blob: ff1f4d80e5fc360713423228d7aa7c5a373223e7 [file] [log] [blame]
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/adaptation/overuse_frame_detector.h"
#include <memory>
#include "api/field_trials_view.h"
#include "api/video/encoded_image.h"
#include "api/video/i420_buffer.h"
#include "api/video/video_adaptation_reason.h"
#include "modules/video_coding/utility/quality_scaler.h"
#include "rtc_base/event.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/random.h"
#include "rtc_base/task_queue_for_test.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/scoped_key_value_config.h"
namespace webrtc {
using ::testing::_;
using ::testing::InvokeWithoutArgs;
namespace {
const int kWidth = 640;
const int kHeight = 480;
// Corresponds to load of 15%
const int kFrameIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
const int kProcessTimeUs = 5 * rtc::kNumMicrosecsPerMillisec;
const test::ScopedKeyValueConfig kFieldTrials;
} // namespace
class MockCpuOveruseObserver : public OveruseFrameDetectorObserverInterface {
public:
MockCpuOveruseObserver() {}
virtual ~MockCpuOveruseObserver() {}
MOCK_METHOD(void, AdaptUp, (), (override));
MOCK_METHOD(void, AdaptDown, (), (override));
};
class CpuOveruseObserverImpl : public OveruseFrameDetectorObserverInterface {
public:
CpuOveruseObserverImpl() : overuse_(0), normaluse_(0) {}
virtual ~CpuOveruseObserverImpl() {}
void AdaptDown() override { ++overuse_; }
void AdaptUp() override { ++normaluse_; }
int overuse_;
int normaluse_;
};
class OveruseFrameDetectorUnderTest : public OveruseFrameDetector {
public:
explicit OveruseFrameDetectorUnderTest(
CpuOveruseMetricsObserver* metrics_observer)
: OveruseFrameDetector(metrics_observer, kFieldTrials) {}
~OveruseFrameDetectorUnderTest() {}
using OveruseFrameDetector::CheckForOveruse;
using OveruseFrameDetector::SetOptions;
};
class OveruseFrameDetectorTest : public ::testing::Test,
public CpuOveruseMetricsObserver {
protected:
OveruseFrameDetectorTest() : options_(kFieldTrials) {}
void SetUp() override {
observer_ = &mock_observer_;
options_.min_process_count = 0;
overuse_detector_ = std::make_unique<OveruseFrameDetectorUnderTest>(this);
// Unfortunately, we can't call SetOptions here, since that would break
// single-threading requirements in the RunOnTqNormalUsage test.
}
void OnEncodedFrameTimeMeasured(int encode_time_ms,
int encode_usage_percent) override {
encode_usage_percent_ = encode_usage_percent;
}
int InitialUsage() {
return ((options_.low_encode_usage_threshold_percent +
options_.high_encode_usage_threshold_percent) /
2.0f) +
0.5;
}
virtual void InsertAndSendFramesWithInterval(int num_frames,
int interval_us,
int width,
int height,
int delay_us) {
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Create(width, height))
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build();
uint32_t timestamp = 0;
while (num_frames-- > 0) {
frame.set_timestamp(timestamp);
int64_t capture_time_us = rtc::TimeMicros();
overuse_detector_->FrameCaptured(frame, capture_time_us);
clock_.AdvanceTime(TimeDelta::Micros(delay_us));
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(),
capture_time_us, delay_us);
clock_.AdvanceTime(TimeDelta::Micros(interval_us - delay_us));
timestamp += interval_us * 90 / 1000;
}
}
virtual void InsertAndSendSimulcastFramesWithInterval(
int num_frames,
int interval_us,
int width,
int height,
// One element per layer
rtc::ArrayView<const int> delays_us) {
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Create(width, height))
