| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "p2p/client/basic_port_allocator.h" |
| |
| #include <algorithm> |
| #include <functional> |
| #include <memory> |
| #include <set> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/algorithm/container.h" |
| #include "absl/memory/memory.h" |
| #include "absl/strings/string_view.h" |
| #include "api/task_queue/pending_task_safety_flag.h" |
| #include "api/transport/field_trial_based_config.h" |
| #include "api/units/time_delta.h" |
| #include "p2p/base/basic_packet_socket_factory.h" |
| #include "p2p/base/port.h" |
| #include "p2p/base/stun_port.h" |
| #include "p2p/base/tcp_port.h" |
| #include "p2p/base/turn_port.h" |
| #include "p2p/base/udp_port.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/experiments/field_trial_parser.h" |
| #include "rtc_base/helpers.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/network_constants.h" |
| #include "rtc_base/strings/string_builder.h" |
| #include "rtc_base/trace_event.h" |
| #include "system_wrappers/include/metrics.h" |
| |
| namespace cricket { |
| namespace { |
| using ::rtc::CreateRandomId; |
| using ::webrtc::SafeTask; |
| using ::webrtc::TimeDelta; |
| |
| const int PHASE_UDP = 0; |
| const int PHASE_RELAY = 1; |
| const int PHASE_TCP = 2; |
| |
| const int kNumPhases = 3; |
| |
| // Gets protocol priority: UDP > TCP > SSLTCP == TLS. |
| int GetProtocolPriority(cricket::ProtocolType protocol) { |
| switch (protocol) { |
| case cricket::PROTO_UDP: |
| return 2; |
| case cricket::PROTO_TCP: |
| return 1; |
| case cricket::PROTO_SSLTCP: |
| case cricket::PROTO_TLS: |
| return 0; |
| default: |
| RTC_DCHECK_NOTREACHED(); |
| return 0; |
| } |
| } |
| // Gets address family priority: IPv6 > IPv4 > Unspecified. |
| int GetAddressFamilyPriority(int ip_family) { |
| switch (ip_family) { |
| case AF_INET6: |
| return 2; |
| case AF_INET: |
| return 1; |
| default: |
| RTC_DCHECK_NOTREACHED(); |
| return 0; |
| } |
| } |
| |
| // Returns positive if a is better, negative if b is better, and 0 otherwise. |
| int ComparePort(const cricket::Port* a, const cricket::Port* b) { |
| int a_protocol = GetProtocolPriority(a->GetProtocol()); |
| int b_protocol = GetProtocolPriority(b->GetProtocol()); |
| int cmp_protocol = a_protocol - b_protocol; |
| if (cmp_protocol != 0) { |
| return cmp_protocol; |
| } |
| |
| int a_family = GetAddressFamilyPriority(a->Network()->GetBestIP().family()); |
| int b_family = GetAddressFamilyPriority(b->Network()->GetBestIP().family()); |
| return a_family - b_family; |
| } |
| |
| struct NetworkFilter { |
| using Predicate = std::function<bool(const rtc::Network*)>; |
| NetworkFilter(Predicate pred, absl::string_view description) |
| : predRemain( |
| [pred](const rtc::Network* network) { return !pred(network); }), |
| description(description) {} |
| Predicate predRemain; |
| const std::string description; |
| }; |
| |
| void FilterNetworks(std::vector<const rtc::Network*>* networks, |
| NetworkFilter filter) { |
| auto start_to_remove = |
| std::partition(networks->begin(), networks->end(), filter.predRemain); |
| if (start_to_remove == networks->end()) { |
| return; |
| } |
| RTC_LOG(LS_INFO) << "Filtered out " << filter.description << " networks:"; |
| for (auto it = start_to_remove; it != networks->end(); ++it) { |
| RTC_LOG(LS_INFO) << (*it)->ToString(); |
| } |
| networks->erase(start_to_remove, networks->end()); |
| } |
| |
| bool IsAllowedByCandidateFilter(const Candidate& c, uint32_t filter) { |
| // When binding to any address, before sending packets out, the getsockname |
| // returns all 0s, but after sending packets, it'll be the NIC used to |
| // send. All 0s is not a valid ICE candidate address and should be filtered |
| // out. |
| if (c.address().IsAnyIP()) { |
| return false; |
| } |
| |
| if (c.is_relay()) { |
| return ((filter & CF_RELAY) != 0); |
| } |
| |
| if (c.is_stun()) { |
| return ((filter & CF_REFLEXIVE) != 0); |
| } |
| |
| if (c.is_local()) { |
| if ((filter & CF_REFLEXIVE) && !c.address().IsPrivateIP()) { |
| // We allow host candidates if the filter allows server-reflexive |
| // candidates and the candidate is a public IP. Because we don't generate |
| // server-reflexive candidates if they have the same IP as the host |
| // candidate (i.e. when the host candidate is a public IP), filtering to |
| // only server-reflexive candidates won't work right when the host |
| // candidates have public IPs. |
| return true; |
| } |
| |
| return ((filter & CF_HOST) != 0); |
| } |
| |
| return false; |
| } |
| |
| std::string NetworksToString(const std::vector<const rtc::Network*>& networks) { |
| rtc::StringBuilder ost; |
| for (auto n : networks) { |
| ost << n->name() << " "; |
| } |
| return ost.Release(); |
| } |
| |
| } // namespace |
| |
| const uint32_t DISABLE_ALL_PHASES = |
| PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_TCP | |
| PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY; |
| |
| // BasicPortAllocator |
| BasicPortAllocator::BasicPortAllocator( |
| rtc::NetworkManager* network_manager, |
| rtc::PacketSocketFactory* socket_factory, |
| webrtc::TurnCustomizer* customizer, |
| RelayPortFactoryInterface* relay_port_factory, |
| const webrtc::FieldTrialsView* field_trials) |
| : field_trials_(field_trials), |
| network_manager_(network_manager), |
| socket_factory_(socket_factory), |
| default_relay_port_factory_(relay_port_factory ? nullptr |
| : new TurnPortFactory()), |
| relay_port_factory_(relay_port_factory |
| ? relay_port_factory |
| : default_relay_port_factory_.get()) { |
| RTC_CHECK(socket_factory_); |
| RTC_DCHECK(relay_port_factory_); |
| RTC_DCHECK(network_manager_); |
| SetConfiguration(ServerAddresses(), std::vector<RelayServerConfig>(), 0, |
| webrtc::NO_PRUNE, customizer); |
| } |
| |
| BasicPortAllocator::BasicPortAllocator( |
| rtc::NetworkManager* network_manager, |
| rtc::PacketSocketFactory* socket_factory, |
| const ServerAddresses& stun_servers, |
| const webrtc::FieldTrialsView* field_trials) |
| : field_trials_(field_trials), |
| network_manager_(network_manager), |
| socket_factory_(socket_factory), |
| default_relay_port_factory_(new TurnPortFactory()), |
| relay_port_factory_(default_relay_port_factory_.get()) { |
| RTC_CHECK(socket_factory_); |
| RTC_DCHECK(relay_port_factory_); |
| RTC_DCHECK(network_manager_); |
| SetConfiguration(stun_servers, std::vector<RelayServerConfig>(), 0, |
| webrtc::NO_PRUNE, nullptr); |
| } |
| |
| BasicPortAllocator::~BasicPortAllocator() { |
| CheckRunOnValidThreadIfInitialized(); |
| // Our created port allocator sessions depend on us, so destroy our remaining |
| // pooled sessions before anything else. |
| DiscardCandidatePool(); |
| } |
| |
| void BasicPortAllocator::SetNetworkIgnoreMask(int network_ignore_mask) { |
| // TODO(phoglund): implement support for other types than loopback. |
| // See https://code.google.com/p/webrtc/issues/detail?id=4288. |
| // Then remove set_network_ignore_list from NetworkManager. |
| CheckRunOnValidThreadIfInitialized(); |
| network_ignore_mask_ = network_ignore_mask; |
| } |
| |
| int BasicPortAllocator::GetNetworkIgnoreMask() const { |
| CheckRunOnValidThreadIfInitialized(); |
| int mask = network_ignore_mask_; |
| switch (vpn_preference_) { |
| case webrtc::VpnPreference::kOnlyUseVpn: |
| mask |= ~static_cast<int>(rtc::ADAPTER_TYPE_VPN); |
| break; |
| case webrtc::VpnPreference::kNeverUseVpn: |
| mask |= static_cast<int>(rtc::ADAPTER_TYPE_VPN); |
| break; |
| default: |
| break; |
| } |
| return mask; |
| } |
| |
| PortAllocatorSession* BasicPortAllocator::CreateSessionInternal( |
| absl::string_view content_name, |
| int component, |
| absl::string_view ice_ufrag, |
| absl::string_view ice_pwd) { |
| CheckRunOnValidThreadAndInitialized(); |
| return new BasicPortAllocatorSession(this, std::string(content_name), |
| component, std::string(ice_ufrag), |
| std::string(ice_pwd)); |
| } |
| |
| void BasicPortAllocator::AddTurnServerForTesting( |
