blob: 7b0c8e397e3ef5310cd0ebf66eae4728e14e00ac [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/codecs/test/videoprocessor.h"
#include <assert.h>
#include <string.h>
#include <limits>
#include <memory>
#include <vector>
#include "webrtc/base/timeutils.h"
#include "webrtc/system_wrappers/include/cpu_info.h"
namespace webrtc {
namespace test {
TestConfig::TestConfig()
: name(""),
description(""),
test_number(0),
input_filename(""),
output_filename(""),
output_dir("out"),
networking_config(),
exclude_frame_types(kExcludeOnlyFirstKeyFrame),
frame_length_in_bytes(0),
use_single_core(false),
keyframe_interval(0),
codec_settings(NULL),
verbose(true) {}
TestConfig::~TestConfig() {}
VideoProcessorImpl::VideoProcessorImpl(webrtc::VideoEncoder* encoder,
webrtc::VideoDecoder* decoder,
FrameReader* frame_reader,
FrameWriter* frame_writer,
PacketManipulator* packet_manipulator,
const TestConfig& config,
Stats* stats)
: encoder_(encoder),
decoder_(decoder),
frame_reader_(frame_reader),
frame_writer_(frame_writer),
packet_manipulator_(packet_manipulator),
config_(config),
stats_(stats),
encode_callback_(NULL),
decode_callback_(NULL),
source_buffer_(NULL),
first_key_frame_has_been_excluded_(false),
last_frame_missing_(false),
initialized_(false),
encoded_frame_size_(0),
encoded_frame_type_(kVideoFrameKey),
prev_time_stamp_(0),
num_dropped_frames_(0),
num_spatial_resizes_(0),
last_encoder_frame_width_(0),
last_encoder_frame_height_(0) {
assert(encoder);
assert(decoder);
assert(frame_reader);
assert(frame_writer);
assert(packet_manipulator);
assert(stats);
}
bool VideoProcessorImpl::Init() {
// Calculate a factor used for bit rate calculations:
bit_rate_factor_ = config_.codec_settings->maxFramerate * 0.001 * 8; // bits
// Initialize data structures used by the encoder/decoder APIs
size_t frame_length_in_bytes = frame_reader_->FrameLength();
source_buffer_ = new uint8_t[frame_length_in_bytes];
last_successful_frame_buffer_ = new uint8_t[frame_length_in_bytes];
// Set fixed properties common for all frames.
// To keep track of spatial resize actions by encoder.
last_encoder_frame_width_ = config_.codec_settings->width;
last_encoder_frame_height_ = config_.codec_settings->height;
// Setup required callbacks for the encoder/decoder:
encode_callback_ = new VideoProcessorEncodeCompleteCallback(this);
decode_callback_ = new VideoProcessorDecodeCompleteCallback(this);
int32_t register_result =
encoder_->RegisterEncodeCompleteCallback(encode_callback_);
if (register_result != WEBRTC_VIDEO_CODEC_OK) {
fprintf(stderr,
"Failed to register encode complete callback, return code: "
"%d\n",
register_result);
return false;
}
register_result = decoder_->RegisterDecodeCompleteCallback(decode_callback_);
if (register_result != WEBRTC_VIDEO_CODEC_OK) {
fprintf(stderr,
"Failed to register decode complete callback, return code: "
"%d\n",
register_result);
return false;
}
// Init the encoder and decoder
uint32_t nbr_of_cores = 1;
if (!config_.use_single_core) {
nbr_of_cores = CpuInfo::DetectNumberOfCores();
}
int32_t init_result =
encoder_->InitEncode(config_.codec_settings, nbr_of_cores,
config_.networking_config.max_payload_size_in_bytes);
if (init_result != WEBRTC_VIDEO_CODEC_OK) {
fprintf(stderr, "Failed to initialize VideoEncoder, return code: %d\n",
init_result);