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build();
uint32_t timestamp = 0;
while (num_frames-- > 0) {
frame.set_timestamp(timestamp);
int64_t capture_time_us = rtc::TimeMicros();
overuse_detector_->FrameCaptured(frame, capture_time_us);
int max_delay_us = 0;
for (int delay_us : delays_us) {
if (delay_us > max_delay_us) {
clock_.AdvanceTime(TimeDelta::Micros(delay_us - max_delay_us));
max_delay_us = delay_us;
}
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(),
capture_time_us, delay_us);
}
overuse_detector_->CheckForOveruse(observer_);
clock_.AdvanceTime(TimeDelta::Micros(interval_us - max_delay_us));
timestamp += interval_us * 90 / 1000;
}
}
virtual void InsertAndSendFramesWithRandomInterval(int num_frames,
int min_interval_us,
int max_interval_us,
int width,
int height,
int delay_us) {
webrtc::Random random(17);
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Create(width, height))
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build();
uint32_t timestamp = 0;
while (num_frames-- > 0) {
frame.set_timestamp(timestamp);
int interval_us = random.Rand(min_interval_us, max_interval_us);
int64_t capture_time_us = rtc::TimeMicros();
overuse_detector_->FrameCaptured(frame, capture_time_us);
clock_.AdvanceTime(TimeDelta::Micros(delay_us));
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(),
capture_time_us,
absl::optional<int>(delay_us));
overuse_detector_->CheckForOveruse(observer_);
// Avoid turning clock backwards.
if (interval_us > delay_us)
clock_.AdvanceTime(TimeDelta::Micros(interval_us - delay_us));
timestamp += interval_us * 90 / 1000;
}
}
virtual void ForceUpdate(int width, int height) {
// Insert one frame, wait a second and then put in another to force update
// the usage. From the tests where these are used, adding another sample
// doesn't affect the expected outcome (this is mainly to check initial
// values and whether the overuse detector has been reset or not).
InsertAndSendFramesWithInterval(2, rtc::kNumMicrosecsPerSec, width, height,
kFrameIntervalUs);
}
void TriggerOveruse(int num_times) {
const int kDelayUs = 32 * rtc::kNumMicrosecsPerMillisec;
for (int i = 0; i < num_times; ++i) {
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
kDelayUs);
overuse_detector_->CheckForOveruse(observer_);
}
}
void TriggerUnderuse() {
const int kDelayUs1 = 5000;
const int kDelayUs2 = 6000;
InsertAndSendFramesWithInterval(1300, kFrameIntervalUs, kWidth, kHeight,
kDelayUs1);
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
kDelayUs2);
overuse_detector_->CheckForOveruse(observer_);
}
int UsagePercent() { return encode_usage_percent_; }
int64_t OveruseProcessingTimeLimitForFramerate(int fps) const {
int64_t frame_interval = rtc::kNumMicrosecsPerSec / fps;
int64_t max_processing_time_us =
(frame_interval * options_.high_encode_usage_threshold_percent) / 100;
return max_processing_time_us;
}
int64_t UnderuseProcessingTimeLimitForFramerate(int fps) const {
int64_t frame_interval = rtc::kNumMicrosecsPerSec / fps;
int64_t max_processing_time_us =
(frame_interval * options_.low_encode_usage_threshold_percent) / 100;
return max_processing_time_us;
}
CpuOveruseOptions options_;
rtc::ScopedFakeClock clock_;
MockCpuOveruseObserver mock_observer_;
OveruseFrameDetectorObserverInterface* observer_;
std::unique_ptr<OveruseFrameDetectorUnderTest> overuse_detector_;
int encode_usage_percent_ = -1;
};
// UsagePercent() > high_encode_usage_threshold_percent => overuse.
