blob: 1b86d8326b6af182b925540fcdec7d22ab49682f [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Unit tests for PacketBuffer class.
#include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/audio_coding/codecs/builtin_audio_decoder_factory.h"
#include "webrtc/modules/audio_coding/neteq/mock/mock_decoder_database.h"
#include "webrtc/modules/audio_coding/neteq/packet.h"
#include "webrtc/modules/audio_coding/neteq/tick_timer.h"
using ::testing::Return;
using ::testing::_;
namespace webrtc {
// Helper class to generate packets. Packets must be deleted by the user.
class PacketGenerator {
public:
PacketGenerator(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size);
virtual ~PacketGenerator() {}
void Reset(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size);
Packet* NextPacket(int payload_size_bytes);
uint16_t seq_no_;
uint32_t ts_;
uint8_t pt_;
int frame_size_;
};
PacketGenerator::PacketGenerator(uint16_t seq_no, uint32_t ts, uint8_t pt,
int frame_size) {
Reset(seq_no, ts, pt, frame_size);
}
void PacketGenerator::Reset(uint16_t seq_no, uint32_t ts, uint8_t pt,
int frame_size) {
seq_no_ = seq_no;
ts_ = ts;
pt_ = pt;
frame_size_ = frame_size;
}
Packet* PacketGenerator::NextPacket(int payload_size_bytes) {
Packet* packet = new Packet;
packet->header.sequenceNumber = seq_no_;
packet->header.timestamp = ts_;
packet->header.payloadType = pt_;
packet->header.markerBit = false;
packet->header.ssrc = 0x12345678;
packet->header.numCSRCs = 0;
packet->header.paddingLength = 0;
packet->primary = true;
packet->payload.SetSize(payload_size_bytes);
++seq_no_;
ts_ += frame_size_;
return packet;
}
struct PacketsToInsert {
uint16_t sequence_number;
uint32_t timestamp;
uint8_t payload_type;
bool primary;
// Order of this packet to appear upon extraction, after inserting a series
// of packets. A negative number means that it should have been discarded
// before extraction.
int extract_order;
};
// Start of test definitions.
TEST(PacketBuffer, CreateAndDestroy) {
TickTimer tick_timer;
PacketBuffer* buffer = new PacketBuffer(10, &tick_timer); // 10 packets.
EXPECT_TRUE(buffer->Empty());
delete buffer;
}
TEST(PacketBuffer, InsertPacket) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
PacketGenerator gen(17u, 4711u, 0, 10);
const int payload_len = 100;
Packet* packet = gen.NextPacket(payload_len);
EXPECT_EQ(0, buffer.InsertPacket(packet));
uint32_t next_ts;
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts));
EXPECT_EQ(4711u, next_ts);
EXPECT_FALSE(buffer.Empty());
EXPECT_EQ(1u, buffer.NumPacketsInBuffer());
const RTPHeader* hdr = buffer.NextRtpHeader();
EXPECT_EQ(&(packet->header), hdr); // Compare pointer addresses.
// Do not explicitly flush buffer or delete packet to test that it is deleted
// with the buffer. (Tested with Valgrind or similar tool.)
}
// Test to flush buffer.
TEST(PacketBuffer, FlushBuffer) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
const int payload_len = 10;
// Insert 10 small packets; should be ok.
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(packet));
}
EXPECT_EQ(10u, buffer.NumPacketsInBuffer());
EXPECT_FALSE(buffer.Empty());
buffer.Flush();
// Buffer should delete the payloads itself.
EXPECT_EQ(0u, buffer.NumPacketsInBuffer());
EXPECT_TRUE(buffer.Empty());
}
// Test to fill the buffer over the limits, and verify that it flushes.
TEST(PacketBuffer, OverfillBuffer) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
// Insert 10 small packets; should be ok.
const int payload_len = 10;
int i;
for (i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(packet));
}
EXPECT_EQ(10u, buffer.NumPacketsInBuffer());
uint32_t next_ts;
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts));
EXPECT_EQ(0u, next_ts); // Expect first inserted packet to be first in line.
