blob: 0b697266973f690809369db1e81a5d1fe5c01f64 [file] [log] [blame]
/*
* Copyright 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdint.h>
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "absl/types/optional.h"
#include "api/data_channel_interface.h"
#include "api/dtmf_sender_interface.h"
#include "api/peer_connection_interface.h"
#include "api/scoped_refptr.h"
#include "api/units/time_delta.h"
#include "pc/test/integration_test_helpers.h"
#include "pc/test/mock_peer_connection_observers.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/gunit.h"
#include "rtc_base/ref_counted_object.h"
#include "rtc_base/virtual_socket_server.h"
namespace webrtc {
namespace {
class DataChannelIntegrationTest
: public PeerConnectionIntegrationBaseTest,
public ::testing::WithParamInterface<SdpSemantics> {
protected:
DataChannelIntegrationTest()
: PeerConnectionIntegrationBaseTest(GetParam()) {}
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(DataChannelIntegrationTest);
// Fake clock must be set before threads are started to prevent race on
// Set/GetClockForTesting().
// To achieve that, multiple inheritance is used as a mixin pattern
// where order of construction is finely controlled.
// This also ensures peerconnection is closed before switching back to non-fake
// clock, avoiding other races and DCHECK failures such as in rtp_sender.cc.
class FakeClockForTest : public rtc::ScopedFakeClock {
protected:
FakeClockForTest() {
// Some things use a time of "0" as a special value, so we need to start out
// the fake clock at a nonzero time.
// TODO(deadbeef): Fix this.
AdvanceTime(webrtc::TimeDelta::Seconds(1));
}
// Explicit handle.
ScopedFakeClock& FakeClock() { return *this; }
};
// Ensure FakeClockForTest is constructed first (see class for rationale).
class DataChannelIntegrationTestWithFakeClock
: public FakeClockForTest,
public DataChannelIntegrationTest {};
class DataChannelIntegrationTestPlanB
: public PeerConnectionIntegrationBaseTest {
protected:
DataChannelIntegrationTestPlanB()
: PeerConnectionIntegrationBaseTest(SdpSemantics::kPlanB) {}
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(
DataChannelIntegrationTestWithFakeClock);
class DataChannelIntegrationTestUnifiedPlan
: public PeerConnectionIntegrationBaseTest {
protected:
DataChannelIntegrationTestUnifiedPlan()
: PeerConnectionIntegrationBaseTest(SdpSemantics::kUnifiedPlan) {}
};
#ifdef WEBRTC_HAVE_SCTP
// This test causes a PeerConnection to enter Disconnected state, and
// sends data on a DataChannel while disconnected.
// The data should be surfaced when the connection reestablishes.
TEST_P(DataChannelIntegrationTest, DataChannelWhileDisconnected) {
CreatePeerConnectionWrappers();
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
std::string data1 = "hello first";
caller()->data_channel()->Send(DataBuffer(data1));
EXPECT_EQ_WAIT(data1, callee()->data_observer()->last_message(),
kDefaultTimeout);
// Cause a network outage
virtual_socket_server()->set_drop_probability(1.0);
EXPECT_EQ_WAIT(PeerConnectionInterface::kIceConnectionDisconnected,
caller()->standardized_ice_connection_state(),
kDefaultTimeout);
std::string data2 = "hello second";
caller()->data_channel()->Send(DataBuffer(data2));
// Remove the network outage. The connection should reestablish.
virtual_socket_server()->set_drop_probability(0.0);
EXPECT_EQ_WAIT(data2, callee()->data_observer()->last_message(),
kDefaultTimeout);
}
// This test causes a PeerConnection to enter Disconnected state,
// sends data on a DataChannel while disconnected, and then triggers
// an ICE restart.
// The data should be surfaced when the connection reestablishes.