// UsagePercent() < low_encode_usage_threshold_percent => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruse) {
// usage > high => overuse
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecover) {
// usage > high => overuse
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(2);
TriggerOveruse(options_.high_threshold_consecutive_count);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, TriggerUnderuseWithMinProcessCount) {
const int kProcessIntervalUs = 5 * rtc::kNumMicrosecsPerSec;
options_.min_process_count = 1;
CpuOveruseObserverImpl overuse_observer;
observer_ = nullptr;
overuse_detector_->SetOptions(options_);
InsertAndSendFramesWithInterval(1200, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
overuse_detector_->CheckForOveruse(&overuse_observer);
EXPECT_EQ(0, overuse_observer.normaluse_);
clock_.AdvanceTime(TimeDelta::Micros(kProcessIntervalUs));
overuse_detector_->CheckForOveruse(&overuse_observer);
EXPECT_EQ(1, overuse_observer.normaluse_);
}
TEST_F(OveruseFrameDetectorTest, ConstantOveruseGivesNoNormalUsage) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptUp()).Times(0);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(64);
for (size_t i = 0; i < 64; ++i) {
TriggerOveruse(options_.high_threshold_consecutive_count);
}
}
TEST_F(OveruseFrameDetectorTest, ConsecutiveCountTriggersOveruse) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
options_.high_threshold_consecutive_count = 2;
overuse_detector_->SetOptions(options_);
TriggerOveruse(2);
}
TEST_F(OveruseFrameDetectorTest, IncorrectConsecutiveCountTriggersNoOveruse) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
options_.high_threshold_consecutive_count = 2;
overuse_detector_->SetOptions(options_);
TriggerOveruse(1);
}
TEST_F(OveruseFrameDetectorTest, ProcessingUsage) {
overuse_detector_->SetOptions(options_);
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
EXPECT_EQ(kProcessTimeUs * 100 / kFrameIntervalUs, UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, ResetAfterResolutionChange) {
overuse_detector_->SetOptions(options_);
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
EXPECT_NE(InitialUsage(), UsagePercent());
// Verify reset (with new width/height).
ForceUpdate(kWidth, kHeight + 1);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, ResetAfterFrameTimeout) {
overuse_detector_->SetOptions(options_);
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
EXPECT_NE(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
2, options_.frame_timeout_interval_ms * rtc::kNumMicrosecsPerMillisec,
kWidth, kHeight, kProcessTimeUs);
EXPECT_NE(InitialUsage(), UsagePercent());
// Verify reset.
InsertAndSendFramesWithInterval(
2,
(options_.frame_timeout_interval_ms + 1) * rtc::kNumMicrosecsPerMillisec,
kWidth, kHeight, kProcessTimeUs);
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, MinFrameSamplesBeforeUpdating) {
options_.min_frame_samples = 40;
overuse_detector_->SetOptions(options_);
InsertAndSendFramesWithInterval(40, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
EXPECT_EQ(InitialUsage(), UsagePercent());
// Pass time far enough to digest all previous samples.
clock_.AdvanceTime(TimeDelta::Seconds(1));
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
// The last sample has not been processed here.
EXPECT_EQ(InitialUsage(), UsagePercent());
// Pass time far enough to digest all previous samples, 41 in total.
clock_.AdvanceTime(TimeDelta::Seconds(1));
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
EXPECT_NE(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, InitialProcessingUsage) {
overuse_detector_->SetOptions(options_);
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, MeasuresMultipleConcurrentSamples) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1));
static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
static const size_t kNumFramesEncodingDelay = 3;
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight))
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build();
for (size_t i = 0; i < 1000; ++i) {
// Unique timestamps.
frame.set_timestamp(static_cast<uint32_t>(i));
int64_t capture_time_us = rtc::TimeMicros();
overuse_detector_->FrameCaptured(frame, capture_time_us);
clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs));
if (i > kNumFramesEncodingDelay) {
overuse_detector_->FrameSent(
static_cast<uint32_t>(i - kNumFramesEncodingDelay), rtc::TimeMicros(),
capture_time_us, kIntervalUs);
}
overuse_detector_->CheckForOveruse(observer_);
}
}
TEST_F(OveruseFrameDetectorTest, UpdatesExistingSamples) {
// >85% encoding time should trigger overuse.