| const RelayServerConfig& turn_server) { |
| CheckRunOnValidThreadAndInitialized(); |
| std::vector<RelayServerConfig> new_turn_servers = turn_servers(); |
| new_turn_servers.push_back(turn_server); |
| SetConfiguration(stun_servers(), new_turn_servers, candidate_pool_size(), |
| turn_port_prune_policy(), turn_customizer()); |
| } |
| |
| // BasicPortAllocatorSession |
| BasicPortAllocatorSession::BasicPortAllocatorSession( |
| BasicPortAllocator* allocator, |
| absl::string_view content_name, |
| int component, |
| absl::string_view ice_ufrag, |
| absl::string_view ice_pwd) |
| : PortAllocatorSession(content_name, |
| component, |
| ice_ufrag, |
| ice_pwd, |
| allocator->flags()), |
| allocator_(allocator), |
| network_thread_(rtc::Thread::Current()), |
| socket_factory_(allocator->socket_factory()), |
| allocation_started_(false), |
| network_manager_started_(false), |
| allocation_sequences_created_(false), |
| turn_port_prune_policy_(allocator->turn_port_prune_policy()) { |
| TRACE_EVENT0("webrtc", |
| "BasicPortAllocatorSession::BasicPortAllocatorSession"); |
| allocator_->network_manager()->SignalNetworksChanged.connect( |
| this, &BasicPortAllocatorSession::OnNetworksChanged); |
| allocator_->network_manager()->StartUpdating(); |
| } |
| |
| BasicPortAllocatorSession::~BasicPortAllocatorSession() { |
| TRACE_EVENT0("webrtc", |
| "BasicPortAllocatorSession::~BasicPortAllocatorSession"); |
| RTC_DCHECK_RUN_ON(network_thread_); |
| allocator_->network_manager()->StopUpdating(); |
| |
| for (uint32_t i = 0; i < sequences_.size(); ++i) { |
| // AllocationSequence should clear it's map entry for turn ports before |
| // ports are destroyed. |
| sequences_[i]->Clear(); |
| } |
| |
| std::vector<PortData>::iterator it; |
| for (it = ports_.begin(); it != ports_.end(); it++) |
| delete it->port(); |
| |
| configs_.clear(); |
| |
| for (uint32_t i = 0; i < sequences_.size(); ++i) |
| delete sequences_[i]; |
| } |
| |
| BasicPortAllocator* BasicPortAllocatorSession::allocator() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| return allocator_; |
| } |
| |
| void BasicPortAllocatorSession::SetCandidateFilter(uint32_t filter) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| if (filter == candidate_filter_) { |
| return; |
| } |
| uint32_t prev_filter = candidate_filter_; |
| candidate_filter_ = filter; |
| for (PortData& port_data : ports_) { |
| if (port_data.error() || port_data.pruned()) { |
| continue; |
| } |
| PortData::State cur_state = port_data.state(); |
| bool found_signalable_candidate = false; |
| bool found_pairable_candidate = false; |
| cricket::Port* port = port_data.port(); |
| for (const auto& c : port->Candidates()) { |
| if (!IsStopped() && !IsAllowedByCandidateFilter(c, prev_filter) && |
| IsAllowedByCandidateFilter(c, filter)) { |
| // This candidate was not signaled because of not matching the previous |
| // filter (see OnCandidateReady below). Let the Port to fire the signal |
| // again. |
| // |
| // Note that |
| // 1) we would need the Port to enter the state of in-progress of |
| // gathering to have candidates signaled; |
| // |
| // 2) firing the signal would also let the session set the port ready |
| // if needed, so that we could form candidate pairs with candidates |
| // from this port; |
| // |
| // * See again OnCandidateReady below for 1) and 2). |
| // |
| // 3) we only try to resurface candidates if we have not stopped |
| // getting ports, which is always true for the continual gathering. |
| if (!found_signalable_candidate) { |
| found_signalable_candidate = true; |
| port_data.set_state(PortData::STATE_INPROGRESS); |
| } |
| port->SignalCandidateReady(port, c); |
| } |
| |
| if (CandidatePairable(c, port)) { |
| found_pairable_candidate = true; |
| } |
| } |
| // Restore the previous state. |
| port_data.set_state(cur_state); |
| // Setting a filter may cause a ready port to become non-ready |
| // if it no longer has any pairable candidates. |
| // |
| // Note that we only set for the negative case here, since a port would be |
| // set to have pairable candidates when it signals a ready candidate, which |
| // requires the port is still in the progress of gathering/surfacing |
| // candidates, and would be done in the firing of the signal above. |
| if (!found_pairable_candidate) { |
| port_data.set_has_pairable_candidate(false); |
| } |
| } |
| } |
| |
| void BasicPortAllocatorSession::StartGettingPorts() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| state_ = SessionState::GATHERING; |
| |
| network_thread_->PostTask( |
| SafeTask(network_safety_.flag(), [this] { GetPortConfigurations(); })); |
| |
| RTC_LOG(LS_INFO) << "Start getting ports with turn_port_prune_policy " |
| << turn_port_prune_policy_; |
| } |
| |
| void BasicPortAllocatorSession::StopGettingPorts() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| ClearGettingPorts(); |
| // Note: this must be called after ClearGettingPorts because both may set the |
| // session state and we should set the state to STOPPED. |
| state_ = SessionState::STOPPED; |
| } |
| |
| void BasicPortAllocatorSession::ClearGettingPorts() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| ++allocation_epoch_; |
| for (uint32_t i = 0; i < sequences_.size(); ++i) { |
| sequences_[i]->Stop(); |
| } |
| network_thread_->PostTask( |
| SafeTask(network_safety_.flag(), [this] { OnConfigStop(); })); |
| state_ = SessionState::CLEARED; |
| } |
| |
| bool BasicPortAllocatorSession::IsGettingPorts() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| return state_ == SessionState::GATHERING; |
| } |
| |
| bool BasicPortAllocatorSession::IsCleared() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| return state_ == SessionState::CLEARED; |
| } |
| |
| bool BasicPortAllocatorSession::IsStopped() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| return state_ == SessionState::STOPPED; |
| } |
| |
| std::vector<const rtc::Network*> |
| BasicPortAllocatorSession::GetFailedNetworks() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| |
| std::vector<const rtc::Network*> networks = GetNetworks(); |
| // A network interface may have both IPv4 and IPv6 networks. Only if |
| // neither of the networks has any connections, the network interface |
| // is considered failed and need to be regathered on. |
| std::set<std::string> networks_with_connection; |
| for (const PortData& data : ports_) { |
| Port* port = data.port(); |
| if (!port->connections().empty()) { |
| networks_with_connection.insert(port->Network()->name()); |
| } |
| } |
| |
| networks.erase( |
| std::remove_if(networks.begin(), networks.end(), |
| [networks_with_connection](const rtc::Network* network) { |
| // If a network does not have any connection, it is |
| // considered failed. |
| return networks_with_connection.find(network->name()) != |
| networks_with_connection.end(); |
| }), |
| networks.end()); |
| return networks; |
| } |
| |
| void BasicPortAllocatorSession::RegatherOnFailedNetworks() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| |
| // Find the list of networks that have no connection. |
| std::vector<const rtc::Network*> failed_networks = GetFailedNetworks(); |
| if (failed_networks.empty()) { |
| return; |
| } |
| |
| RTC_LOG(LS_INFO) << "Regather candidates on failed networks"; |
| |
| // Mark a sequence as "network failed" if its network is in the list of failed |
| // networks, so that it won't be considered as equivalent when the session |
| // regathers ports and candidates. |
| for (AllocationSequence* sequence : sequences_) { |
| if (!sequence->network_failed() && |
| absl::c_linear_search(failed_networks, sequence->network())) { |
| sequence->set_network_failed(); |
| } |
| } |
| |
| bool disable_equivalent_phases = true; |
| Regather(failed_networks, disable_equivalent_phases, |
| IceRegatheringReason::NETWORK_FAILURE); |
| } |
| |
| void BasicPortAllocatorSession::Regather( |
| const std::vector<const rtc::Network*>& networks, |
| bool disable_equivalent_phases, |