TEST_P(DataChannelIntegrationTest, DataChannelWhileDisconnectedIceRestart) {
CreatePeerConnectionWrappers();
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
std::string data1 = "hello first";
caller()->data_channel()->Send(DataBuffer(data1));
EXPECT_EQ_WAIT(data1, callee()->data_observer()->last_message(),
kDefaultTimeout);
// Cause a network outage
virtual_socket_server()->set_drop_probability(1.0);
ASSERT_EQ_WAIT(PeerConnectionInterface::kIceConnectionDisconnected,
caller()->standardized_ice_connection_state(),
kDefaultTimeout);
std::string data2 = "hello second";
caller()->data_channel()->Send(DataBuffer(data2));
// Trigger an ICE restart. The signaling channel is not affected by
// the network outage.
caller()->SetOfferAnswerOptions(IceRestartOfferAnswerOptions());
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
// Remove the network outage. The connection should reestablish.
virtual_socket_server()->set_drop_probability(0.0);
EXPECT_EQ_WAIT(data2, callee()->data_observer()->last_message(),
kDefaultTimeout);
}
// This test sets up a call between two parties with audio, video and an SCTP
// data channel.
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannel) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Expect that data channel created on caller side will show up for callee as
// well.
caller()->CreateDataChannel();
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
// Ensure the existence of the SCTP data channel didn't impede audio/video.
MediaExpectations media_expectations;
media_expectations.ExpectBidirectionalAudioAndVideo();
ASSERT_TRUE(ExpectNewFrames(media_expectations));
// Caller data channel should already exist (it created one). Callee data
// channel may not exist yet, since negotiation happens in-band, not in SDP.
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
// Ensure data can be sent in both directions.
std::string data = "hello world";
caller()->data_channel()->Send(DataBuffer(data));
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
kDefaultTimeout);
callee()->data_channel()->Send(DataBuffer(data));
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
kDefaultTimeout);
}
// This test sets up a call between two parties with an SCTP
// data channel only, and sends messages of various sizes.
TEST_P(DataChannelIntegrationTest,
EndToEndCallWithSctpDataChannelVariousSizes) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Expect that data channel created on caller side will show up for callee as
// well.
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
// Caller data channel should already exist (it created one). Callee data
// channel may not exist yet, since negotiation happens in-band, not in SDP.
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
for (int message_size = 1; message_size < 100000; message_size *= 2) {
std::string data(message_size, 'a');
caller()->data_channel()->Send(DataBuffer(data));
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
kDefaultTimeout);
callee()->data_channel()->Send(DataBuffer(data));
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
kDefaultTimeout);
}
// Specifically probe the area around the MTU size.
for (int message_size = 1100; message_size < 1300; message_size += 1) {
std::string data(message_size, 'a');
caller()->data_channel()->Send(DataBuffer(data));
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
kDefaultTimeout);
callee()->data_channel()->Send(DataBuffer(data));
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
kDefaultTimeout);
}
}
TEST_P(DataChannelIntegrationTest,
EndToEndCallWithSctpDataChannelLowestSafeMtu) {
// The lowest payload size limit that's tested and found safe for this
// application. Note that this is not the safe limit under all conditions;
// in particular, the default is not the largest DTLS signature, and
// this test does not use TURN.
const size_t kLowestSafePayloadSizeLimit = 1225;
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Expect that data channel created on caller side will show up for callee as
// well.
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
// Caller data channel should already exist (it created one). Callee data
// channel may not exist yet, since negotiation happens in-band, not in SDP.
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
virtual_socket_server()->set_max_udp_payload(kLowestSafePayloadSizeLimit);
for (int message_size = 1140; message_size < 1240; message_size += 1) {
std::string data(message_size, 'a');
caller()->data_channel()->Send(DataBuffer(data));
ASSERT_EQ_WAIT(data, callee()->data_observer()->last_message(),
kDefaultTimeout);
callee()->data_channel()->Send(DataBuffer(data));
ASSERT_EQ_WAIT(data, caller()->data_observer()->last_message(),
kDefaultTimeout);
}
}
// This test verifies that lowering the MTU of the connection will cause
// the datachannel to not transmit reliably.