// Insert 11th packet; should flush the buffer and insert it after flushing.
Packet* packet = gen.NextPacket(payload_len);
EXPECT_EQ(PacketBuffer::kFlushed, buffer.InsertPacket(packet));
EXPECT_EQ(1u, buffer.NumPacketsInBuffer());
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts));
// Expect last inserted packet to be first in line.
EXPECT_EQ(packet->header.timestamp, next_ts);
// Flush buffer to delete all packets.
buffer.Flush();
}
// Test inserting a list of packets.
TEST(PacketBuffer, InsertPacketList) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
PacketList list;
const int payload_len = 10;
// Insert 10 small packets.
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
list.push_back(packet);
}
MockDecoderDatabase decoder_database;
auto factory = CreateBuiltinAudioDecoderFactory();
const DecoderDatabase::DecoderInfo info(NetEqDecoder::kDecoderPCMu, "",
factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(&info));
rtc::Optional<uint8_t> current_pt;
rtc::Optional<uint8_t> current_cng_pt;
EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacketList(&list,
decoder_database,
&current_pt,
&current_cng_pt));
EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list.
EXPECT_EQ(10u, buffer.NumPacketsInBuffer());
EXPECT_EQ(rtc::Optional<uint8_t>(0),
current_pt); // Current payload type changed to 0.
EXPECT_FALSE(current_cng_pt); // CNG payload type not changed.
buffer.Flush(); // Clean up.
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
// Test inserting a list of packets. Last packet is of a different payload type.
// Expecting the buffer to flush.
// TODO(hlundin): Remove this test when legacy operation is no longer needed.
TEST(PacketBuffer, InsertPacketListChangePayloadType) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
PacketList list;
const int payload_len = 10;
// Insert 10 small packets.
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
list.push_back(packet);
}
// Insert 11th packet of another payload type (not CNG).
Packet* packet = gen.NextPacket(payload_len);
packet->header.payloadType = 1;
list.push_back(packet);
MockDecoderDatabase decoder_database;
auto factory = CreateBuiltinAudioDecoderFactory();
const DecoderDatabase::DecoderInfo info0(NetEqDecoder::kDecoderPCMu, "",
factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(&info0));
const DecoderDatabase::DecoderInfo info1(NetEqDecoder::kDecoderPCMa, "",
factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(1))
.WillRepeatedly(Return(&info1));
rtc::Optional<uint8_t> current_pt;
rtc::Optional<uint8_t> current_cng_pt;
EXPECT_EQ(PacketBuffer::kFlushed, buffer.InsertPacketList(&list,
decoder_database,
&current_pt,
&current_cng_pt));
EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list.
EXPECT_EQ(1u, buffer.NumPacketsInBuffer()); // Only the last packet.
EXPECT_EQ(rtc::Optional<uint8_t>(1),
current_pt); // Current payload type changed to 1.
EXPECT_FALSE(current_cng_pt); // CNG payload type not changed.
buffer.Flush(); // Clean up.
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
TEST(PacketBuffer, ExtractOrderRedundancy) {
TickTimer tick_timer;
PacketBuffer buffer(100, &tick_timer); // 100 packets.