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1));
static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
static const int kDelayUs = 30 * rtc::kNumMicrosecsPerMillisec;
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight))
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build();
uint32_t timestamp = 0;
for (size_t i = 0; i < 1000; ++i) {
frame.set_timestamp(timestamp);
int64_t capture_time_us = rtc::TimeMicros();
overuse_detector_->FrameCaptured(frame, capture_time_us);
// Encode and send first parts almost instantly.
clock_.AdvanceTime(TimeDelta::Millis(1));
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us,
rtc::kNumMicrosecsPerMillisec);
// Encode heavier part, resulting in >85% usage total.
clock_.AdvanceTime(TimeDelta::Micros(kDelayUs) - TimeDelta::Millis(1));
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us,
kDelayUs);
clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs - kDelayUs));
timestamp += kIntervalUs * 90 / 1000;
overuse_detector_->CheckForOveruse(observer_);
}
}
TEST_F(OveruseFrameDetectorTest, RunOnTqNormalUsage) {
TaskQueueForTest queue("OveruseFrameDetectorTestQueue");
queue.SendTask([&] {
overuse_detector_->StartCheckForOveruse(queue.Get(), options_, observer_);
});
rtc::Event event;
// Expect NormalUsage(). When called, stop the `overuse_detector_` and then
// set `event` to end the test.
EXPECT_CALL(mock_observer_, AdaptUp())
.WillOnce(InvokeWithoutArgs([this, &event] {
overuse_detector_->StopCheckForOveruse();
event.Set();
}));
queue.PostTask([this] {
const int kDelayUs1 = 5 * rtc::kNumMicrosecsPerMillisec;
const int kDelayUs2 = 6 * rtc::kNumMicrosecsPerMillisec;
InsertAndSendFramesWithInterval(1300, kFrameIntervalUs, kWidth, kHeight,
kDelayUs1);
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
kDelayUs2);
});
EXPECT_TRUE(event.Wait(10000));
}
// TODO(crbug.com/webrtc/12846): investigate why the test fails on MAC bots.
#if !defined(WEBRTC_MAC)
TEST_F(OveruseFrameDetectorTest, MaxIntervalScalesWithFramerate) {
const int kCapturerMaxFrameRate = 30;
const int kEncodeMaxFrameRate = 20; // Maximum fps the encoder can sustain.
overuse_detector_->SetOptions(options_);
// Trigger overuse.
int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kCapturerMaxFrameRate;
// Processing time just below over use limit given kEncodeMaxFrameRate.
int64_t processing_time_us =
(98 * OveruseProcessingTimeLimitForFramerate(kEncodeMaxFrameRate)) / 100;
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse(observer_);
}
// Simulate frame rate reduction and normal usage.
frame_interval_us = rtc::kNumMicrosecsPerSec / kEncodeMaxFrameRate;
overuse_detector_->OnTargetFramerateUpdated(kEncodeMaxFrameRate);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse(observer_);
}
// Reduce processing time to trigger underuse.
processing_time_us =
(98 * UnderuseProcessingTimeLimitForFramerate(kEncodeMaxFrameRate)) / 100;
EXPECT_CALL(mock_observer_, AdaptUp()).Times(1);
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse(observer_);
}
#endif
TEST_F(OveruseFrameDetectorTest, RespectsMinFramerate) {
const int kMinFrameRate = 7; // Minimum fps allowed by current detector impl.
overuse_detector_->SetOptions(options_);
overuse_detector_->OnTargetFramerateUpdated(kMinFrameRate);
// Normal usage just at the limit.
int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kMinFrameRate;
// Processing time just below over use limit given kEncodeMaxFrameRate.
int64_t processing_time_us =
(98 * OveruseProcessingTimeLimitForFramerate(kMinFrameRate)) / 100;
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse(observer_);
}
// Over the limit to overuse.
processing_time_us =
(102 * OveruseProcessingTimeLimitForFramerate(kMinFrameRate)) / 100;
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse(observer_);
}
// Reduce input frame rate. Should still trigger overuse.