| IceRegatheringReason reason) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| // Remove ports from being used locally and send signaling to remove |
| // the candidates on the remote side. |
| std::vector<PortData*> ports_to_prune = GetUnprunedPorts(networks); |
| if (!ports_to_prune.empty()) { |
| RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size() << " ports"; |
| PrunePortsAndRemoveCandidates(ports_to_prune); |
| } |
| |
| if (allocation_started_ && network_manager_started_ && !IsStopped()) { |
| SignalIceRegathering(this, reason); |
| |
| DoAllocate(disable_equivalent_phases); |
| } |
| } |
| |
| void BasicPortAllocatorSession::GetCandidateStatsFromReadyPorts( |
| CandidateStatsList* candidate_stats_list) const { |
| auto ports = ReadyPorts(); |
| for (auto* port : ports) { |
| auto candidates = port->Candidates(); |
| for (const auto& candidate : candidates) { |
| absl::optional<StunStats> stun_stats; |
| port->GetStunStats(&stun_stats); |
| CandidateStats candidate_stats(allocator_->SanitizeCandidate(candidate), |
| std::move(stun_stats)); |
| candidate_stats_list->push_back(std::move(candidate_stats)); |
| } |
| } |
| } |
| |
| void BasicPortAllocatorSession::SetStunKeepaliveIntervalForReadyPorts( |
| const absl::optional<int>& stun_keepalive_interval) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| auto ports = ReadyPorts(); |
| for (PortInterface* port : ports) { |
| // The port type and protocol can be used to identify different subclasses |
| // of Port in the current implementation. Note that a TCPPort has the type |
| // LOCAL_PORT_TYPE but uses the protocol PROTO_TCP. |
| if (port->Type() == STUN_PORT_TYPE || |
| (port->Type() == LOCAL_PORT_TYPE && port->GetProtocol() == PROTO_UDP)) { |
| static_cast<UDPPort*>(port)->set_stun_keepalive_delay( |
| stun_keepalive_interval); |
| } |
| } |
| } |
| |
| std::vector<PortInterface*> BasicPortAllocatorSession::ReadyPorts() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| std::vector<PortInterface*> ret; |
| for (const PortData& data : ports_) { |
| if (data.ready()) { |
| ret.push_back(data.port()); |
| } |
| } |
| return ret; |
| } |
| |
| std::vector<Candidate> BasicPortAllocatorSession::ReadyCandidates() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| std::vector<Candidate> candidates; |
| for (const PortData& data : ports_) { |
| if (!data.ready()) { |
| continue; |
| } |
| GetCandidatesFromPort(data, &candidates); |
| } |
| return candidates; |
| } |
| |
| void BasicPortAllocatorSession::GetCandidatesFromPort( |
| const PortData& data, |
| std::vector<Candidate>* candidates) const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| RTC_CHECK(candidates != nullptr); |
| for (const Candidate& candidate : data.port()->Candidates()) { |
| if (!CheckCandidateFilter(candidate)) { |
| continue; |
| } |
| candidates->push_back(allocator_->SanitizeCandidate(candidate)); |
| } |
| } |
| |
| bool BasicPortAllocator::MdnsObfuscationEnabled() const { |
| return network_manager()->GetMdnsResponder() != nullptr; |
| } |
| |
| bool BasicPortAllocatorSession::CandidatesAllocationDone() const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| // Done only if all required AllocationSequence objects |
| // are created. |
| if (!allocation_sequences_created_) { |
| return false; |
| } |
| |
| // Check that all port allocation sequences are complete (not running). |
| if (absl::c_any_of(sequences_, [](const AllocationSequence* sequence) { |
| return sequence->state() == AllocationSequence::kRunning; |
| })) { |
| return false; |
| } |
| |
| // If all allocated ports are no longer gathering, session must have got all |
| // expected candidates. Session will trigger candidates allocation complete |
| // signal. |
| return absl::c_none_of( |
| ports_, [](const PortData& port) { return port.inprogress(); }); |
| } |
| |
| void BasicPortAllocatorSession::UpdateIceParametersInternal() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| for (PortData& port : ports_) { |
| port.port()->set_content_name(content_name()); |
| port.port()->SetIceParameters(component(), ice_ufrag(), ice_pwd()); |
| } |
| } |
| |
| void BasicPortAllocatorSession::GetPortConfigurations() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| |
| auto config = std::make_unique<PortConfiguration>( |
| allocator_->stun_servers(), username(), password(), |
| allocator()->field_trials()); |
| |
| for (const RelayServerConfig& turn_server : allocator_->turn_servers()) { |
| config->AddRelay(turn_server); |
| } |
| ConfigReady(std::move(config)); |
| } |
| |
| void BasicPortAllocatorSession::ConfigReady(PortConfiguration* config) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| ConfigReady(absl::WrapUnique(config)); |
| } |
| |
| void BasicPortAllocatorSession::ConfigReady( |
| std::unique_ptr<PortConfiguration> config) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| network_thread_->PostTask(SafeTask( |
| network_safety_.flag(), [this, config = std::move(config)]() mutable { |
| OnConfigReady(std::move(config)); |
| })); |
| } |
| |
| // Adds a configuration to the list. |
| void BasicPortAllocatorSession::OnConfigReady( |
| std::unique_ptr<PortConfiguration> config) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| if (config) |
| configs_.push_back(std::move(config)); |
| |
| AllocatePorts(); |
| } |
| |
| void BasicPortAllocatorSession::OnConfigStop() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| |
| // If any of the allocated ports have not completed the candidates allocation, |
| // mark those as error. Since session doesn't need any new candidates |
| // at this stage of the allocation, it's safe to discard any new candidates. |
| bool send_signal = false; |
| for (std::vector<PortData>::iterator it = ports_.begin(); it != ports_.end(); |
| ++it) { |
| if (it->inprogress()) { |
| // Updating port state to error, which didn't finish allocating candidates |
| // yet. |
| it->set_state(PortData::STATE_ERROR); |
| send_signal = true; |
| } |
| } |
| |
| // Did we stop any running sequences? |
| for (std::vector<AllocationSequence*>::iterator it = sequences_.begin(); |
| it != sequences_.end() && !send_signal; ++it) { |
| if ((*it)->state() == AllocationSequence::kStopped) { |
| send_signal = true; |
| } |
| } |
| |
| // If we stopped anything that was running, send a done signal now. |
| if (send_signal) { |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| } |
| |
| void BasicPortAllocatorSession::AllocatePorts() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| network_thread_->PostTask(SafeTask( |
| network_safety_.flag(), [this, allocation_epoch = allocation_epoch_] { |
| OnAllocate(allocation_epoch); |
| })); |
| } |
| |
| void BasicPortAllocatorSession::OnAllocate(int allocation_epoch) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| if (allocation_epoch != allocation_epoch_) |
| return; |
| |
| if (network_manager_started_ && !IsStopped()) { |
| bool disable_equivalent_phases = true; |
| DoAllocate(disable_equivalent_phases); |
| } |
| |
| allocation_started_ = true; |
| } |
| |
| std::vector<const rtc::Network*> BasicPortAllocatorSession::GetNetworks() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| std::vector<const rtc::Network*> networks; |
| rtc::NetworkManager* network_manager = allocator_->network_manager(); |
| RTC_DCHECK(network_manager != nullptr); |
| // If the network permission state is BLOCKED, we just act as if the flag has |
| // been passed in. |
| if (network_manager->enumeration_permission() == |
| rtc::NetworkManager::ENUMERATION_BLOCKED) { |
| set_flags(flags() | PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION); |
| } |
| // If the adapter enumeration is disabled, we'll just bind to any address |
| // instead of specific NIC. This is to ensure the same routing for http |
| // traffic by OS is also used here to avoid any local or public IP leakage |
| // during stun process. |
| if (flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) { |
