blob: 1c8713c48744e3d77b195ff24007d3d11e2a66e6 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This is the implementation of the PacketBuffer class. It is mostly based on
// an STL list. The list is kept sorted at all times so that the next packet to
// decode is at the beginning of the list.
#include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
#include <algorithm> // find_if()
#include "webrtc/base/logging.h"
#include "webrtc/modules/audio_coding/codecs/audio_decoder.h"
#include "webrtc/modules/audio_coding/neteq/decoder_database.h"
#include "webrtc/modules/audio_coding/neteq/tick_timer.h"
namespace webrtc {
namespace {
// Predicate used when inserting packets in the buffer list.
// Operator() returns true when |packet| goes before |new_packet|.
class NewTimestampIsLarger {
public:
explicit NewTimestampIsLarger(const Packet* new_packet)
: new_packet_(new_packet) {
}
bool operator()(Packet* packet) {
return (*new_packet_ >= *packet);
}
private:
const Packet* new_packet_;
};
// Returns true if both payload types are known to the decoder database, and
// have the same sample rate.
bool EqualSampleRates(uint8_t pt1,
uint8_t pt2,
const DecoderDatabase& decoder_database) {
auto di1 = decoder_database.GetDecoderInfo(pt1);
auto di2 = decoder_database.GetDecoderInfo(pt2);
return di1 && di2 && di1->SampleRateHz() == di2->SampleRateHz();
}
} // namespace
PacketBuffer::PacketBuffer(size_t max_number_of_packets,
const TickTimer* tick_timer)
: max_number_of_packets_(max_number_of_packets), tick_timer_(tick_timer) {}
// Destructor. All packets in the buffer will be destroyed.
PacketBuffer::~PacketBuffer() {
Flush();
}
// Flush the buffer. All packets in the buffer will be destroyed.
void PacketBuffer::Flush() {
DeleteAllPackets(&buffer_);
}
bool PacketBuffer::Empty() const {
return buffer_.empty();
}
int PacketBuffer::InsertPacket(Packet* packet) {
if (!packet || packet->payload.empty()) {
if (packet) {
delete packet;
}
LOG(LS_WARNING) << "InsertPacket invalid packet";
return kInvalidPacket;
}
int return_val = kOK;
packet->waiting_time = tick_timer_->GetNewStopwatch();
if (buffer_.size() >= max_number_of_packets_) {
// Buffer is full. Flush it.
Flush();
LOG(LS_WARNING) << "Packet buffer flushed";
return_val = kFlushed;
}
// Get an iterator pointing to the place in the buffer where the new packet
// should be inserted. The list is searched from the back, since the most
// likely case is that the new packet should be near the end of the list.
PacketList::reverse_iterator rit = std::find_if(
buffer_.rbegin(), buffer_.rend(),
NewTimestampIsLarger(packet));
// The new packet is to be inserted to the right of |rit|. If it has the same
// timestamp as |rit|, which has a higher priority, do not insert the new
// packet to list.
if (rit != buffer_.rend() &&
packet->header.timestamp == (*rit)->header.timestamp) {
delete packet;
return return_val;
}
// The new packet is to be inserted to the left of |it|. If it has the same
// timestamp as |it|, which has a lower priority, replace |it| with the new
// packet.
PacketList::iterator it = rit.base();
if (it != buffer_.end() &&
packet->header.timestamp == (*it)->header.timestamp) {
delete *it;
it = buffer_.erase(it);
}
buffer_.insert(it, packet); // Insert the packet at that position.
return return_val;
}
int PacketBuffer::InsertPacketList(
PacketList* packet_list,
const DecoderDatabase& decoder_database,
rtc::Optional<uint8_t>* current_rtp_payload_type,
rtc::Optional<uint8_t>* current_cng_rtp_payload_type) {
bool flushed = false;
while (!packet_list->empty()) {
Packet* packet = packet_list->front();
if (decoder_database.IsComfortNoise(packet->header.payloadType)) {
if (*current_cng_rtp_payload_type &&
**current_cng_rtp_payload_type != packet->header.payloadType) {
// New CNG payload type implies new codec type.
*current_rtp_payload_type = rtc::Optional<uint8_t>();
Flush();
flushed = true;
}
*current_cng_rtp_payload_type =
rtc::Optional<uint8_t>(packet->header.payloadType);
} else if (!decoder_database.IsDtmf(packet->header.payloadType)) {
// This must be speech.
if ((*current_rtp_payload_type &&
**current_rtp_payload_type != packet->header.payloadType) ||
(*current_cng_rtp_payload_type &&
!EqualSampleRates(packet->header.payloadType,
**current_cng_rtp_payload_type,
decoder_database))) {
*current_cng_rtp_payload_type = rtc::Optional<uint8_t>();
Flush();
flushed = true;
}
*current_rtp_payload_type =
rtc::Optional<uint8_t>(packet->header.payloadType);
}
int return_val = InsertPacket(packet);
packet_list->pop_front();
if (return_val == kFlushed) {
// The buffer flushed, but this is not an error. We can still continue.
flushed = true;
} else if (return_val != kOK) {
// An error occurred. Delete remaining packets in list and return.