return false;
}
init_result = decoder_->InitDecode(config_.codec_settings, nbr_of_cores);
if (init_result != WEBRTC_VIDEO_CODEC_OK) {
fprintf(stderr, "Failed to initialize VideoDecoder, return code: %d\n",
init_result);
return false;
}
if (config_.verbose) {
printf("Video Processor:\n");
printf(" #CPU cores used : %d\n", nbr_of_cores);
printf(" Total # of frames: %d\n", frame_reader_->NumberOfFrames());
printf(" Codec settings:\n");
printf(" Start bitrate : %d kbps\n",
config_.codec_settings->startBitrate);
printf(" Width : %d\n", config_.codec_settings->width);
printf(" Height : %d\n", config_.codec_settings->height);
}
initialized_ = true;
return true;
}
VideoProcessorImpl::~VideoProcessorImpl() {
delete[] source_buffer_;
delete[] last_successful_frame_buffer_;
encoder_->RegisterEncodeCompleteCallback(NULL);
delete encode_callback_;
decoder_->RegisterDecodeCompleteCallback(NULL);
delete decode_callback_;
}
void VideoProcessorImpl::SetRates(int bit_rate, int frame_rate) {
int set_rates_result = encoder_->SetRates(bit_rate, frame_rate);
assert(set_rates_result >= 0);
if (set_rates_result < 0) {
fprintf(stderr,
"Failed to update encoder with new rate %d, "
"return code: %d\n",
bit_rate, set_rates_result);
}
num_dropped_frames_ = 0;
num_spatial_resizes_ = 0;
}
size_t VideoProcessorImpl::EncodedFrameSize() {
return encoded_frame_size_;
}
FrameType VideoProcessorImpl::EncodedFrameType() {
return encoded_frame_type_;
}
int VideoProcessorImpl::NumberDroppedFrames() {
return num_dropped_frames_;
}
int VideoProcessorImpl::NumberSpatialResizes() {
return num_spatial_resizes_;
}
bool VideoProcessorImpl::ProcessFrame(int frame_number) {
assert(frame_number >= 0);
if (!initialized_) {
fprintf(stderr, "Attempting to use uninitialized VideoProcessor!\n");
return false;
}
// |prev_time_stamp_| is used for getting number of dropped frames.
if (frame_number == 0) {
prev_time_stamp_ = -1;
}
if (frame_reader_->ReadFrame(source_buffer_)) {
// Copy the source frame to the newly read frame data.
source_frame_.CreateFrame(source_buffer_, config_.codec_settings->width,
config_.codec_settings->height, kVideoRotation_0);
// Ensure we have a new statistics data object we can fill:
FrameStatistic& stat = stats_->NewFrame(frame_number);
encode_start_ns_ = rtc::TimeNanos();
// Use the frame number as "timestamp" to identify frames
source_frame_.set_timestamp(frame_number);
// Decide if we're going to force a keyframe:
std::vector<FrameType> frame_types(1, kVideoFrameDelta);
if (config_.keyframe_interval > 0 &&
frame_number % config_.keyframe_interval == 0) {
frame_types[0] = kVideoFrameKey;
}
// For dropped frames, we regard them as zero size encoded frames.
encoded_frame_size_ = 0;
encoded_frame_type_ = kVideoFrameDelta;
int32_t encode_result = encoder_->Encode(source_frame_, NULL, &frame_types);
if (encode_result != WEBRTC_VIDEO_CODEC_OK) {
fprintf(stderr, "Failed to encode frame %d, return code: %d\n",
frame_number, encode_result);
}
stat.encode_return_code = encode_result;
return true;
} else {
return false; // we've reached the last frame
}
}
void VideoProcessorImpl::FrameEncoded(
webrtc::VideoCodecType codec,
const EncodedImage& encoded_image,
const webrtc::RTPFragmentationHeader* fragmentation) {
// Timestamp is frame number, so this gives us #dropped frames.