overuse_detector_->OnTargetFramerateUpdated(kMinFrameRate - 1);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
processing_time_us);
overuse_detector_->CheckForOveruse(observer_);
}
}
TEST_F(OveruseFrameDetectorTest, LimitsMaxFrameInterval) {
const int kMaxFrameRate = 20;
overuse_detector_->SetOptions(options_);
overuse_detector_->OnTargetFramerateUpdated(kMaxFrameRate);
int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kMaxFrameRate;
// Maximum frame interval allowed is 35% above ideal.
int64_t max_frame_interval_us = (135 * frame_interval_us) / 100;
// Maximum processing time, without triggering overuse, allowed with the above
// frame interval.
int64_t max_processing_time_us =
(max_frame_interval_us * options_.high_encode_usage_threshold_percent) /
100;
// Processing time just below overuse limit given kMaxFrameRate.
int64_t processing_time_us = (98 * max_processing_time_us) / 100;
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
kHeight, processing_time_us);
overuse_detector_->CheckForOveruse(observer_);
}
// Go above limit, trigger overuse.
processing_time_us = (102 * max_processing_time_us) / 100;
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
kHeight, processing_time_us);
overuse_detector_->CheckForOveruse(observer_);
}
// Increase frame interval, should still trigger overuse.
max_frame_interval_us *= 2;
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
kHeight, processing_time_us);
overuse_detector_->CheckForOveruse(observer_);
}
}
// Models screencast, with irregular arrival of frames which are heavy
// to encode.
TEST_F(OveruseFrameDetectorTest, NoOveruseForLargeRandomFrameInterval) {
// TODO(bugs.webrtc.org/8504): When new estimator is relanded,
// behavior is improved in this scenario, with only AdaptUp events,
// and estimated load closer to the true average.
// EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
// EXPECT_CALL(mock_observer_, AdaptUp())
// .Times(::testing::AtLeast(1));
overuse_detector_->SetOptions(options_);
const int kNumFrames = 500;
const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec;
const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
const int kMaxIntervalUs = 1000 * rtc::kNumMicrosecsPerMillisec;
const int kTargetFramerate = 5;
overuse_detector_->OnTargetFramerateUpdated(kTargetFramerate);
InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs,
kMaxIntervalUs, kWidth, kHeight,
kEncodeTimeUs);
// Average usage 19%. Check that estimate is in the right ball park.
// EXPECT_NEAR(UsagePercent(), 20, 10);
EXPECT_NEAR(UsagePercent(), 20, 35);
}
// Models screencast, with irregular arrival of frames, often
// exceeding the timeout interval.
TEST_F(OveruseFrameDetectorTest, NoOveruseForRandomFrameIntervalWithReset) {
// TODO(bugs.webrtc.org/8504): When new estimator is relanded,
// behavior is improved in this scenario, and we get AdaptUp events.
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
// EXPECT_CALL(mock_observer_, AdaptUp())
// .Times(::testing::AtLeast(1));
const int kNumFrames = 500;
const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec;
const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
const int kMaxIntervalUs = 3000 * rtc::kNumMicrosecsPerMillisec;
const int kTargetFramerate = 5;
overuse_detector_->OnTargetFramerateUpdated(kTargetFramerate);
InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs,
kMaxIntervalUs, kWidth, kHeight,
kEncodeTimeUs);
// Average usage 6.6%, but since the frame_timeout_interval_ms is
// only 1500 ms, we often reset the estimate to the initial value.
// Check that estimate is in the right ball park.
EXPECT_GE(UsagePercent(), 1);
EXPECT_LE(UsagePercent(), InitialUsage() + 5);
}
// Models simulcast, with multiple encoded frames for each input frame.
// Load estimate should be based on the maximum encode time per input frame.
TEST_F(OveruseFrameDetectorTest, NoOveruseForSimulcast) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
constexpr int kNumFrames = 500;
constexpr int kEncodeTimesUs[] = {
10 * rtc::kNumMicrosecsPerMillisec,
8 * rtc::kNumMicrosecsPerMillisec,
12 * rtc::kNumMicrosecsPerMillisec,
};
constexpr int kIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
InsertAndSendSimulcastFramesWithInterval(kNumFrames, kIntervalUs, kWidth,
kHeight, kEncodeTimesUs);
// Average usage 40%. 12 ms / 30 ms.
