| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_coding/neteq/tools/neteq_delay_analyzer.h" |
| |
| #include <algorithm> |
| #include <fstream> |
| #include <ios> |
| #include <iterator> |
| #include <limits> |
| #include <utility> |
| |
| #include "absl/strings/string_view.h" |
| #include "modules/include/module_common_types_public.h" |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace test { |
| namespace { |
| constexpr char kArrivalDelayX[] = "arrival_delay_x"; |
| constexpr char kArrivalDelayY[] = "arrival_delay_y"; |
| constexpr char kTargetDelayX[] = "target_delay_x"; |
| constexpr char kTargetDelayY[] = "target_delay_y"; |
| constexpr char kPlayoutDelayX[] = "playout_delay_x"; |
| constexpr char kPlayoutDelayY[] = "playout_delay_y"; |
| |
| // Helper function for NetEqDelayAnalyzer::CreateGraphs. Returns the |
| // interpolated value of a function at the point x. Vector x_vec contains the |
| // sample points, and y_vec contains the function values at these points. The |
| // return value is a linear interpolation between y_vec values. |
| double LinearInterpolate(double x, |
| const std::vector<int64_t>& x_vec, |
| const std::vector<int64_t>& y_vec) { |
| // Find first element which is larger than x. |
| auto it = std::upper_bound(x_vec.begin(), x_vec.end(), x); |
| if (it == x_vec.end()) { |
| --it; |
| } |
| const size_t upper_ix = it - x_vec.begin(); |
| |
| size_t lower_ix; |
| if (upper_ix == 0 || x_vec[upper_ix] <= x) { |
| lower_ix = upper_ix; |
| } else { |
| lower_ix = upper_ix - 1; |
| } |
| double y; |
| if (lower_ix == upper_ix) { |
| y = y_vec[lower_ix]; |
| } else { |
| RTC_DCHECK_NE(x_vec[lower_ix], x_vec[upper_ix]); |
| y = (x - x_vec[lower_ix]) * (y_vec[upper_ix] - y_vec[lower_ix]) / |
| (x_vec[upper_ix] - x_vec[lower_ix]) + |
| y_vec[lower_ix]; |
| } |
| return y; |
| } |
| |
| void PrintDelays(const NetEqDelayAnalyzer::Delays& delays, |
| int64_t ref_time_ms, |
| absl::string_view var_name_x, |
| absl::string_view var_name_y, |
| std::ofstream& output, |
| const std::string& terminator = "") { |
| output << var_name_x << " = [ "; |
| for (const std::pair<int64_t, float>& delay : delays) { |
| output << (delay.first - ref_time_ms) / 1000.f << ", "; |
| } |
| output << "]" << terminator << std::endl; |
| |
| output << var_name_y << " = [ "; |
| for (const std::pair<int64_t, float>& delay : delays) { |
| output << delay.second << ", "; |
| } |
| output << "]" << terminator << std::endl; |
| } |
| |
| } // namespace |
| |
| void NetEqDelayAnalyzer::AfterInsertPacket( |
| const test::NetEqInput::PacketData& packet, |
| NetEq* neteq) { |
| data_.insert( |
| std::make_pair(packet.header.timestamp, TimingData(packet.time_ms))); |
| ssrcs_.insert(packet.header.ssrc); |
| payload_types_.insert(packet.header.payloadType); |
| } |
| |
| void NetEqDelayAnalyzer::BeforeGetAudio(NetEq* neteq) { |
| last_sync_buffer_ms_ = neteq->SyncBufferSizeMs(); |
| } |
| |
| void NetEqDelayAnalyzer::AfterGetAudio(int64_t time_now_ms, |
| const AudioFrame& audio_frame, |
| bool /*muted*/, |
| NetEq* neteq) { |
| get_audio_time_ms_.push_back(time_now_ms); |
| // Check what timestamps were decoded in the last GetAudio call. |
| std::vector<uint32_t> dec_ts = neteq->LastDecodedTimestamps(); |
| // Find those timestamps in data_, insert their decoding time and sync |
| // delay. |
| for (uint32_t ts : dec_ts) { |
| auto it = data_.find(ts); |
| if (it == data_.end()) { |
| // This is a packet that was split out from another packet. Skip it. |
| continue; |
| } |
| auto& it_timing = it->second; |
| RTC_CHECK(!it_timing.decode_get_audio_count) |
| << "Decode time already written"; |
| it_timing.decode_get_audio_count = get_audio_count_; |
| RTC_CHECK(!it_timing.sync_delay_ms) << "Decode time already written"; |