int num_dropped_from_prev_encode =
encoded_image._timeStamp - prev_time_stamp_ - 1;
num_dropped_frames_ += num_dropped_from_prev_encode;
prev_time_stamp_ = encoded_image._timeStamp;
if (num_dropped_from_prev_encode > 0) {
// For dropped frames, we write out the last decoded frame to avoid getting
// out of sync for the computation of PSNR and SSIM.
for (int i = 0; i < num_dropped_from_prev_encode; i++) {
frame_writer_->WriteFrame(last_successful_frame_buffer_);
}
}
// Frame is not dropped, so update the encoded frame size
// (encoder callback is only called for non-zero length frames).
encoded_frame_size_ = encoded_image._length;
encoded_frame_type_ = encoded_image._frameType;
int64_t encode_stop_ns = rtc::TimeNanos();
int frame_number = encoded_image._timeStamp;
FrameStatistic& stat = stats_->stats_[frame_number];
stat.encode_time_in_us =
GetElapsedTimeMicroseconds(encode_start_ns_, encode_stop_ns);
stat.encoding_successful = true;
stat.encoded_frame_length_in_bytes = encoded_image._length;
stat.frame_number = encoded_image._timeStamp;
stat.frame_type = encoded_image._frameType;
stat.bit_rate_in_kbps = encoded_image._length * bit_rate_factor_;
stat.total_packets =
encoded_image._length / config_.networking_config.packet_size_in_bytes +
1;
// Perform packet loss if criteria is fullfilled:
bool exclude_this_frame = false;
// Only keyframes can be excluded
if (encoded_image._frameType == kVideoFrameKey) {
switch (config_.exclude_frame_types) {
case kExcludeOnlyFirstKeyFrame:
if (!first_key_frame_has_been_excluded_) {
first_key_frame_has_been_excluded_ = true;
exclude_this_frame = true;
}
break;
case kExcludeAllKeyFrames:
exclude_this_frame = true;
break;
default:
assert(false);
}
}
// Make a raw copy of the |encoded_image| buffer.
size_t copied_buffer_size = encoded_image._length +
EncodedImage::GetBufferPaddingBytes(codec);
std::unique_ptr<uint8_t[]> copied_buffer(new uint8_t[copied_buffer_size]);
memcpy(copied_buffer.get(), encoded_image._buffer, encoded_image._length);
// The image to feed to the decoder.
EncodedImage copied_image;
memcpy(&copied_image, &encoded_image, sizeof(copied_image));
copied_image._size = copied_buffer_size;
copied_image._buffer = copied_buffer.get();
if (!exclude_this_frame) {
stat.packets_dropped =
packet_manipulator_->ManipulatePackets(&copied_image);
}
// Keep track of if frames are lost due to packet loss so we can tell
// this to the encoder (this is handled by the RTP logic in the full stack)
decode_start_ns_ = rtc::TimeNanos();
// TODO(kjellander): Pass fragmentation header to the decoder when
// CL 172001 has been submitted and PacketManipulator supports this.
int32_t decode_result =
decoder_->Decode(copied_image, last_frame_missing_, NULL);
stat.decode_return_code = decode_result;
if (decode_result != WEBRTC_VIDEO_CODEC_OK) {
// Write the last successful frame the output file to avoid getting it out
// of sync with the source file for SSIM and PSNR comparisons:
frame_writer_->WriteFrame(last_successful_frame_buffer_);
}
// save status for losses so we can inform the decoder for the next frame:
last_frame_missing_ = copied_image._length == 0;
}
void VideoProcessorImpl::FrameDecoded(const VideoFrame& image) {
int64_t decode_stop_ns = rtc::TimeNanos();
int frame_number = image.timestamp();
// Report stats
FrameStatistic& stat = stats_->stats_[frame_number];
stat.decode_time_in_us =
GetElapsedTimeMicroseconds(decode_start_ns_, decode_stop_ns);
stat.decoding_successful = true;
// Check for resize action (either down or up):
if (static_cast<int>(image.width()) != last_encoder_frame_width_ ||
static_cast<int>(image.height()) != last_encoder_frame_height_) {
++num_spatial_resizes_;
last_encoder_frame_width_ = image.width();
last_encoder_frame_height_ = image.height();
}
// Check if codec size is different from native/original size, and if so,
// upsample back to original size: needed for PSNR and SSIM computations.