const int kPackets = 18;
const int kFrameSize = 10;
const int kPayloadLength = 10;
PacketsToInsert packet_facts[kPackets] = {
{0xFFFD, 0xFFFFFFD7, 0, true, 0},
{0xFFFE, 0xFFFFFFE1, 0, true, 1},
{0xFFFE, 0xFFFFFFD7, 1, false, -1},
{0xFFFF, 0xFFFFFFEB, 0, true, 2},
{0xFFFF, 0xFFFFFFE1, 1, false, -1},
{0x0000, 0xFFFFFFF5, 0, true, 3},
{0x0000, 0xFFFFFFEB, 1, false, -1},
{0x0001, 0xFFFFFFFF, 0, true, 4},
{0x0001, 0xFFFFFFF5, 1, false, -1},
{0x0002, 0x0000000A, 0, true, 5},
{0x0002, 0xFFFFFFFF, 1, false, -1},
{0x0003, 0x0000000A, 1, false, -1},
{0x0004, 0x0000001E, 0, true, 7},
{0x0004, 0x00000014, 1, false, 6},
{0x0005, 0x0000001E, 0, true, -1},
{0x0005, 0x00000014, 1, false, -1},
{0x0006, 0x00000028, 0, true, 8},
{0x0006, 0x0000001E, 1, false, -1},
};
const size_t kExpectPacketsInBuffer = 9;
std::vector<Packet*> expect_order(kExpectPacketsInBuffer);
PacketGenerator gen(0, 0, 0, kFrameSize);
for (int i = 0; i < kPackets; ++i) {
gen.Reset(packet_facts[i].sequence_number,
packet_facts[i].timestamp,
packet_facts[i].payload_type,
kFrameSize);
Packet* packet = gen.NextPacket(kPayloadLength);
packet->primary = packet_facts[i].primary;
EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(packet));
if (packet_facts[i].extract_order >= 0) {
expect_order[packet_facts[i].extract_order] = packet;
}
}
EXPECT_EQ(kExpectPacketsInBuffer, buffer.NumPacketsInBuffer());
size_t drop_count;
for (size_t i = 0; i < kExpectPacketsInBuffer; ++i) {
Packet* packet = buffer.GetNextPacket(&drop_count);
EXPECT_EQ(0u, drop_count);
EXPECT_EQ(packet, expect_order[i]); // Compare pointer addresses.
delete packet;
}
EXPECT_TRUE(buffer.Empty());
}
TEST(PacketBuffer, DiscardPackets) {
TickTimer tick_timer;
PacketBuffer buffer(100, &tick_timer); // 100 packets.
const uint16_t start_seq_no = 17;
const uint32_t start_ts = 4711;
const uint32_t ts_increment = 10;
PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment);
PacketList list;
const int payload_len = 10;
// Insert 10 small packets.
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
buffer.InsertPacket(packet);
}
EXPECT_EQ(10u, buffer.NumPacketsInBuffer());
// Discard them one by one and make sure that the right packets are at the
// front of the buffer.
uint32_t current_ts = start_ts;
for (int i = 0; i < 10; ++i) {
uint32_t ts;
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&ts));
EXPECT_EQ(current_ts, ts);
EXPECT_EQ(PacketBuffer::kOK, buffer.DiscardNextPacket());
current_ts += ts_increment;
}
EXPECT_TRUE(buffer.Empty());
}
TEST(PacketBuffer, Reordering) {
TickTimer tick_timer;
PacketBuffer buffer(100, &tick_timer); // 100 packets.
const uint16_t start_seq_no = 17;
const uint32_t start_ts = 4711;
const uint32_t ts_increment = 10;
PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment);
const int payload_len = 10;
// Generate 10 small packets and insert them into a PacketList. Insert every
// odd packet to the front, and every even packet to the back, thus creating
// a (rather strange) reordering.
PacketList list;
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
if (i % 2) {
list.push_front(packet);
} else {
list.push_back(packet);
}
}
MockDecoderDatabase decoder_database;
auto factory = CreateBuiltinAudioDecoderFactory();
const DecoderDatabase::DecoderInfo info(NetEqDecoder::kDecoderPCMu, "",
factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(&info));
rtc::Optional<uint8_t> current_pt;
rtc::Optional<uint8_t> current_cng_pt;
EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacketList(&list,
decoder_database,
&current_pt,
&current_cng_pt));
EXPECT_EQ(10u, buffer.NumPacketsInBuffer());
// Extract them and make sure that come out in the right order.
uint32_t current_ts = start_ts;
for (int i = 0; i < 10; ++i) {
Packet* packet = buffer.GetNextPacket(NULL);
ASSERT_FALSE(packet == NULL);
EXPECT_EQ(current_ts, packet->header.timestamp);
current_ts += ts_increment;
delete packet;
}
EXPECT_TRUE(buffer.Empty());
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
// The test first inserts a packet with narrow-band CNG, then a packet with
// wide-band speech. The expected behavior of the packet buffer is to detect a
// change in sample rate, even though no speech packet has been inserted before,
// and flush out the CNG packet.