| networks = network_manager->GetAnyAddressNetworks(); |
| } else { |
| networks = network_manager->GetNetworks(); |
| // If network enumeration fails, use the ANY address as a fallback, so we |
| // can at least try gathering candidates using the default route chosen by |
| // the OS. Or, if the PORTALLOCATOR_ENABLE_ANY_ADDRESS_PORTS flag is |
| // set, we'll use ANY address candidates either way. |
| if (networks.empty() || |
| (flags() & PORTALLOCATOR_ENABLE_ANY_ADDRESS_PORTS)) { |
| std::vector<const rtc::Network*> any_address_networks = |
| network_manager->GetAnyAddressNetworks(); |
| networks.insert(networks.end(), any_address_networks.begin(), |
| any_address_networks.end()); |
| } |
| RTC_LOG(LS_INFO) << "Count of networks: " << networks.size(); |
| for (const rtc::Network* network : networks) { |
| RTC_LOG(LS_INFO) << network->ToString(); |
| } |
| } |
| // Filter out link-local networks if needed. |
| if (flags() & PORTALLOCATOR_DISABLE_LINK_LOCAL_NETWORKS) { |
| NetworkFilter link_local_filter( |
| [](const rtc::Network* network) { |
| return IPIsLinkLocal(network->prefix()); |
| }, |
| "link-local"); |
| FilterNetworks(&networks, link_local_filter); |
| } |
| // Do some more filtering, depending on the network ignore mask and "disable |
| // costly networks" flag. |
| NetworkFilter ignored_filter( |
| [this](const rtc::Network* network) { |
| return allocator_->GetNetworkIgnoreMask() & network->type(); |
| }, |
| "ignored"); |
| FilterNetworks(&networks, ignored_filter); |
| if (flags() & PORTALLOCATOR_DISABLE_COSTLY_NETWORKS) { |
| uint16_t lowest_cost = rtc::kNetworkCostMax; |
| for (const rtc::Network* network : networks) { |
| // Don't determine the lowest cost from a link-local network. |
| // On iOS, a device connected to the computer will get a link-local |
| // network for communicating with the computer, however this network can't |
| // be used to connect to a peer outside the network. |
| if (rtc::IPIsLinkLocal(network->GetBestIP())) { |
| continue; |
| } |
| lowest_cost = std::min<uint16_t>( |
| lowest_cost, network->GetCost(*allocator()->field_trials())); |
| } |
| NetworkFilter costly_filter( |
| [lowest_cost, this](const rtc::Network* network) { |
| return network->GetCost(*allocator()->field_trials()) > |
| lowest_cost + rtc::kNetworkCostLow; |
| }, |
| "costly"); |
| FilterNetworks(&networks, costly_filter); |
| } |
| |
| // Lastly, if we have a limit for the number of IPv6 network interfaces (by |
| // default, it's 5), pick IPv6 networks from different interfaces in a |
| // priority order and stick to the limit. |
| std::vector<const rtc::Network*> ipv6_networks; |
| for (auto it = networks.begin(); it != networks.end();) { |
| if ((*it)->prefix().family() == AF_INET6) { |
| ipv6_networks.push_back(*it); |
| it = networks.erase(it); |
| continue; |
| } |
| ++it; |
| } |
| ipv6_networks = |
| SelectIPv6Networks(ipv6_networks, allocator_->max_ipv6_networks()); |
| networks.insert(networks.end(), ipv6_networks.begin(), ipv6_networks.end()); |
| return networks; |
| } |
| |
| std::vector<const rtc::Network*> BasicPortAllocatorSession::SelectIPv6Networks( |
| std::vector<const rtc::Network*>& all_ipv6_networks, |
| int max_ipv6_networks) { |
| if (static_cast<int>(all_ipv6_networks.size()) <= max_ipv6_networks) { |
| return all_ipv6_networks; |
| } |
| // Adapter types are placed in priority order. Cellular type is an alias of |
| // cellular, 2G..5G types. |
| std::vector<rtc::AdapterType> adapter_types = { |
| rtc::ADAPTER_TYPE_ETHERNET, rtc::ADAPTER_TYPE_LOOPBACK, |
| rtc::ADAPTER_TYPE_WIFI, rtc::ADAPTER_TYPE_CELLULAR, |
| rtc::ADAPTER_TYPE_VPN, rtc::ADAPTER_TYPE_UNKNOWN, |
| rtc::ADAPTER_TYPE_ANY}; |
| int adapter_types_cnt = adapter_types.size(); |
| std::vector<const rtc::Network*> selected_networks; |
| int adapter_types_pos = 0; |
| |
| while (static_cast<int>(selected_networks.size()) < max_ipv6_networks && |
| adapter_types_pos < adapter_types_cnt * max_ipv6_networks) { |
| int network_pos = 0; |
| while (network_pos < static_cast<int>(all_ipv6_networks.size())) { |
| if (adapter_types[adapter_types_pos % adapter_types_cnt] == |
| all_ipv6_networks[network_pos]->type() || |
| (adapter_types[adapter_types_pos % adapter_types_cnt] == |
| rtc::ADAPTER_TYPE_CELLULAR && |
| all_ipv6_networks[network_pos]->IsCellular())) { |
| selected_networks.push_back(all_ipv6_networks[network_pos]); |
| all_ipv6_networks.erase(all_ipv6_networks.begin() + network_pos); |
| break; |
| } |
| network_pos++; |
| } |
| adapter_types_pos++; |
| } |
| |
| return selected_networks; |
| } |
| |
| // For each network, see if we have a sequence that covers it already. If not, |
| // create a new sequence to create the appropriate ports. |
| void BasicPortAllocatorSession::DoAllocate(bool disable_equivalent) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| bool done_signal_needed = false; |
| std::vector<const rtc::Network*> networks = GetNetworks(); |
| if (networks.empty()) { |
| RTC_LOG(LS_WARNING) |
| << "Machine has no networks; no ports will be allocated"; |
| done_signal_needed = true; |
| } else { |
| RTC_LOG(LS_INFO) << "Allocate ports on " << NetworksToString(networks); |
| PortConfiguration* config = |
| configs_.empty() ? nullptr : configs_.back().get(); |
| for (uint32_t i = 0; i < networks.size(); ++i) { |
| uint32_t sequence_flags = flags(); |
| if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) { |
| // If all the ports are disabled we should just fire the allocation |
| // done event and return. |
| done_signal_needed = true; |
| break; |
| } |
| |
| if (!config || config->relays.empty()) { |
| // No relay ports specified in this config. |
| sequence_flags |= PORTALLOCATOR_DISABLE_RELAY; |
| } |
| |
| if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6) && |
| networks[i]->GetBestIP().family() == AF_INET6) { |
| // Skip IPv6 networks unless the flag's been set. |
| continue; |
| } |
| |
| if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6_ON_WIFI) && |
| networks[i]->GetBestIP().family() == AF_INET6 && |
| networks[i]->type() == rtc::ADAPTER_TYPE_WIFI) { |
| // Skip IPv6 Wi-Fi networks unless the flag's been set. |
| continue; |
| } |
| |
| if (disable_equivalent) { |
| // Disable phases that would only create ports equivalent to |
| // ones that we have already made. |
| DisableEquivalentPhases(networks[i], config, &sequence_flags); |
| |
| if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) { |
| // New AllocationSequence would have nothing to do, so don't make it. |
| continue; |
| } |
| } |
| |
| AllocationSequence* sequence = |
| new AllocationSequence(this, networks[i], config, sequence_flags, |
| [this, safety_flag = network_safety_.flag()] { |
| if (safety_flag->alive()) |
| OnPortAllocationComplete(); |
| }); |
| sequence->Init(); |
| sequence->Start(); |
| sequences_.push_back(sequence); |
| done_signal_needed = true; |
| } |
| } |
| if (done_signal_needed) { |
| network_thread_->PostTask(SafeTask(network_safety_.flag(), [this] { |
| OnAllocationSequenceObjectsCreated(); |
| })); |
| } |
| } |
| |
| void BasicPortAllocatorSession::OnNetworksChanged() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| std::vector<const rtc::Network*> networks = GetNetworks(); |
| std::vector<const rtc::Network*> failed_networks; |
| for (AllocationSequence* sequence : sequences_) { |
| // Mark the sequence as "network failed" if its network is not in |
| // `networks`. |
| if (!sequence->network_failed() && |
| !absl::c_linear_search(networks, sequence->network())) { |
| sequence->OnNetworkFailed(); |
| failed_networks.push_back(sequence->network()); |
| } |
| } |
| std::vector<PortData*> ports_to_prune = GetUnprunedPorts(failed_networks); |
| if (!ports_to_prune.empty()) { |
| RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size() |
| << " ports because their networks were gone"; |
| PrunePortsAndRemoveCandidates(ports_to_prune); |
| } |
| |