EXPECT_GE(UsagePercent(), 35);
EXPECT_LE(UsagePercent(), 45);
}
// Tests using new cpu load estimator
class OveruseFrameDetectorTest2 : public OveruseFrameDetectorTest {
protected:
void SetUp() override {
options_.filter_time_ms = 5 * rtc::kNumMillisecsPerSec;
OveruseFrameDetectorTest::SetUp();
}
void InsertAndSendFramesWithInterval(int num_frames,
int interval_us,
int width,
int height,
int delay_us) override {
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Create(width, height))
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build();
while (num_frames-- > 0) {
int64_t capture_time_us = rtc::TimeMicros();
overuse_detector_->FrameCaptured(frame, capture_time_us /* ignored */);
overuse_detector_->FrameSent(0 /* ignored timestamp */,
0 /* ignored send_time_us */,
capture_time_us, delay_us);
clock_.AdvanceTime(TimeDelta::Micros(interval_us));
}
}
void InsertAndSendFramesWithRandomInterval(int num_frames,
int min_interval_us,
int max_interval_us,
int width,
int height,
int delay_us) override {
webrtc::Random random(17);
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Create(width, height))
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build();
for (int i = 0; i < num_frames; i++) {
int interval_us = random.Rand(min_interval_us, max_interval_us);
int64_t capture_time_us = rtc::TimeMicros();
overuse_detector_->FrameCaptured(frame, capture_time_us);
overuse_detector_->FrameSent(0 /* ignored timestamp */,
0 /* ignored send_time_us */,
capture_time_us, delay_us);
overuse_detector_->CheckForOveruse(observer_);
clock_.AdvanceTime(TimeDelta::Micros(interval_us));
}
}
void ForceUpdate(int width, int height) override {
// This is mainly to check initial values and whether the overuse
// detector has been reset or not.
InsertAndSendFramesWithInterval(1, rtc::kNumMicrosecsPerSec, width, height,
kFrameIntervalUs);
}
};
// UsagePercent() > high_encode_usage_threshold_percent => overuse.
// UsagePercent() < low_encode_usage_threshold_percent => underuse.
TEST_F(OveruseFrameDetectorTest2, TriggerOveruse) {
// usage > high => overuse
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
}
TEST_F(OveruseFrameDetectorTest2, OveruseAndRecover) {
// usage > high => overuse
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest2, DoubleOveruseAndRecover) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(2);
TriggerOveruse(options_.high_threshold_consecutive_count);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest2, TriggerUnderuseWithMinProcessCount) {
const int kProcessIntervalUs = 5 * rtc::kNumMicrosecsPerSec;
options_.min_process_count = 1;
CpuOveruseObserverImpl overuse_observer;
observer_ = nullptr;
overuse_detector_->SetOptions(options_);
InsertAndSendFramesWithInterval(1200, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
overuse_detector_->CheckForOveruse(&overuse_observer);
EXPECT_EQ(0, overuse_observer.normaluse_);
clock_.AdvanceTime(TimeDelta::Micros(kProcessIntervalUs));
overuse_detector_->CheckForOveruse(&overuse_observer);
EXPECT_EQ(1, overuse_observer.normaluse_);
}
TEST_F(OveruseFrameDetectorTest2, ConstantOveruseGivesNoNormalUsage) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptUp()).Times(0);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(64);
for (size_t i = 0; i < 64; ++i) {
TriggerOveruse(options_.high_threshold_consecutive_count);
}
}
TEST_F(OveruseFrameDetectorTest2, ConsecutiveCountTriggersOveruse) {
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
options_.high_threshold_consecutive_count = 2;
overuse_detector_->SetOptions(options_);
TriggerOveruse(2);
}
TEST_F(OveruseFrameDetectorTest2, IncorrectConsecutiveCountTriggersNoOveruse) {
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
options_.high_threshold_consecutive_count = 2;
overuse_detector_->SetOptions(options_);
TriggerOveruse(1);
}
TEST_F(OveruseFrameDetectorTest2, ProcessingUsage) {
overuse_detector_->SetOptions(options_);
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
EXPECT_EQ(kProcessTimeUs * 100 / kFrameIntervalUs, UsagePercent());
}
TEST_F(OveruseFrameDetectorTest2, ResetAfterResolutionChange) {
overuse_detector_->SetOptions(options_);
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
EXPECT_NE(InitialUsage(), UsagePercent());
// Verify reset (with new width/height).