if (image.width() != config_.codec_settings->width ||
image.height() != config_.codec_settings->height) {
rtc::scoped_refptr<I420Buffer> up_image(
I420Buffer::Create(config_.codec_settings->width,
config_.codec_settings->height));
// Should be the same aspect ratio, no cropping needed.
up_image->ScaleFrom(image.video_frame_buffer());
// TODO(mikhal): Extracting the buffer for now - need to update test.
size_t length =
CalcBufferSize(kI420, up_image->width(), up_image->height());
std::unique_ptr<uint8_t[]> image_buffer(new uint8_t[length]);
int extracted_length = ExtractBuffer(up_image, length, image_buffer.get());
assert(extracted_length > 0);
// Update our copy of the last successful frame:
memcpy(last_successful_frame_buffer_, image_buffer.get(), extracted_length);
bool write_success = frame_writer_->WriteFrame(image_buffer.get());
assert(write_success);
if (!write_success) {
fprintf(stderr, "Failed to write frame %d to disk!", frame_number);
}
} else { // No resize.
// Update our copy of the last successful frame:
// TODO(mikhal): Add as a member function, so won't be allocated per frame.
size_t length = CalcBufferSize(kI420, image.width(), image.height());
std::unique_ptr<uint8_t[]> image_buffer(new uint8_t[length]);
int extracted_length = ExtractBuffer(image, length, image_buffer.get());
assert(extracted_length > 0);
memcpy(last_successful_frame_buffer_, image_buffer.get(), extracted_length);
bool write_success = frame_writer_->WriteFrame(image_buffer.get());
assert(write_success);
if (!write_success) {
fprintf(stderr, "Failed to write frame %d to disk!", frame_number);
}
}
}
int VideoProcessorImpl::GetElapsedTimeMicroseconds(int64_t start,
int64_t stop) {
uint64_t encode_time = (stop - start) / rtc::kNumNanosecsPerMicrosec;
assert(encode_time <
static_cast<unsigned int>(std::numeric_limits<int>::max()));
return static_cast<int>(encode_time);
}
const char* ExcludeFrameTypesToStr(ExcludeFrameTypes e) {
switch (e) {
case kExcludeOnlyFirstKeyFrame:
return "ExcludeOnlyFirstKeyFrame";
case kExcludeAllKeyFrames:
return "ExcludeAllKeyFrames";
default:
assert(false);
return "Unknown";
}
}
const char* VideoCodecTypeToStr(webrtc::VideoCodecType e) {
switch (e) {
case kVideoCodecVP8:
return "VP8";
case kVideoCodecI420:
return "I420";
case kVideoCodecRED:
return "RED";
case kVideoCodecULPFEC:
return "ULPFEC";
case kVideoCodecUnknown:
return "Unknown";
default:
assert(false);
return "Unknown";
}
}
// Callbacks
EncodedImageCallback::Result
VideoProcessorImpl::VideoProcessorEncodeCompleteCallback::OnEncodedImage(
const EncodedImage& encoded_image,
const webrtc::CodecSpecificInfo* codec_specific_info,
const webrtc::RTPFragmentationHeader* fragmentation) {
// Forward to parent class.
RTC_CHECK(codec_specific_info);
video_processor_->FrameEncoded(codec_specific_info->codecType,
encoded_image,
fragmentation);
return Result(Result::OK, 0);
}
int32_t VideoProcessorImpl::VideoProcessorDecodeCompleteCallback::Decoded(
VideoFrame& image) {
// Forward to parent class.
video_processor_->FrameDecoded(image);
return 0;
}
} // namespace test
} // namespace webrtc