| it_timing.sync_delay_ms = last_sync_buffer_ms_; |
| it_timing.target_delay_ms = neteq->TargetDelayMs(); |
| it_timing.current_delay_ms = neteq->FilteredCurrentDelayMs(); |
| } |
| last_sample_rate_hz_ = audio_frame.sample_rate_hz_; |
| ++get_audio_count_; |
| } |
| |
| void NetEqDelayAnalyzer::CreateGraphs(Delays* arrival_delay_ms, |
| Delays* corrected_arrival_delay_ms, |
| Delays* playout_delay_ms, |
| Delays* target_delay_ms) const { |
| if (get_audio_time_ms_.empty()) { |
| return; |
| } |
| // Create nominal_get_audio_time_ms, a vector starting at |
| // get_audio_time_ms_[0] and increasing by 10 for each element. |
| std::vector<int64_t> nominal_get_audio_time_ms(get_audio_time_ms_.size()); |
| nominal_get_audio_time_ms[0] = get_audio_time_ms_[0]; |
| std::transform( |
| nominal_get_audio_time_ms.begin(), nominal_get_audio_time_ms.end() - 1, |
| nominal_get_audio_time_ms.begin() + 1, [](int64_t& x) { return x + 10; }); |
| RTC_DCHECK( |
| std::is_sorted(get_audio_time_ms_.begin(), get_audio_time_ms_.end())); |
| |
| std::vector<double> rtp_timestamps_ms; |
| double offset = std::numeric_limits<double>::max(); |
| TimestampUnwrapper unwrapper; |
| // This loop traverses data_ and populates rtp_timestamps_ms as well as |
| // calculates the base offset. |
| for (auto& d : data_) { |
| rtp_timestamps_ms.push_back( |
| static_cast<double>(unwrapper.Unwrap(d.first)) / |
| rtc::CheckedDivExact(last_sample_rate_hz_, 1000)); |
| offset = |
| std::min(offset, d.second.arrival_time_ms - rtp_timestamps_ms.back()); |
| } |
| |
| // This loop traverses the data again and populates the graph vectors. The |
| // reason to have two loops and traverse twice is that the offset cannot be |
| // known until the first traversal is done. Meanwhile, the final offset must |
| // be known already at the start of this second loop. |
| size_t i = 0; |
| for (const auto& data : data_) { |
| const double offset_send_time_ms = rtp_timestamps_ms[i++] + offset; |
| const auto& timing = data.second; |
| corrected_arrival_delay_ms->push_back(std::make_pair( |
| timing.arrival_time_ms, |
| LinearInterpolate(timing.arrival_time_ms, get_audio_time_ms_, |
| nominal_get_audio_time_ms) - |
| offset_send_time_ms)); |
| arrival_delay_ms->push_back(std::make_pair( |
| timing.arrival_time_ms, timing.arrival_time_ms - offset_send_time_ms)); |
| |
| if (timing.decode_get_audio_count) { |
| // This packet was decoded. |
| RTC_DCHECK(timing.sync_delay_ms); |
| const int64_t get_audio_time = |
| *timing.decode_get_audio_count * 10 + get_audio_time_ms_[0]; |
| const float playout_ms = |
| get_audio_time + *timing.sync_delay_ms - offset_send_time_ms; |
| playout_delay_ms->push_back(std::make_pair(get_audio_time, playout_ms)); |
| RTC_DCHECK(timing.target_delay_ms); |
| RTC_DCHECK(timing.current_delay_ms); |
| const float target = |
| playout_ms - *timing.current_delay_ms + *timing.target_delay_ms; |
| target_delay_ms->push_back(std::make_pair(get_audio_time, target)); |
| } |
| } |
| } |
| |
| void NetEqDelayAnalyzer::CreateMatlabScript( |
| const std::string& script_name) const { |
| Delays arrival_delay_ms; |
| Delays corrected_arrival_delay_ms; |
| Delays playout_delay_ms; |
| Delays target_delay_ms; |
| CreateGraphs(&arrival_delay_ms, &corrected_arrival_delay_ms, |
| &playout_delay_ms, &target_delay_ms); |
| |
| // Maybe better to find the actually smallest timestamp, to surely avoid |
| // x-axis starting from negative. |
| const int64_t ref_time_ms = arrival_delay_ms.front().first; |
| |
| // Create an output file stream to Matlab script file. |
| std::ofstream output(script_name); |
| |
| PrintDelays(corrected_arrival_delay_ms, ref_time_ms, kArrivalDelayX, |
| kArrivalDelayY, output, ";"); |
| |
| // PrintDelays(corrected_arrival_delay_x, kCorrectedArrivalDelayX, |