| if (allocation_started_ && !IsStopped()) { |
| if (network_manager_started_) { |
| // If the network manager has started, it must be regathering. |
| SignalIceRegathering(this, IceRegatheringReason::NETWORK_CHANGE); |
| } |
| bool disable_equivalent_phases = true; |
| DoAllocate(disable_equivalent_phases); |
| } |
| |
| if (!network_manager_started_) { |
| RTC_LOG(LS_INFO) << "Network manager has started"; |
| network_manager_started_ = true; |
| } |
| } |
| |
| void BasicPortAllocatorSession::DisableEquivalentPhases( |
| const rtc::Network* network, |
| PortConfiguration* config, |
| uint32_t* flags) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| for (uint32_t i = 0; i < sequences_.size() && |
| (*flags & DISABLE_ALL_PHASES) != DISABLE_ALL_PHASES; |
| ++i) { |
| sequences_[i]->DisableEquivalentPhases(network, config, flags); |
| } |
| } |
| |
| void BasicPortAllocatorSession::AddAllocatedPort(Port* port, |
| AllocationSequence* seq) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| if (!port) |
| return; |
| |
| RTC_LOG(LS_INFO) << "Adding allocated port for " << content_name(); |
| port->set_content_name(content_name()); |
| port->set_component(component()); |
| port->set_generation(generation()); |
| if (allocator_->proxy().type != rtc::PROXY_NONE) |
| port->set_proxy(allocator_->user_agent(), allocator_->proxy()); |
| port->set_send_retransmit_count_attribute( |
| (flags() & PORTALLOCATOR_ENABLE_STUN_RETRANSMIT_ATTRIBUTE) != 0); |
| |
| PortData data(port, seq); |
| ports_.push_back(data); |
| |
| port->SignalCandidateReady.connect( |
| this, &BasicPortAllocatorSession::OnCandidateReady); |
| port->SignalCandidateError.connect( |
| this, &BasicPortAllocatorSession::OnCandidateError); |
| port->SignalPortComplete.connect(this, |
| &BasicPortAllocatorSession::OnPortComplete); |
| port->SubscribePortDestroyed( |
| [this](PortInterface* port) { OnPortDestroyed(port); }); |
| |
| port->SignalPortError.connect(this, &BasicPortAllocatorSession::OnPortError); |
| RTC_LOG(LS_INFO) << port->ToString() << ": Added port to allocator"; |
| |
| port->PrepareAddress(); |
| } |
| |
| void BasicPortAllocatorSession::OnAllocationSequenceObjectsCreated() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| allocation_sequences_created_ = true; |
| // Send candidate allocation complete signal if we have no sequences. |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| |
| void BasicPortAllocatorSession::OnCandidateReady(Port* port, |
| const Candidate& c) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| PortData* data = FindPort(port); |
| RTC_DCHECK(data != NULL); |
| RTC_LOG(LS_INFO) << port->ToString() |
| << ": Gathered candidate: " << c.ToSensitiveString(); |
| // Discarding any candidate signal if port allocation status is |
| // already done with gathering. |
| if (!data->inprogress()) { |
| RTC_LOG(LS_WARNING) |
| << "Discarding candidate because port is already done gathering."; |
| return; |
| } |
| |
| // Mark that the port has a pairable candidate, either because we have a |
| // usable candidate from the port, or simply because the port is bound to the |
| // any address and therefore has no host candidate. This will trigger the port |
| // to start creating candidate pairs (connections) and issue connectivity |
| // checks. If port has already been marked as having a pairable candidate, |
| // do nothing here. |
| // Note: We should check whether any candidates may become ready after this |
| // because there we will check whether the candidate is generated by the ready |
| // ports, which may include this port. |
| bool pruned = false; |
| if (CandidatePairable(c, port) && !data->has_pairable_candidate()) { |
| data->set_has_pairable_candidate(true); |
| |
| if (port->Type() == RELAY_PORT_TYPE) { |
| if (turn_port_prune_policy_ == webrtc::KEEP_FIRST_READY) { |
| pruned = PruneNewlyPairableTurnPort(data); |
| } else if (turn_port_prune_policy_ == webrtc::PRUNE_BASED_ON_PRIORITY) { |
| pruned = PruneTurnPorts(port); |
| } |
| } |
| |
| // If the current port is not pruned yet, SignalPortReady. |
| if (!data->pruned()) { |
| RTC_LOG(LS_INFO) << port->ToString() << ": Port ready."; |
| SignalPortReady(this, port); |
| port->KeepAliveUntilPruned(); |
| } |
| } |
| |
| if (data->ready() && CheckCandidateFilter(c)) { |
| std::vector<Candidate> candidates; |
| candidates.push_back(allocator_->SanitizeCandidate(c)); |
| SignalCandidatesReady(this, candidates); |
| } else { |
| RTC_LOG(LS_INFO) << "Discarding candidate because it doesn't match filter."; |
| } |
| |
| // If we have pruned any port, maybe need to signal port allocation done. |
| if (pruned) { |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| } |
| |
| void BasicPortAllocatorSession::OnCandidateError( |
| Port* port, |
| const IceCandidateErrorEvent& event) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| RTC_DCHECK(FindPort(port)); |
| if (event.address.empty()) { |
| candidate_error_events_.push_back(event); |
| } else { |
| SignalCandidateError(this, event); |
| } |
| } |
| |
| Port* BasicPortAllocatorSession::GetBestTurnPortForNetwork( |
| absl::string_view network_name) const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| Port* best_turn_port = nullptr; |
| for (const PortData& data : ports_) { |
| if (data.port()->Network()->name() == network_name && |
| data.port()->Type() == RELAY_PORT_TYPE && data.ready() && |
| (!best_turn_port || ComparePort(data.port(), best_turn_port) > 0)) { |
| best_turn_port = data.port(); |
| } |
| } |
| return best_turn_port; |
| } |
| |
| bool BasicPortAllocatorSession::PruneNewlyPairableTurnPort( |
| PortData* newly_pairable_port_data) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| RTC_DCHECK(newly_pairable_port_data->port()->Type() == RELAY_PORT_TYPE); |
| // If an existing turn port is ready on the same network, prune the newly |
| // pairable port. |
| const std::string& network_name = |
| newly_pairable_port_data->port()->Network()->name(); |
| |
| for (PortData& data : ports_) { |
| if (data.port()->Network()->name() == network_name && |
| data.port()->Type() == RELAY_PORT_TYPE && data.ready() && |
| &data != newly_pairable_port_data) { |
| RTC_LOG(LS_INFO) << "Port pruned: " |
| << newly_pairable_port_data->port()->ToString(); |
| newly_pairable_port_data->Prune(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool BasicPortAllocatorSession::PruneTurnPorts(Port* newly_pairable_turn_port) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| // Note: We determine the same network based only on their network names. So |
| // if an IPv4 address and an IPv6 address have the same network name, they |
| // are considered the same network here. |
| const std::string& network_name = newly_pairable_turn_port->Network()->name(); |
| Port* best_turn_port = GetBestTurnPortForNetwork(network_name); |
| // `port` is already in the list of ports, so the best port cannot be nullptr. |
| RTC_CHECK(best_turn_port != nullptr); |
| |
| bool pruned = false; |
| std::vector<PortData*> ports_to_prune; |
| for (PortData& data : ports_) { |
| if (data.port()->Network()->name() == network_name && |
| data.port()->Type() == RELAY_PORT_TYPE && !data.pruned() && |
| ComparePort(data.port(), best_turn_port) < 0) { |
| pruned = true; |
| if (data.port() != newly_pairable_turn_port) { |
| // These ports will be pruned in PrunePortsAndRemoveCandidates. |
| ports_to_prune.push_back(&data); |
| } else { |
| data.Prune(); |
| } |
| } |
| } |
| |
| if (!ports_to_prune.empty()) { |
| RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size() |
| << " low-priority TURN ports"; |
| PrunePortsAndRemoveCandidates(ports_to_prune); |
| } |
| return pruned; |
| } |
| |
| void BasicPortAllocatorSession::PruneAllPorts() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| for (PortData& data : ports_) { |
| data.Prune(); |
| } |
| } |
| |
| void BasicPortAllocatorSession::OnPortComplete(Port* port) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| RTC_LOG(LS_INFO) << port->ToString() |