ForceUpdate(kWidth, kHeight + 1);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest2, ResetAfterFrameTimeout) {
overuse_detector_->SetOptions(options_);
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
EXPECT_NE(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
2, options_.frame_timeout_interval_ms * rtc::kNumMicrosecsPerMillisec,
kWidth, kHeight, kProcessTimeUs);
EXPECT_NE(InitialUsage(), UsagePercent());
// Verify reset.
InsertAndSendFramesWithInterval(
2,
(options_.frame_timeout_interval_ms + 1) * rtc::kNumMicrosecsPerMillisec,
kWidth, kHeight, kProcessTimeUs);
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest2, ConvergesSlowly) {
overuse_detector_->SetOptions(options_);
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
// No update for the first sample.
EXPECT_EQ(InitialUsage(), UsagePercent());
// Total time approximately 40 * 33ms = 1.3s, significantly less
// than the 5s time constant.
InsertAndSendFramesWithInterval(40, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
// Should have started to approach correct load of 15%, but not very far.
EXPECT_LT(UsagePercent(), InitialUsage());
EXPECT_GT(UsagePercent(), (InitialUsage() * 3 + 8) / 4);
// Run for roughly 10s more, should now be closer.
InsertAndSendFramesWithInterval(300, kFrameIntervalUs, kWidth, kHeight,
kProcessTimeUs);
EXPECT_NEAR(UsagePercent(), 20, 5);
}
TEST_F(OveruseFrameDetectorTest2, InitialProcessingUsage) {
overuse_detector_->SetOptions(options_);
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest2, MeasuresMultipleConcurrentSamples) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1));
static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
static const size_t kNumFramesEncodingDelay = 3;
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight))
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build();
for (size_t i = 0; i < 1000; ++i) {
// Unique timestamps.
frame.set_timestamp(static_cast<uint32_t>(i));
int64_t capture_time_us = rtc::TimeMicros();
overuse_detector_->FrameCaptured(frame, capture_time_us);
clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs));
if (i > kNumFramesEncodingDelay) {
overuse_detector_->FrameSent(
static_cast<uint32_t>(i - kNumFramesEncodingDelay), rtc::TimeMicros(),
capture_time_us, kIntervalUs);
}
overuse_detector_->CheckForOveruse(observer_);
}
}
TEST_F(OveruseFrameDetectorTest2, UpdatesExistingSamples) {
// >85% encoding time should trigger overuse.
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1));
static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
static const int kDelayUs = 30 * rtc::kNumMicrosecsPerMillisec;
VideoFrame frame =
VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight))
.set_rotation(webrtc::kVideoRotation_0)
.set_timestamp_us(0)
.build();
uint32_t timestamp = 0;
for (size_t i = 0; i < 1000; ++i) {
frame.set_timestamp(timestamp);
int64_t capture_time_us = rtc::TimeMicros();
overuse_detector_->FrameCaptured(frame, capture_time_us);
// Encode and send first parts almost instantly.
clock_.AdvanceTime(TimeDelta::Millis(1));
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us,
rtc::kNumMicrosecsPerMillisec);
// Encode heavier part, resulting in >85% usage total.
clock_.AdvanceTime(TimeDelta::Micros(kDelayUs) - TimeDelta::Millis(1));
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us,
kDelayUs);
clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs - kDelayUs));
timestamp += kIntervalUs * 90 / 1000;
overuse_detector_->CheckForOveruse(observer_);
}
}
TEST_F(OveruseFrameDetectorTest2, RunOnTqNormalUsage) {
TaskQueueForTest queue("OveruseFrameDetectorTestQueue");
queue.SendTask([&] {
overuse_detector_->StartCheckForOveruse(queue.Get(), options_, observer_);
});
rtc::Event event;
// Expect NormalUsage(). When called, stop the `overuse_detector_` and then
// set `event` to end the test.
