| /* |
| * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/ns/wiener_filter.h" |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <algorithm> |
| |
| #include "modules/audio_processing/ns/fast_math.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| |
| WienerFilter::WienerFilter(const SuppressionParams& suppression_params) |
| : suppression_params_(suppression_params) { |
| filter_.fill(1.f); |
| initial_spectral_estimate_.fill(0.f); |
| spectrum_prev_process_.fill(0.f); |
| } |
| |
| void WienerFilter::Update( |
| int32_t num_analyzed_frames, |
| rtc::ArrayView<const float, kFftSizeBy2Plus1> noise_spectrum, |
| rtc::ArrayView<const float, kFftSizeBy2Plus1> prev_noise_spectrum, |
| rtc::ArrayView<const float, kFftSizeBy2Plus1> parametric_noise_spectrum, |
| rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) { |
| for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) { |
| // Previous estimate based on previous frame with gain filter. |
| float prev_tsa = spectrum_prev_process_[i] / |
| (prev_noise_spectrum[i] + 0.0001f) * filter_[i]; |
| |
| // Current estimate. |
| float current_tsa; |
| if (signal_spectrum[i] > noise_spectrum[i]) { |
| current_tsa = signal_spectrum[i] / (noise_spectrum[i] + 0.0001f) - 1.f; |
| } else { |
| current_tsa = 0.f; |
| } |
| |
| // Directed decision estimate is sum of two terms: current estimate and |
| // previous estimate. |
| float snr_prior = 0.98f * prev_tsa + (1.f - 0.98f) * current_tsa; |
| filter_[i] = |
| snr_prior / (suppression_params_.over_subtraction_factor + snr_prior); |
| filter_[i] = std::max(std::min(filter_[i], 1.f), |
| suppression_params_.minimum_attenuating_gain); |
| } |
| |
| if (num_analyzed_frames < kShortStartupPhaseBlocks) { |
| for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) { |
| initial_spectral_estimate_[i] += signal_spectrum[i]; |
| float filter_initial = initial_spectral_estimate_[i] - |
| suppression_params_.over_subtraction_factor * |
| parametric_noise_spectrum[i]; |
| filter_initial /= initial_spectral_estimate_[i] + 0.0001f; |
| |
| filter_initial = std::max(std::min(filter_initial, 1.f), |
| suppression_params_.minimum_attenuating_gain); |
| |
| // Weight the two suppression filters. |
| constexpr float kOnyByShortStartupPhaseBlocks = |
| 1.f / kShortStartupPhaseBlocks; |
| filter_initial *= kShortStartupPhaseBlocks - num_analyzed_frames; |
| filter_[i] *= num_analyzed_frames; |
| filter_[i] += filter_initial; |
| filter_[i] *= kOnyByShortStartupPhaseBlocks; |
| } |
| } |
| |
| std::copy(signal_spectrum.begin(), signal_spectrum.end(), |
| spectrum_prev_process_.begin()); |
| } |
| |
| float WienerFilter::ComputeOverallScalingFactor( |
| int32_t num_analyzed_frames, |
| float prior_speech_probability, |
| float energy_before_filtering, |
| float energy_after_filtering) const { |
| if (!suppression_params_.use_attenuation_adjustment || |
| num_analyzed_frames <= kLongStartupPhaseBlocks) { |
| return 1.f; |
| } |
| |
| float gain = SqrtFastApproximation(energy_after_filtering / |
| (energy_before_filtering + 1.f)); |
| |
| // Scaling for new version. Threshold in final energy gain factor calculation. |
| constexpr float kBLim = 0.5f; |
| float scale_factor1 = 1.f; |
| if (gain > kBLim) { |
| scale_factor1 = 1.f + 1.3f * (gain - kBLim); |
| if (gain * scale_factor1 > 1.f) { |
| scale_factor1 = 1.f / gain; |
| } |
| } |
| |
| float scale_factor2 = 1.f; |
| if (gain < kBLim) { |
| // Do not reduce scale too much for pause regions: attenuation here should |
| // be controlled by flooring. |
| gain = std::max(gain, suppression_params_.minimum_attenuating_gain); |
| scale_factor2 = 1.f - 0.3f * (kBLim - gain); |
| } |
| |
| // Combine both scales with speech/noise prob: note prior |
| // (prior_speech_probability) is not frequency dependent. |
| return prior_speech_probability * scale_factor1 + |
| (1.f - prior_speech_probability) * scale_factor2; |
| } |
| |
| } // namespace webrtc |