DeleteAllPackets(packet_list);
return return_val;
}
}
return flushed ? kFlushed : kOK;
}
int PacketBuffer::NextTimestamp(uint32_t* next_timestamp) const {
if (Empty()) {
return kBufferEmpty;
}
if (!next_timestamp) {
return kInvalidPointer;
}
*next_timestamp = buffer_.front()->header.timestamp;
return kOK;
}
int PacketBuffer::NextHigherTimestamp(uint32_t timestamp,
uint32_t* next_timestamp) const {
if (Empty()) {
return kBufferEmpty;
}
if (!next_timestamp) {
return kInvalidPointer;
}
PacketList::const_iterator it;
for (it = buffer_.begin(); it != buffer_.end(); ++it) {
if ((*it)->header.timestamp >= timestamp) {
// Found a packet matching the search.
*next_timestamp = (*it)->header.timestamp;
return kOK;
}
}
return kNotFound;
}
const RTPHeader* PacketBuffer::NextRtpHeader() const {
if (Empty()) {
return NULL;
}
return const_cast<const RTPHeader*>(&(buffer_.front()->header));
}
Packet* PacketBuffer::GetNextPacket(size_t* discard_count) {
if (Empty()) {
// Buffer is empty.
return NULL;
}
Packet* packet = buffer_.front();
// Assert that the packet sanity checks in InsertPacket method works.
assert(packet && !packet->payload.empty());
buffer_.pop_front();
// Discard other packets with the same timestamp. These are duplicates or
// redundant payloads that should not be used.
size_t discards = 0;
while (!Empty() &&
buffer_.front()->header.timestamp == packet->header.timestamp) {
if (DiscardNextPacket() != kOK) {
assert(false); // Must be ok by design.
}
++discards;
}
// The way of inserting packet should not cause any packet discarding here.
// TODO(minyue): remove |discard_count|.
assert(discards == 0);
if (discard_count)
*discard_count = discards;
return packet;
}
int PacketBuffer::DiscardNextPacket() {
if (Empty()) {
return kBufferEmpty;
}
// Assert that the packet sanity checks in InsertPacket method works.
assert(buffer_.front());
assert(!buffer_.front()->payload.empty());
DeleteFirstPacket(&buffer_);
return kOK;
}
int PacketBuffer::DiscardOldPackets(uint32_t timestamp_limit,
uint32_t horizon_samples) {
while (!Empty() && timestamp_limit != buffer_.front()->header.timestamp &&
IsObsoleteTimestamp(buffer_.front()->header.timestamp,
timestamp_limit,
horizon_samples)) {
if (DiscardNextPacket() != kOK) {
assert(false); // Must be ok by design.
}
}
return 0;
}
int PacketBuffer::DiscardAllOldPackets(uint32_t timestamp_limit) {
return DiscardOldPackets(timestamp_limit, 0);
}
size_t PacketBuffer::NumPacketsInBuffer() const {
return buffer_.size();
}
size_t PacketBuffer::NumSamplesInBuffer(DecoderDatabase* decoder_database,
size_t last_decoded_length) const {
PacketList::const_iterator it;
size_t num_samples = 0;
size_t last_duration = last_decoded_length;
for (it = buffer_.begin(); it != buffer_.end(); ++it) {
Packet* packet = (*it);
AudioDecoder* decoder =
decoder_database->GetDecoder(packet->header.payloadType);
if (decoder) {
if (!packet->primary) {
continue;
}
int duration = decoder->PacketDuration(packet->payload.data(),
packet->payload.size());
if (duration >= 0) {
last_duration = duration; // Save the most up-to-date (valid) duration.
}
}
num_samples += last_duration;
}
return num_samples;
}
bool PacketBuffer::DeleteFirstPacket(PacketList* packet_list) {
if (packet_list->empty()) {
return false;
}
Packet* first_packet = packet_list->front();
delete first_packet;
packet_list->pop_front();
return true;
}
void PacketBuffer::DeleteAllPackets(PacketList* packet_list) {
while (DeleteFirstPacket(packet_list)) {
// Continue while the list is not empty.
}
}
void PacketBuffer::BufferStat(int* num_packets, int* max_num_packets) const {
*num_packets = static_cast<int>(buffer_.size());
*max_num_packets = static_cast<int>(max_number_of_packets_);
}
} // namespace webrtc