| << ": Port completed gathering candidates."; |
| PortData* data = FindPort(port); |
| RTC_DCHECK(data != NULL); |
| |
| // Ignore any late signals. |
| if (!data->inprogress()) { |
| return; |
| } |
| |
| // Moving to COMPLETE state. |
| data->set_state(PortData::STATE_COMPLETE); |
| // Send candidate allocation complete signal if this was the last port. |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| |
| void BasicPortAllocatorSession::OnPortError(Port* port) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| RTC_LOG(LS_INFO) << port->ToString() |
| << ": Port encountered error while gathering candidates."; |
| PortData* data = FindPort(port); |
| RTC_DCHECK(data != NULL); |
| // We might have already given up on this port and stopped it. |
| if (!data->inprogress()) { |
| return; |
| } |
| |
| // SignalAddressError is currently sent from StunPort/TurnPort. |
| // But this signal itself is generic. |
| data->set_state(PortData::STATE_ERROR); |
| // Send candidate allocation complete signal if this was the last port. |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| |
| bool BasicPortAllocatorSession::CheckCandidateFilter(const Candidate& c) const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| |
| return IsAllowedByCandidateFilter(c, candidate_filter_); |
| } |
| |
| bool BasicPortAllocatorSession::CandidatePairable(const Candidate& c, |
| const Port* port) const { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| |
| bool candidate_signalable = CheckCandidateFilter(c); |
| |
| // When device enumeration is disabled (to prevent non-default IP addresses |
| // from leaking), we ping from some local candidates even though we don't |
| // signal them. However, if host candidates are also disabled (for example, to |
| // prevent even default IP addresses from leaking), we still don't want to |
| // ping from them, even if device enumeration is disabled. Thus, we check for |
| // both device enumeration and host candidates being disabled. |
| bool network_enumeration_disabled = c.address().IsAnyIP(); |
| bool can_ping_from_candidate = |
| (port->SharedSocket() || c.protocol() == TCP_PROTOCOL_NAME); |
| bool host_candidates_disabled = !(candidate_filter_ & CF_HOST); |
| |
| return candidate_signalable || |
| (network_enumeration_disabled && can_ping_from_candidate && |
| !host_candidates_disabled); |
| } |
| |
| void BasicPortAllocatorSession::OnPortAllocationComplete() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| // Send candidate allocation complete signal if all ports are done. |
| MaybeSignalCandidatesAllocationDone(); |
| } |
| |
| void BasicPortAllocatorSession::MaybeSignalCandidatesAllocationDone() { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| if (CandidatesAllocationDone()) { |
| if (pooled()) { |
| RTC_LOG(LS_INFO) << "All candidates gathered for pooled session."; |
| } else { |
| RTC_LOG(LS_INFO) << "All candidates gathered for " << content_name() |
| << ":" << component() << ":" << generation(); |
| } |
| for (const auto& event : candidate_error_events_) { |
| SignalCandidateError(this, event); |
| } |
| candidate_error_events_.clear(); |
| SignalCandidatesAllocationDone(this); |
| } |
| } |
| |
| void BasicPortAllocatorSession::OnPortDestroyed(PortInterface* port) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| for (std::vector<PortData>::iterator iter = ports_.begin(); |
| iter != ports_.end(); ++iter) { |
| if (port == iter->port()) { |
| ports_.erase(iter); |
| RTC_LOG(LS_INFO) << port->ToString() << ": Removed port from allocator (" |
| << static_cast<int>(ports_.size()) << " remaining)"; |
| return; |
| } |
| } |
| RTC_DCHECK_NOTREACHED(); |
| } |
| |
| BasicPortAllocatorSession::PortData* BasicPortAllocatorSession::FindPort( |
| Port* port) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| for (std::vector<PortData>::iterator it = ports_.begin(); it != ports_.end(); |
| ++it) { |
| if (it->port() == port) { |
| return &*it; |
| } |
| } |
| return NULL; |
| } |
| |
| std::vector<BasicPortAllocatorSession::PortData*> |
| BasicPortAllocatorSession::GetUnprunedPorts( |
| const std::vector<const rtc::Network*>& networks) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| std::vector<PortData*> unpruned_ports; |
| for (PortData& port : ports_) { |
| if (!port.pruned() && |
| absl::c_linear_search(networks, port.sequence()->network())) { |
| unpruned_ports.push_back(&port); |
| } |
| } |
| return unpruned_ports; |
| } |
| |
| void BasicPortAllocatorSession::PrunePortsAndRemoveCandidates( |
| const std::vector<PortData*>& port_data_list) { |
| RTC_DCHECK_RUN_ON(network_thread_); |
| std::vector<PortInterface*> pruned_ports; |
| std::vector<Candidate> removed_candidates; |
| for (PortData* data : port_data_list) { |
| // Prune the port so that it may be destroyed. |
| data->Prune(); |
| pruned_ports.push_back(data->port()); |
| if (data->has_pairable_candidate()) { |
| GetCandidatesFromPort(*data, &removed_candidates); |
| // Mark the port as having no pairable candidates so that its candidates |
| // won't be removed multiple times. |
| data->set_has_pairable_candidate(false); |
| } |
| } |
| if (!pruned_ports.empty()) { |
| SignalPortsPruned(this, pruned_ports); |
| } |
| if (!removed_candidates.empty()) { |
| RTC_LOG(LS_INFO) << "Removed " << removed_candidates.size() |
| << " candidates"; |
| SignalCandidatesRemoved(this, removed_candidates); |
| } |
| } |
| |
| void BasicPortAllocator::SetVpnList( |
| const std::vector<rtc::NetworkMask>& vpn_list) { |
| network_manager_->set_vpn_list(vpn_list); |
| } |
| |
| // AllocationSequence |
| |
| AllocationSequence::AllocationSequence( |
| BasicPortAllocatorSession* session, |
| const rtc::Network* network, |
| PortConfiguration* config, |
| uint32_t flags, |
| std::function<void()> port_allocation_complete_callback) |
| : session_(session), |
| network_(network), |
| config_(config), |
| state_(kInit), |
| flags_(flags), |
| udp_socket_(), |
| udp_port_(NULL), |
| phase_(0), |
| port_allocation_complete_callback_( |
| std::move(port_allocation_complete_callback)) {} |
| |
| void AllocationSequence::Init() { |
| if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { |
| udp_socket_.reset(session_->socket_factory()->CreateUdpSocket( |
| rtc::SocketAddress(network_->GetBestIP(), 0), |
| session_->allocator()->min_port(), session_->allocator()->max_port())); |
| if (udp_socket_) { |
| udp_socket_->RegisterReceivedPacketCallback( |
| [&](rtc::AsyncPacketSocket* socket, |
| const rtc::ReceivedPacket& packet) { |
| OnReadPacket(socket, packet); |
| }); |
| } |
| // Continuing if `udp_socket_` is NULL, as local TCP and RelayPort using TCP |
| // are next available options to setup a communication channel. |
| } |
| } |
| |
| void AllocationSequence::Clear() { |
| TRACE_EVENT0("webrtc", "AllocationSequence::Clear"); |
| udp_port_ = NULL; |
| relay_ports_.clear(); |
| } |
| |
| void AllocationSequence::OnNetworkFailed() { |
| RTC_DCHECK(!network_failed_); |
| network_failed_ = true; |
| // Stop the allocation sequence if its network failed. |
| Stop(); |
| } |
| |
| void AllocationSequence::DisableEquivalentPhases(const rtc::Network* network, |
| PortConfiguration* config, |
| uint32_t* flags) { |
| if (network_failed_) { |
| // If the network of this allocation sequence has ever become failed, |
| // it won't be equivalent to the new network. |
| return; |
| } |
| |
| if (!((network == network_) && (previous_best_ip_ == network->GetBestIP()))) { |
| // Different network setup; nothing is equivalent. |
| return; |
| } |
| |
| // Else turn off the stuff that we've already got covered. |
| |
| // Every config implicitly specifies local, so turn that off right away if we |
| // already have a port of the corresponding type. Look for a port that |
| // matches this AllocationSequence's network, is the right protocol, and |
| // hasn't encountered an error. |
| // TODO(deadbeef): This doesn't take into account that there may be another |