// The purpose of this test is to ensure that we know how a too-small MTU
// error manifests itself.
TEST_P(DataChannelIntegrationTest, EndToEndCallWithSctpDataChannelHarmfulMtu) {
// The lowest payload size limit that's tested and found safe for this
// application in this configuration (see test above).
const size_t kLowestSafePayloadSizeLimit = 1225;
// The size of the smallest message that fails to be delivered.
const size_t kMessageSizeThatIsNotDelivered = 1157;
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
virtual_socket_server()->set_max_udp_payload(kLowestSafePayloadSizeLimit - 1);
// Probe for an undelivered or slowly delivered message. The exact
// size limit seems to be dependent on the message history, so make the
// code easily able to find the current value.
bool failure_seen = false;
for (size_t message_size = 1110; message_size < 1400; message_size++) {
const size_t message_count =
callee()->data_observer()->received_message_count();
const std::string data(message_size, 'a');
caller()->data_channel()->Send(DataBuffer(data));
// Wait a very short time for the message to be delivered.
// Note: Waiting only 10 ms is too short for Windows bots; they will
// flakily fail at a random frame.
WAIT(callee()->data_observer()->received_message_count() > message_count,
100);
if (callee()->data_observer()->received_message_count() == message_count) {
ASSERT_EQ(kMessageSizeThatIsNotDelivered, message_size);
failure_seen = true;
break;
}
}
ASSERT_TRUE(failure_seen);
}
// Ensure that when the callee closes an SCTP data channel, the closing
// procedure results in the data channel being closed for the caller as well.
TEST_P(DataChannelIntegrationTest, CalleeClosesSctpDataChannel) {
// Same procedure as above test.
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
// Close the data channel on the callee side, and wait for it to reach the
// "closed" state on both sides.
callee()->data_channel()->Close();
EXPECT_TRUE_WAIT(!caller()->data_observer()->IsOpen(), kDefaultTimeout);
EXPECT_TRUE_WAIT(!callee()->data_observer()->IsOpen(), kDefaultTimeout);
}
TEST_P(DataChannelIntegrationTest, SctpDataChannelConfigSentToOtherSide) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
webrtc::DataChannelInit init;
init.id = 53;
init.maxRetransmits = 52;
caller()->CreateDataChannel("data-channel", &init);
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
// Since "negotiated" is false, the "id" parameter should be ignored.
EXPECT_NE(init.id, callee()->data_channel()->id());
EXPECT_EQ("data-channel", callee()->data_channel()->label());
EXPECT_EQ(init.maxRetransmits, callee()->data_channel()->maxRetransmits());
EXPECT_FALSE(callee()->data_channel()->negotiated());
}
// Test usrsctp's ability to process unordered data stream, where data actually
// arrives out of order using simulated delays. Previously there have been some
// bugs in this area.
TEST_P(DataChannelIntegrationTest, StressTestUnorderedSctpDataChannel) {
// Introduce random network delays.
// Otherwise it's not a true "unordered" test.
virtual_socket_server()->set_delay_mean(20);
virtual_socket_server()->set_delay_stddev(5);
virtual_socket_server()->UpdateDelayDistribution();
// Normal procedure, but with unordered data channel config.
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
webrtc::DataChannelInit init;
init.ordered = false;
caller()->CreateDataChannel(&init);
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
static constexpr int kNumMessages = 100;
// Deliberately chosen to be larger than the MTU so messages get fragmented.
static constexpr size_t kMaxMessageSize = 4096;
// Create and send random messages.
std::vector<std::string> sent_messages;
for (int i = 0; i < kNumMessages; ++i) {
size_t length =
(rand() % kMaxMessageSize) + 1; // NOLINT (rand_r instead of rand)
std::string message;
ASSERT_TRUE(rtc::CreateRandomString(length, &message));
caller()->data_channel()->Send(DataBuffer(message));
callee()->data_channel()->Send(DataBuffer(message));
sent_messages.push_back(message);
}
// Wait for all messages to be received.