EXPECT_CALL(mock_observer_, AdaptUp())
.WillOnce(InvokeWithoutArgs([this, &event] {
overuse_detector_->StopCheckForOveruse();
event.Set();
}));
queue.PostTask([this] {
const int kDelayUs1 = 5 * rtc::kNumMicrosecsPerMillisec;
const int kDelayUs2 = 6 * rtc::kNumMicrosecsPerMillisec;
InsertAndSendFramesWithInterval(1300, kFrameIntervalUs, kWidth, kHeight,
kDelayUs1);
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
kDelayUs2);
});
EXPECT_TRUE(event.Wait(10000));
}
// Models screencast, with irregular arrival of frames which are heavy
// to encode.
TEST_F(OveruseFrameDetectorTest2, NoOveruseForLargeRandomFrameInterval) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
const int kNumFrames = 500;
const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec;
const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
const int kMaxIntervalUs = 1000 * rtc::kNumMicrosecsPerMillisec;
InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs,
kMaxIntervalUs, kWidth, kHeight,
kEncodeTimeUs);
// Average usage 19%. Check that estimate is in the right ball park.
EXPECT_NEAR(UsagePercent(), 20, 10);
}
// Models screencast, with irregular arrival of frames, often
// exceeding the timeout interval.
TEST_F(OveruseFrameDetectorTest2, NoOveruseForRandomFrameIntervalWithReset) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
const int kNumFrames = 500;
const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec;
const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
const int kMaxIntervalUs = 3000 * rtc::kNumMicrosecsPerMillisec;
InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs,
kMaxIntervalUs, kWidth, kHeight,
kEncodeTimeUs);
// Average usage 6.6%, but since the frame_timeout_interval_ms is
// only 1500 ms, we often reset the estimate to the initial value.
// Check that estimate is in the right ball park.
EXPECT_GE(UsagePercent(), 1);
EXPECT_LE(UsagePercent(), InitialUsage() + 5);
}
TEST_F(OveruseFrameDetectorTest2, ToleratesOutOfOrderFrames) {
overuse_detector_->SetOptions(options_);
// Represents a cpu utilization close to 100%. First input frame results in
// three encoded frames, and the last of those isn't finished until after the
// first encoded frame corresponding to the next input frame.
const int kEncodeTimeUs = 30 * rtc::kNumMicrosecsPerMillisec;
const int kCaptureTimesMs[] = {33, 33, 66, 33};
for (int capture_time_ms : kCaptureTimesMs) {
overuse_detector_->FrameSent(
0, 0, capture_time_ms * rtc::kNumMicrosecsPerMillisec, kEncodeTimeUs);
}
EXPECT_GE(UsagePercent(), InitialUsage());
}
// Models simulcast, with multiple encoded frames for each input frame.
// Load estimate should be based on the maximum encode time per input frame.
TEST_F(OveruseFrameDetectorTest2, NoOveruseForSimulcast) {
overuse_detector_->SetOptions(options_);
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
constexpr int kNumFrames = 500;
constexpr int kEncodeTimesUs[] = {
10 * rtc::kNumMicrosecsPerMillisec,
8 * rtc::kNumMicrosecsPerMillisec,
12 * rtc::kNumMicrosecsPerMillisec,
};
constexpr int kIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
InsertAndSendSimulcastFramesWithInterval(kNumFrames, kIntervalUs, kWidth,
kHeight, kEncodeTimesUs);
// Average usage 40%. 12 ms / 30 ms.
EXPECT_GE(UsagePercent(), 35);
EXPECT_LE(UsagePercent(), 45);
}
} // namespace webrtc