| // AllocationSequence that's ABOUT to allocate a UDP port, but hasn't yet. |
| // This can happen if, say, there's a network change event right before an |
| // application-triggered ICE restart. Hopefully this problem will just go |
| // away if we get rid of the gathering "phases" though, which is planned. |
| // |
| // |
| // PORTALLOCATOR_DISABLE_UDP is used to disable a Port from gathering the host |
| // candidate (and srflx candidate if Port::SharedSocket()), and we do not want |
| // to disable the gathering of these candidates just becaue of an existing |
| // Port over PROTO_UDP, namely a TurnPort over UDP. |
| if (absl::c_any_of(session_->ports_, |
| [this](const BasicPortAllocatorSession::PortData& p) { |
| return !p.pruned() && p.port()->Network() == network_ && |
| p.port()->GetProtocol() == PROTO_UDP && |
| p.port()->Type() == LOCAL_PORT_TYPE && !p.error(); |
| })) { |
| *flags |= PORTALLOCATOR_DISABLE_UDP; |
| } |
| // Similarly we need to check both the protocol used by an existing Port and |
| // its type. |
| if (absl::c_any_of(session_->ports_, |
| [this](const BasicPortAllocatorSession::PortData& p) { |
| return !p.pruned() && p.port()->Network() == network_ && |
| p.port()->GetProtocol() == PROTO_TCP && |
| p.port()->Type() == LOCAL_PORT_TYPE && !p.error(); |
| })) { |
| *flags |= PORTALLOCATOR_DISABLE_TCP; |
| } |
| |
| if (config_ && config) { |
| // We need to regather srflx candidates if either of the following |
| // conditions occurs: |
| // 1. The STUN servers are different from the previous gathering. |
| // 2. We will regather host candidates, hence possibly inducing new NAT |
| // bindings. |
| if (config_->StunServers() == config->StunServers() && |
| (*flags & PORTALLOCATOR_DISABLE_UDP)) { |
| // Already got this STUN servers covered. |
| *flags |= PORTALLOCATOR_DISABLE_STUN; |
| } |
| if (!config_->relays.empty()) { |
| // Already got relays covered. |
| // NOTE: This will even skip a _different_ set of relay servers if we |
| // were to be given one, but that never happens in our codebase. Should |
| // probably get rid of the list in PortConfiguration and just keep a |
| // single relay server in each one. |
| *flags |= PORTALLOCATOR_DISABLE_RELAY; |
| } |
| } |
| } |
| |
| void AllocationSequence::Start() { |
| state_ = kRunning; |
| |
| session_->network_thread()->PostTask( |
| SafeTask(safety_.flag(), [this, epoch = epoch_] { Process(epoch); })); |
| // Take a snapshot of the best IP, so that when DisableEquivalentPhases is |
| // called next time, we enable all phases if the best IP has since changed. |
| previous_best_ip_ = network_->GetBestIP(); |
| } |
| |
| void AllocationSequence::Stop() { |
| // If the port is completed, don't set it to stopped. |
| if (state_ == kRunning) { |
| state_ = kStopped; |
| // Cause further Process calls in the previous epoch to be ignored. |
| ++epoch_; |
| } |
| } |
| |
| void AllocationSequence::Process(int epoch) { |
| RTC_DCHECK(rtc::Thread::Current() == session_->network_thread()); |
| const char* const PHASE_NAMES[kNumPhases] = {"Udp", "Relay", "Tcp"}; |
| |
| if (epoch != epoch_) |
| return; |
| |
| // Perform all of the phases in the current step. |
| RTC_LOG(LS_INFO) << network_->ToString() |
| << ": Allocation Phase=" << PHASE_NAMES[phase_]; |
| |
| switch (phase_) { |
| case PHASE_UDP: |
| CreateUDPPorts(); |
| CreateStunPorts(); |
| break; |
| |
| case PHASE_RELAY: |
| CreateRelayPorts(); |
| break; |
| |
| case PHASE_TCP: |
| CreateTCPPorts(); |
| state_ = kCompleted; |
| break; |
| |
| default: |
| RTC_DCHECK_NOTREACHED(); |
| } |
| |
| if (state() == kRunning) { |
| ++phase_; |
| session_->network_thread()->PostDelayedTask( |
| SafeTask(safety_.flag(), [this, epoch = epoch_] { Process(epoch); }), |
| TimeDelta::Millis(session_->allocator()->step_delay())); |
| } else { |
| // No allocation steps needed further if all phases in AllocationSequence |
| // are completed. Cause further Process calls in the previous epoch to be |
| // ignored. |
| ++epoch_; |
| port_allocation_complete_callback_(); |
| } |
| } |
| |
| void AllocationSequence::CreateUDPPorts() { |
| if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP)) { |
| RTC_LOG(LS_VERBOSE) << "AllocationSequence: UDP ports disabled, skipping."; |
| return; |
| } |
| |
| // TODO(mallinath) - Remove UDPPort creating socket after shared socket |
| // is enabled completely. |
| std::unique_ptr<UDPPort> port; |
| bool emit_local_candidate_for_anyaddress = |
| !IsFlagSet(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE); |
| if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && udp_socket_) { |
| port = UDPPort::Create( |
| session_->network_thread(), session_->socket_factory(), network_, |
| udp_socket_.get(), session_->username(), session_->password(), |
| emit_local_candidate_for_anyaddress, |
| session_->allocator()->stun_candidate_keepalive_interval(), |
| session_->allocator()->field_trials()); |
| } else { |
| port = UDPPort::Create( |
| session_->network_thread(), session_->socket_factory(), network_, |
| session_->allocator()->min_port(), session_->allocator()->max_port(), |
| session_->username(), session_->password(), |
| emit_local_candidate_for_anyaddress, |
| session_->allocator()->stun_candidate_keepalive_interval(), |
| session_->allocator()->field_trials()); |
| } |
| |
| if (port) { |
| port->SetIceTiebreaker(session_->ice_tiebreaker()); |
| // If shared socket is enabled, STUN candidate will be allocated by the |
| // UDPPort. |
| if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { |
| udp_port_ = port.get(); |
| port->SubscribePortDestroyed( |
| [this](PortInterface* port) { OnPortDestroyed(port); }); |
| |
| // If STUN is not disabled, setting stun server address to port. |
| if (!IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) { |
| if (config_ && !config_->StunServers().empty()) { |
| RTC_LOG(LS_INFO) |
| << "AllocationSequence: UDPPort will be handling the " |
| "STUN candidate generation."; |
| port->set_server_addresses(config_->StunServers()); |
| } |
| } |
| } |
| |
| session_->AddAllocatedPort(port.release(), this); |
| } |
| } |
| |
| void AllocationSequence::CreateTCPPorts() { |
| if (IsFlagSet(PORTALLOCATOR_DISABLE_TCP)) { |
| RTC_LOG(LS_VERBOSE) << "AllocationSequence: TCP ports disabled, skipping."; |
| return; |
| } |
| |
| std::unique_ptr<Port> port = TCPPort::Create( |
| session_->network_thread(), session_->socket_factory(), network_, |
| session_->allocator()->min_port(), session_->allocator()->max_port(), |
| session_->username(), session_->password(), |
| session_->allocator()->allow_tcp_listen(), |
| session_->allocator()->field_trials()); |
| if (port) { |
| port->SetIceTiebreaker(session_->ice_tiebreaker()); |
| session_->AddAllocatedPort(port.release(), this); |
| // Since TCPPort is not created using shared socket, `port` will not be |
| // added to the dequeue. |
| } |
| } |
| |
| void AllocationSequence::CreateStunPorts() { |
| if (IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) { |
| RTC_LOG(LS_VERBOSE) << "AllocationSequence: STUN ports disabled, skipping."; |
| return; |
| } |
| |
| if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) { |
| return; |
| } |
| |
| if (!(config_ && !config_->StunServers().empty())) { |
| RTC_LOG(LS_WARNING) |
| << "AllocationSequence: No STUN server configured, skipping."; |
| return; |
| } |
| |
| std::unique_ptr<StunPort> port = StunPort::Create( |
| session_->network_thread(), session_->socket_factory(), network_, |
| session_->allocator()->min_port(), session_->allocator()->max_port(), |
| session_->username(), session_->password(), config_->StunServers(), |
| session_->allocator()->stun_candidate_keepalive_interval(), |
| session_->allocator()->field_trials()); |
| if (port) { |
| port->SetIceTiebreaker(session_->ice_tiebreaker()); |
| session_->AddAllocatedPort(port.release(), this); |
| // Since StunPort is not created using shared socket, `port` will not be |