| // kCorrectedArrivalDelayY, output); |
| |
| PrintDelays(playout_delay_ms, ref_time_ms, kPlayoutDelayX, kPlayoutDelayY, |
| output, ";"); |
| |
| PrintDelays(target_delay_ms, ref_time_ms, kTargetDelayX, kTargetDelayY, |
| output, ";"); |
| |
| output << "h=plot(" << kArrivalDelayX << ", " << kArrivalDelayY << ", " |
| << kTargetDelayX << ", " << kTargetDelayY << ", 'g.', " |
| << kPlayoutDelayX << ", " << kPlayoutDelayY << ");" << std::endl; |
| output << "set(h(1),'color',0.75*[1 1 1]);" << std::endl; |
| output << "set(h(2),'markersize',6);" << std::endl; |
| output << "set(h(3),'linew',1.5);" << std::endl; |
| output << "ax1=axis;" << std::endl; |
| output << "axis tight" << std::endl; |
| output << "ax2=axis;" << std::endl; |
| output << "axis([ax2(1:3) ax1(4)])" << std::endl; |
| output << "xlabel('time [s]');" << std::endl; |
| output << "ylabel('relative delay [ms]');" << std::endl; |
| if (!ssrcs_.empty()) { |
| auto ssrc_it = ssrcs_.cbegin(); |
| output << "title('SSRC: 0x" << std::hex << static_cast<int64_t>(*ssrc_it++); |
| while (ssrc_it != ssrcs_.end()) { |
| output << ", 0x" << std::hex << static_cast<int64_t>(*ssrc_it++); |
| } |
| output << std::dec; |
| auto pt_it = payload_types_.cbegin(); |
| output << "; Payload Types: " << *pt_it++; |
| while (pt_it != payload_types_.end()) { |
| output << ", " << *pt_it++; |
| } |
| output << "');" << std::endl; |
| } |
| } |
| |
| void NetEqDelayAnalyzer::CreatePythonScript( |
| const std::string& script_name) const { |
| Delays arrival_delay_ms; |
| Delays corrected_arrival_delay_ms; |
| Delays playout_delay_ms; |
| Delays target_delay_ms; |
| CreateGraphs(&arrival_delay_ms, &corrected_arrival_delay_ms, |
| &playout_delay_ms, &target_delay_ms); |
| |
| // Maybe better to find the actually smallest timestamp, to surely avoid |
| // x-axis starting from negative. |
| const int64_t ref_time_ms = arrival_delay_ms.front().first; |
| |
| // Create an output file stream to the python script file. |
| std::ofstream output(script_name); |
| |
| // Necessary includes |
| output << "import numpy as np" << std::endl; |
| output << "import matplotlib.pyplot as plt" << std::endl; |
| |
| PrintDelays(corrected_arrival_delay_ms, ref_time_ms, kArrivalDelayX, |
| kArrivalDelayY, output); |
| |
| // PrintDelays(corrected_arrival_delay_x, kCorrectedArrivalDelayX, |
| // kCorrectedArrivalDelayY, output); |
| |
| PrintDelays(playout_delay_ms, ref_time_ms, kPlayoutDelayX, kPlayoutDelayY, |
| output); |
| |
| PrintDelays(target_delay_ms, ref_time_ms, kTargetDelayX, kTargetDelayY, |
| output); |
| |
| output << "if __name__ == '__main__':" << std::endl; |
| output << " h=plt.plot(" << kArrivalDelayX << ", " << kArrivalDelayY << ", " |
| << kTargetDelayX << ", " << kTargetDelayY << ", 'g.', " |
| << kPlayoutDelayX << ", " << kPlayoutDelayY << ")" << std::endl; |
| output << " plt.setp(h[0],'color',[.75, .75, .75])" << std::endl; |
| output << " plt.setp(h[1],'markersize',6)" << std::endl; |
| output << " plt.setp(h[2],'linewidth',1.5)" << std::endl; |
| output << " plt.axis('tight')" << std::endl; |
| output << " plt.xlabel('time [s]')" << std::endl; |
| output << " plt.ylabel('relative delay [ms]')" << std::endl; |
| if (!ssrcs_.empty()) { |
| auto ssrc_it = ssrcs_.cbegin(); |
| output << " plt.title('SSRC: 0x" << std::hex |
| << static_cast<int64_t>(*ssrc_it++); |
| while (ssrc_it != ssrcs_.end()) { |
| output << ", 0x" << std::hex << static_cast<int64_t>(*ssrc_it++); |
| } |
| output << std::dec; |
| auto pt_it = payload_types_.cbegin(); |
| output << "; Payload Types: " << *pt_it++; |
| while (pt_it != payload_types_.end()) { |
| output << ", " << *pt_it++; |
| } |
| output << "')" << std::endl; |
| } |
| output << " plt.show()" << std::endl; |
| } |
| |
| } // namespace test |
| } // namespace webrtc |