EXPECT_EQ_WAIT(rtc::checked_cast<size_t>(kNumMessages),
caller()->data_observer()->received_message_count(),
kDefaultTimeout);
EXPECT_EQ_WAIT(rtc::checked_cast<size_t>(kNumMessages),
callee()->data_observer()->received_message_count(),
kDefaultTimeout);
// Sort and compare to make sure none of the messages were corrupted.
std::vector<std::string> caller_received_messages =
caller()->data_observer()->messages();
std::vector<std::string> callee_received_messages =
callee()->data_observer()->messages();
absl::c_sort(sent_messages);
absl::c_sort(caller_received_messages);
absl::c_sort(callee_received_messages);
EXPECT_EQ(sent_messages, caller_received_messages);
EXPECT_EQ(sent_messages, callee_received_messages);
}
// This test sets up a call between two parties with audio, and video. When
// audio and video are setup and flowing, an SCTP data channel is negotiated.
TEST_P(DataChannelIntegrationTest, AddSctpDataChannelInSubsequentOffer) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Do initial offer/answer with audio/video.
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
// Create data channel and do new offer and answer.
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
// Caller data channel should already exist (it created one). Callee data
// channel may not exist yet, since negotiation happens in-band, not in SDP.
ASSERT_NE(nullptr, caller()->data_channel());
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
// Ensure data can be sent in both directions.
std::string data = "hello world";
caller()->data_channel()->Send(DataBuffer(data));
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
kDefaultTimeout);
callee()->data_channel()->Send(DataBuffer(data));
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
kDefaultTimeout);
}
// Set up a connection initially just using SCTP data channels, later upgrading
// to audio/video, ensuring frames are received end-to-end. Effectively the
// inverse of the test above.
// This was broken in M57; see https://crbug.com/711243
TEST_P(DataChannelIntegrationTest, SctpDataChannelToAudioVideoUpgrade) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
// Do initial offer/answer with just data channel.
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
// Wait until data can be sent over the data channel.
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
ASSERT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
// Do subsequent offer/answer with two-way audio and video. Audio and video
// should end up bundled on the DTLS/ICE transport already used for data.
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
MediaExpectations media_expectations;
media_expectations.ExpectBidirectionalAudioAndVideo();
ASSERT_TRUE(ExpectNewFrames(media_expectations));
}
static void MakeSpecCompliantSctpOffer(cricket::SessionDescription* desc) {
cricket::SctpDataContentDescription* dcd_offer =
GetFirstSctpDataContentDescription(desc);
// See https://crbug.com/webrtc/11211 - this function is a no-op
ASSERT_TRUE(dcd_offer);
dcd_offer->set_use_sctpmap(false);
dcd_offer->set_protocol("UDP/DTLS/SCTP");
}
// Test that the data channel works when a spec-compliant SCTP m= section is
// offered (using "a=sctp-port" instead of "a=sctpmap", and using
// "UDP/DTLS/SCTP" as the protocol).
TEST_P(DataChannelIntegrationTest,
DataChannelWorksWhenSpecCompliantSctpOfferReceived) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->SetGeneratedSdpMunger(MakeSpecCompliantSctpOffer);
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_channel() != nullptr, kDefaultTimeout);
EXPECT_TRUE_WAIT(caller()->data_observer()->IsOpen(), kDefaultTimeout);
EXPECT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
// Ensure data can be sent in both directions.
std::string data = "hello world";
caller()->data_channel()->Send(DataBuffer(data));
EXPECT_EQ_WAIT(data, callee()->data_observer()->last_message(),
kDefaultTimeout);
callee()->data_channel()->Send(DataBuffer(data));
EXPECT_EQ_WAIT(data, caller()->data_observer()->last_message(),
kDefaultTimeout);
}
#endif // WEBRTC_HAVE_SCTP
// Test that after closing PeerConnections, they stop sending any packets (ICE,
// DTLS, RTP...).