TEST(PacketBuffer, CngFirstThenSpeechWithNewSampleRate) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
const uint8_t kCngPt = 13;
const int kPayloadLen = 10;
const uint8_t kSpeechPt = 100;
MockDecoderDatabase decoder_database;
auto factory = CreateBuiltinAudioDecoderFactory();
const DecoderDatabase::DecoderInfo info_cng(NetEqDecoder::kDecoderCNGnb, "",
factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(kCngPt))
.WillRepeatedly(Return(&info_cng));
const DecoderDatabase::DecoderInfo info_speech(NetEqDecoder::kDecoderPCM16Bwb,
"", factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(kSpeechPt))
.WillRepeatedly(Return(&info_speech));
// Insert first packet, which is narrow-band CNG.
PacketGenerator gen(0, 0, kCngPt, 10);
PacketList list;
list.push_back(gen.NextPacket(kPayloadLen));
rtc::Optional<uint8_t> current_pt;
rtc::Optional<uint8_t> current_cng_pt;
EXPECT_EQ(PacketBuffer::kOK,
buffer.InsertPacketList(&list, decoder_database, &current_pt,
&current_cng_pt));
EXPECT_TRUE(list.empty());
EXPECT_EQ(1u, buffer.NumPacketsInBuffer());
ASSERT_TRUE(buffer.NextRtpHeader());
EXPECT_EQ(kCngPt, buffer.NextRtpHeader()->payloadType);
EXPECT_FALSE(current_pt); // Current payload type not set.
EXPECT_EQ(rtc::Optional<uint8_t>(kCngPt),
current_cng_pt); // CNG payload type set.
// Insert second packet, which is wide-band speech.
Packet* packet = gen.NextPacket(kPayloadLen);
packet->header.payloadType = kSpeechPt;
list.push_back(packet);
// Expect the buffer to flush out the CNG packet, since it does not match the
// new speech sample rate.
EXPECT_EQ(PacketBuffer::kFlushed,
buffer.InsertPacketList(&list, decoder_database, &current_pt,
&current_cng_pt));
EXPECT_TRUE(list.empty());
EXPECT_EQ(1u, buffer.NumPacketsInBuffer());
ASSERT_TRUE(buffer.NextRtpHeader());
EXPECT_EQ(kSpeechPt, buffer.NextRtpHeader()->payloadType);
EXPECT_EQ(rtc::Optional<uint8_t>(kSpeechPt),
current_pt); // Current payload type set.
EXPECT_FALSE(current_cng_pt); // CNG payload type reset.
buffer.Flush(); // Clean up.
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
TEST(PacketBuffer, Failures) {
const uint16_t start_seq_no = 17;
const uint32_t start_ts = 4711;
const uint32_t ts_increment = 10;
int payload_len = 100;
PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment);
TickTimer tick_timer;
PacketBuffer* buffer = new PacketBuffer(100, &tick_timer); // 100 packets.
Packet* packet = NULL;
EXPECT_EQ(PacketBuffer::kInvalidPacket, buffer->InsertPacket(packet));
packet = gen.NextPacket(payload_len);
packet->payload.Clear();
EXPECT_EQ(PacketBuffer::kInvalidPacket, buffer->InsertPacket(packet));
// Packet is deleted by the PacketBuffer.
