpr Unit_T Clamped(Unit_T min_value, Unit_T max_value) const { |
| return std::max(min_value, |
| std::min(UnitBase<Unit_T>::AsSubClassRef(), max_value)); |
| } |
| constexpr void Clamp(Unit_T min_value, Unit_T max_value) { |
| *this = Clamped(min_value, max_value); |
| } |
| constexpr Unit_T operator+(const Unit_T other) const { |
| if (this->IsPlusInfinity() || other.IsPlusInfinity()) { |
| RTC_DCHECK(!this->IsMinusInfinity()); |
| RTC_DCHECK(!other.IsMinusInfinity()); |
| return this->PlusInfinity(); |
| } else if (this->IsMinusInfinity() || other.IsMinusInfinity()) { |
| RTC_DCHECK(!this->IsPlusInfinity()); |
| RTC_DCHECK(!other.IsPlusInfinity()); |
| return this->MinusInfinity(); |
| } |
| return UnitBase<Unit_T>::FromValue(this->ToValue() + other.ToValue()); |
| } |
| constexpr Unit_T operator-(const Unit_T other) const { |
| if (this->IsPlusInfinity() || other.IsMinusInfinity()) { |
| RTC_DCHECK(!this->IsMinusInfinity()); |
| RTC_DCHECK(!other.IsPlusInfinity()); |
| return this->PlusInfinity(); |
| } else if (this->IsMinusInfinity() || other.IsPlusInfinity()) { |
| RTC_DCHECK(!this->IsPlusInfinity()); |
| RTC_DCHECK(!other.IsMinusInfinity()); |
| return this->MinusInfinity(); |
| } |
| return UnitBase<Unit_T>::FromValue(this->ToValue() - other.ToValue()); |
| } |
| constexpr Unit_T& operator+=(const Unit_T other) { |
| *this = *this + other; |
| return this->AsSubClassRef(); |
| } |
| constexpr Unit_T& operator-=(const Unit_T other) { |
| *this = *this - other; |
| return this->AsSubClassRef(); |
| } |
| constexpr double operator/(const Unit_T other) const { |
| return UnitBase<Unit_T>::template ToValue<double>() / |
| other.template ToValue<double>(); |
| } |
| template <typename T, |
| typename std::enable_if_t<std::is_floating_point_v<T>>* = nullptr> |
| constexpr Unit_T operator/(T scalar) const { |
| return UnitBase<Unit_T>::FromValue(std::llround(this->ToValue() / scalar)); |
| } |
| template <typename T, |
| typename std::enable_if_t<std::is_integral_v<T>>* = nullptr> |
| constexpr Unit_T operator/(T scalar) const { |
| return UnitBase<Unit_T>::FromValue(this->ToValue() / scalar); |
| } |
| constexpr Unit_T operator*(double scalar) const { |
| return UnitBase<Unit_T>::FromValue(std::llround(this->ToValue() * scalar)); |
| } |
| constexpr Unit_T operator*(int64_t scalar) const { |
| return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar); |
| } |
| constexpr Unit_T operator*(int32_t scalar) const { |
| return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar); |
| } |
| constexpr Unit_T operator*(size_t scalar) const { |
| return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar); |
| } |
| |
| protected: |
| using UnitBase<Unit_T>::UnitBase; |
| constexpr RelativeUnit() : UnitBase<Unit_T>(0) {} |
| }; |
| |
| template <class Unit_T> |
| inline constexpr Unit_T operator*(double scalar, RelativeUnit<Unit_T> other) { |
| return other * scalar; |
| } |
| template <class Unit_T> |
| inline constexpr Unit_T operator*(int64_t scalar, RelativeUnit<Unit_T> other) { |
| return other * scalar; |
| } |
| template <class Unit_T> |
| inline constexpr Unit_T operator*(int32_t scalar, RelativeUnit<Unit_T> other) { |
| return other * scalar; |
| } |
| template <class Unit_T> |
| inline constexpr Unit_T operator*(size_t scalar, RelativeUnit<Unit_T> other) { |
| return other * scalar; |
| } |
| |
| template <class Unit_T> |
| inline constexpr Unit_T operator-(RelativeUnit<Unit_T> other) { |
| if (other.IsPlusInfinity()) |
| return UnitBase<Unit_T>::MinusInfinity(); |
| if (other.IsMinusInfinity()) |
| return UnitBase<Unit_T>::PlusInfinity(); |
| return -1 * other; |
| } |
| |
| } // namespace rtc_units_impl |
| |
| } // namespace webrtc |
| |
| #endif // RTC_BASE_UNITS_UNIT_BASE_H_ |