| // added to the dequeue. |
| } |
| } |
| |
| void AllocationSequence::CreateRelayPorts() { |
| if (IsFlagSet(PORTALLOCATOR_DISABLE_RELAY)) { |
| RTC_LOG(LS_VERBOSE) |
| << "AllocationSequence: Relay ports disabled, skipping."; |
| return; |
| } |
| |
| // If BasicPortAllocatorSession::OnAllocate left relay ports enabled then we |
| // ought to have a relay list for them here. |
| RTC_DCHECK(config_); |
| RTC_DCHECK(!config_->relays.empty()); |
| if (!(config_ && !config_->relays.empty())) { |
| RTC_LOG(LS_WARNING) |
| << "AllocationSequence: No relay server configured, skipping."; |
| return; |
| } |
| |
| // Relative priority of candidates from this TURN server in relation |
| // to the candidates from other servers. Required because ICE priorities |
| // need to be unique. |
| int relative_priority = config_->relays.size(); |
| for (RelayServerConfig& relay : config_->relays) { |
| CreateTurnPort(relay, relative_priority--); |
| } |
| } |
| |
| void AllocationSequence::CreateTurnPort(const RelayServerConfig& config, |
| int relative_priority) { |
| PortList::const_iterator relay_port; |
| for (relay_port = config.ports.begin(); relay_port != config.ports.end(); |
| ++relay_port) { |
| // Skip UDP connections to relay servers if it's disallowed. |
| if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP_RELAY) && |
| relay_port->proto == PROTO_UDP) { |
| continue; |
| } |
| |
| // Do not create a port if the server address family is known and does |
| // not match the local IP address family. |
| int server_ip_family = relay_port->address.ipaddr().family(); |
| int local_ip_family = network_->GetBestIP().family(); |
| if (server_ip_family != AF_UNSPEC && server_ip_family != local_ip_family) { |
| RTC_LOG(LS_INFO) |
| << "Server and local address families are not compatible. " |
| "Server address: " |
| << relay_port->address.ipaddr().ToSensitiveString() |
| << " Local address: " << network_->GetBestIP().ToSensitiveString(); |
| continue; |
| } |
| |
| CreateRelayPortArgs args; |
| args.network_thread = session_->network_thread(); |
| args.socket_factory = session_->socket_factory(); |
| args.network = network_; |
| args.username = session_->username(); |
| args.password = session_->password(); |
| args.server_address = &(*relay_port); |
| args.config = &config; |
| args.turn_customizer = session_->allocator()->turn_customizer(); |
| args.field_trials = session_->allocator()->field_trials(); |
| args.relative_priority = relative_priority; |
| |
| std::unique_ptr<cricket::Port> port; |
| // Shared socket mode must be enabled only for UDP based ports. Hence |
| // don't pass shared socket for ports which will create TCP sockets. |
| // TODO(mallinath) - Enable shared socket mode for TURN ports. Disabled |
| // due to webrtc bug https://code.google.com/p/webrtc/issues/detail?id=3537 |
| if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && |
| relay_port->proto == PROTO_UDP && udp_socket_) { |
| port = session_->allocator()->relay_port_factory()->Create( |
| args, udp_socket_.get()); |
| |
| if (!port) { |
| RTC_LOG(LS_WARNING) << "Failed to create relay port with " |
| << args.server_address->address.ToSensitiveString(); |
| continue; |
| } |
| |
| relay_ports_.push_back(port.get()); |
| // Listen to the port destroyed signal, to allow AllocationSequence to |
| // remove the entry from it's map. |
| port->SubscribePortDestroyed( |
| [this](PortInterface* port) { OnPortDestroyed(port); }); |
| |
| } else { |
| port = session_->allocator()->relay_port_factory()->Create( |
| args, session_->allocator()->min_port(), |
| session_->allocator()->max_port()); |
| |
| if (!port) { |
| RTC_LOG(LS_WARNING) << "Failed to create relay port with " |
| << args.server_address->address.ToSensitiveString(); |
| continue; |
| } |
| } |
| RTC_DCHECK(port != NULL); |
| port->SetIceTiebreaker(session_->ice_tiebreaker()); |
| session_->AddAllocatedPort(port.release(), this); |
| } |
| } |
| |
| void AllocationSequence::OnReadPacket(rtc::AsyncPacketSocket* socket, |
| const rtc::ReceivedPacket& packet) { |
| RTC_DCHECK(socket == udp_socket_.get()); |
| |
| bool turn_port_found = false; |
| |
| // Try to find the TurnPort that matches the remote address. Note that the |
| // message could be a STUN binding response if the TURN server is also used as |
| // a STUN server. We don't want to parse every message here to check if it is |
| // a STUN binding response, so we pass the message to TurnPort regardless of |
| // the message type. The TurnPort will just ignore the message since it will |
| // not find any request by transaction ID. |
| for (auto* port : relay_ports_) { |
| if (port->CanHandleIncomingPacketsFrom(packet.source_address())) { |
| if (port->HandleIncomingPacket(socket, packet)) { |
| return; |
| } |
| turn_port_found = true; |
| } |
| } |
| |
| if (udp_port_) { |
| const ServerAddresses& stun_servers = udp_port_->server_addresses(); |
| |
| // Pass the packet to the UdpPort if there is no matching TurnPort, or if |
| // the TURN server is also a STUN server. |
| if (!turn_port_found || |
| stun_servers.find(packet.source_address()) != stun_servers.end()) { |
| RTC_DCHECK(udp_port_->SharedSocket()); |
| udp_port_->HandleIncomingPacket(socket, packet); |
| } |
| } |
| } |
| |
| void AllocationSequence::OnPortDestroyed(PortInterface* port) { |
| if (udp_port_ == port) { |
| udp_port_ = NULL; |
| return; |
| } |
| |
| auto it = absl::c_find(relay_ports_, port); |
| if (it != relay_ports_.end()) { |
| relay_ports_.erase(it); |
| } else { |
| RTC_LOG(LS_ERROR) << "Unexpected OnPortDestroyed for nonexistent port."; |
| RTC_DCHECK_NOTREACHED(); |
| } |
| } |
| |
| PortConfiguration::PortConfiguration( |
| const ServerAddresses& stun_servers, |
| absl::string_view username, |
| absl::string_view password, |
| const webrtc::FieldTrialsView* field_trials) |
| : stun_servers(stun_servers), username(username), password(password) { |
| if (!stun_servers.empty()) |
| stun_address = *(stun_servers.begin()); |
| // Note that this won't change once the config is initialized. |
| if (field_trials) { |
| use_turn_server_as_stun_server_disabled = |
| field_trials->IsDisabled("WebRTC-UseTurnServerAsStunServer"); |
| } |
| } |
| |
| ServerAddresses PortConfiguration::StunServers() { |
| if (!stun_address.IsNil() && |
| stun_servers.find(stun_address) == stun_servers.end()) { |
| stun_servers.insert(stun_address); |
| } |
| |
| if (!stun_servers.empty() && use_turn_server_as_stun_server_disabled) { |
| return stun_servers; |
| } |
| |
| // Every UDP TURN server should also be used as a STUN server if |
| // use_turn_server_as_stun_server is not disabled or the stun servers are |
| // empty. |
| ServerAddresses turn_servers = GetRelayServerAddresses(PROTO_UDP); |
| for (const rtc::SocketAddress& turn_server : turn_servers) { |
| if (stun_servers.find(turn_server) == stun_servers.end()) { |
| stun_servers.insert(turn_server); |
| } |
| } |
| return stun_servers; |
| } |
| |
| void PortConfiguration::AddRelay(const RelayServerConfig& config) { |
| relays.push_back(config); |
| } |
| |
| bool PortConfiguration::SupportsProtocol(const RelayServerConfig& relay, |
| ProtocolType type) const { |
| PortList::const_iterator relay_port; |
| for (relay_port = relay.ports.begin(); relay_port != relay.ports.end(); |
| ++relay_port) { |
| if (relay_port->proto == type) |
| return true; |
| } |
| return false; |
| } |
| |
| bool PortConfiguration::SupportsProtocol(ProtocolType type) const { |
| for (size_t i = 0; i < relays.size(); ++i) { |
| if (SupportsProtocol(relays[i], type)) |
| return true; |
| } |
| return false; |
| } |
| |
| ServerAddresses PortConfiguration::GetRelayServerAddresses( |
| ProtocolType type) const { |
| ServerAddresses servers; |
| for (size_t i = 0; i < relays.size(); ++i) { |
| if (SupportsProtocol(relays[i], type)) { |
| servers.insert(relays[i].ports.front().address); |
| } |
| } |
| return servers; |
| } |
| |
| } // namespace cricket |