// Buffer should still be empty. Test all empty-checks.
uint32_t temp_ts;
EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->NextTimestamp(&temp_ts));
EXPECT_EQ(PacketBuffer::kBufferEmpty,
buffer->NextHigherTimestamp(0, &temp_ts));
EXPECT_EQ(NULL, buffer->NextRtpHeader());
EXPECT_EQ(NULL, buffer->GetNextPacket(NULL));
EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->DiscardNextPacket());
EXPECT_EQ(0, buffer->DiscardAllOldPackets(0)); // 0 packets discarded.
// Insert one packet to make the buffer non-empty.
packet = gen.NextPacket(payload_len);
EXPECT_EQ(PacketBuffer::kOK, buffer->InsertPacket(packet));
EXPECT_EQ(PacketBuffer::kInvalidPointer, buffer->NextTimestamp(NULL));
EXPECT_EQ(PacketBuffer::kInvalidPointer,
buffer->NextHigherTimestamp(0, NULL));
delete buffer;
// Insert packet list of three packets, where the second packet has an invalid
// payload. Expect first packet to be inserted, and the remaining two to be
// discarded.
buffer = new PacketBuffer(100, &tick_timer); // 100 packets.
PacketList list;
list.push_back(gen.NextPacket(payload_len)); // Valid packet.
packet = gen.NextPacket(payload_len);
packet->payload.Clear(); // Invalid.
list.push_back(packet);
list.push_back(gen.NextPacket(payload_len)); // Valid packet.
MockDecoderDatabase decoder_database;
auto factory = CreateBuiltinAudioDecoderFactory();
const DecoderDatabase::DecoderInfo info(NetEqDecoder::kDecoderPCMu, "",
factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(&info));
rtc::Optional<uint8_t> current_pt;
rtc::Optional<uint8_t> current_cng_pt;
EXPECT_EQ(PacketBuffer::kInvalidPacket,
buffer->InsertPacketList(&list,
decoder_database,
&current_pt,
&current_cng_pt));
EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list.
EXPECT_EQ(1u, buffer->NumPacketsInBuffer());
delete buffer;
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
// Test packet comparison function.
// The function should return true if the first packet "goes before" the second.
TEST(PacketBuffer, ComparePackets) {
PacketGenerator gen(0, 0, 0, 10);
Packet* a = gen.NextPacket(10); // SN = 0, TS = 0.
Packet* b = gen.NextPacket(10); // SN = 1, TS = 10.
EXPECT_FALSE(*a == *b);
EXPECT_TRUE(*a != *b);
EXPECT_TRUE(*a < *b);
EXPECT_FALSE(*a > *b);
EXPECT_TRUE(*a <= *b);
EXPECT_FALSE(*a >= *b);
// Testing wrap-around case; 'a' is earlier but has a larger timestamp value.
a->header.timestamp = 0xFFFFFFFF - 10;
EXPECT_FALSE(*a == *b);
EXPECT_TRUE(*a != *b);
EXPECT_TRUE(*a < *b);
EXPECT_FALSE(*a > *b);
EXPECT_TRUE(*a <= *b);
EXPECT_FALSE(*a >= *b);
// Test equal packets.
EXPECT_TRUE(*a == *a);
EXPECT_FALSE(*a != *a);
EXPECT_FALSE(*a < *a);
EXPECT_FALSE(*a > *a);
EXPECT_TRUE(*a <= *a);
EXPECT_TRUE(*a >= *a);
// Test equal timestamps but different sequence numbers (0 and 1).
a->header.timestamp = b->header.timestamp;
EXPECT_FALSE(*a == *b);
EXPECT_TRUE(*a != *b);
EXPECT_TRUE(*a < *b);
EXPECT_FALSE(*a > *b);
EXPECT_TRUE(*a <= *b);
EXPECT_FALSE(*a >= *b);
// Test equal timestamps but different sequence numbers (32767 and 1).
a->header.sequenceNumber = 0xFFFF;
EXPECT_FALSE(*a == *b);
EXPECT_TRUE(*a != *b);
EXPECT_TRUE(*a < *b);
EXPECT_FALSE(*a > *b);
EXPECT_TRUE(*a <= *b);
EXPECT_FALSE(*a >= *b);
// Test equal timestamps and sequence numbers, but only 'b' is primary.
a->header.sequenceNumber = b->header.sequenceNumber;
a->primary = false;
b->primary = true;
EXPECT_FALSE(*a == *b);
EXPECT_TRUE(*a != *b);
EXPECT_FALSE(*a < *b);
EXPECT_TRUE(*a > *b);
EXPECT_FALSE(*a <= *b);
EXPECT_TRUE(*a >= *b);
delete a;
delete b;
}
// Test the DeleteFirstPacket DeleteAllPackets methods.
TEST(PacketBuffer, DeleteAllPackets) {
PacketGenerator gen(0, 0, 0, 10);
PacketList list;
const int payload_len = 10;
// Insert 10 small packets.
for (int i = 0; i < 10; ++i) {
Packet* packet = gen.NextPacket(payload_len);
list.push_back(packet);
}
EXPECT_TRUE(PacketBuffer::DeleteFirstPacket(&list));
EXPECT_EQ(9u, list.size());
PacketBuffer::DeleteAllPackets(&list);
EXPECT_TRUE(list.empty());
EXPECT_FALSE(PacketBuffer::DeleteFirstPacket(&list));
}
namespace {
void TestIsObsoleteTimestamp(uint32_t limit_timestamp) {
// Check with zero horizon, which implies that the horizon is at 2^31, i.e.,
// half the timestamp range.
static const uint32_t kZeroHorizon = 0;
static const uint32_t k2Pow31Minus1 = 0x7FFFFFFF;
// Timestamp on the limit is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp, limit_timestamp, kZeroHorizon));
// 1 sample behind is old.
EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - 1, limit_timestamp, kZeroHorizon));
// 2^31 - 1 samples behind is old.
EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - k2Pow31Minus1, limit_timestamp, kZeroHorizon));
// 1 sample ahead is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp + 1, limit_timestamp, kZeroHorizon));
// If |t1-t2|=2^31 and t1>t2, t2 is older than t1 but not the opposite.
uint32_t other_timestamp = limit_timestamp + (1 << 31);
uint32_t lowest_timestamp = std::min(limit_timestamp, other_timestamp);
uint32_t highest_timestamp = std::max(limit_timestamp, other_timestamp);
EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(
lowest_timestamp, highest_timestamp, kZeroHorizon));
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
highest_timestamp, lowest_timestamp, kZeroHorizon));
// Fixed horizon at 10 samples.
static const uint32_t kHorizon = 10;
// Timestamp on the limit is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp, limit_timestamp, kHorizon));
// 1 sample behind is old.
EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - 1, limit_timestamp, kHorizon));
// 9 samples behind is old.
EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - 9, limit_timestamp, kHorizon));
// 10 samples behind is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - 10, limit_timestamp, kHorizon));
// 2^31 - 1 samples behind is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - k2Pow31Minus1, limit_timestamp, kHorizon));
// 1 sample ahead is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp + 1, limit_timestamp, kHorizon));
// 2^31 samples ahead is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp + (1 << 31), limit_timestamp, kHorizon));
}
} // namespace
// Test the IsObsoleteTimestamp method with different limit timestamps.
TEST(PacketBuffer, IsObsoleteTimestamp) {
TestIsObsoleteTimestamp(0);
TestIsObsoleteTimestamp(1);
TestIsObsoleteTimestamp(0xFFFFFFFF); // -1 in uint32_t.
TestIsObsoleteTimestamp(0x80000000); // 2^31.
TestIsObsoleteTimestamp(0x80000001); // 2^31 + 1.
TestIsObsoleteTimestamp(0x7FFFFFFF); // 2^31 - 1.
}
} // namespace webrtc