TEST_P(DataChannelIntegrationTest, ClosingConnectionStopsPacketFlow) {
// Set up audio/video/data, wait for some frames to be received.
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->AddAudioVideoTracks();
#ifdef WEBRTC_HAVE_SCTP
caller()->CreateDataChannel();
#endif
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
MediaExpectations media_expectations;
media_expectations.CalleeExpectsSomeAudioAndVideo();
ASSERT_TRUE(ExpectNewFrames(media_expectations));
// Close PeerConnections.
ClosePeerConnections();
// Pump messages for a second, and ensure no new packets end up sent.
uint32_t sent_packets_a = virtual_socket_server()->sent_packets();
WAIT(false, 1000);
uint32_t sent_packets_b = virtual_socket_server()->sent_packets();
EXPECT_EQ(sent_packets_a, sent_packets_b);
}
// Test that transport stats are generated by the RTCStatsCollector for a
// connection that only involves data channels. This is a regression test for
// crbug.com/826972.
#ifdef WEBRTC_HAVE_SCTP
TEST_P(DataChannelIntegrationTest,
TransportStatsReportedForDataChannelOnlyConnection) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
auto caller_report = caller()->NewGetStats();
EXPECT_EQ(1u, caller_report->GetStatsOfType<RTCTransportStats>().size());
auto callee_report = callee()->NewGetStats();
EXPECT_EQ(1u, callee_report->GetStatsOfType<RTCTransportStats>().size());
}
INSTANTIATE_TEST_SUITE_P(DataChannelIntegrationTest,
DataChannelIntegrationTest,
Values(SdpSemantics::kPlanB,
SdpSemantics::kUnifiedPlan));
INSTANTIATE_TEST_SUITE_P(DataChannelIntegrationTest,
DataChannelIntegrationTestWithFakeClock,
Values(SdpSemantics::kPlanB,
SdpSemantics::kUnifiedPlan));
TEST_F(DataChannelIntegrationTestUnifiedPlan,
EndToEndCallWithBundledSctpDataChannel) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->AddAudioVideoTracks();
callee()->AddAudioVideoTracks();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_TRUE_WAIT(caller()->pc()->GetSctpTransport(), kDefaultTimeout);
ASSERT_EQ_WAIT(SctpTransportState::kConnected,
caller()->pc()->GetSctpTransport()->Information().state(),
kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
}
TEST_F(DataChannelIntegrationTestUnifiedPlan,
EndToEndCallWithDataChannelOnlyConnects) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_channel(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
ASSERT_TRUE(caller()->data_observer()->IsOpen());
}
TEST_F(DataChannelIntegrationTestUnifiedPlan, DataChannelClosesWhenClosed) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
caller()->data_channel()->Close();
ASSERT_TRUE_WAIT(!callee()->data_observer()->IsOpen(), kDefaultTimeout);
}
TEST_F(DataChannelIntegrationTestUnifiedPlan,
DataChannelClosesWhenClosedReverse) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
callee()->data_channel()->Close();
ASSERT_TRUE_WAIT(!caller()->data_observer()->IsOpen(), kDefaultTimeout);
}
TEST_F(DataChannelIntegrationTestUnifiedPlan,
DataChannelClosesWhenPeerConnectionClosed) {
ASSERT_TRUE(CreatePeerConnectionWrappers());
ConnectFakeSignaling();
caller()->CreateDataChannel();
caller()->CreateAndSetAndSignalOffer();
ASSERT_TRUE_WAIT(SignalingStateStable(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer(), kDefaultTimeout);
ASSERT_TRUE_WAIT(callee()->data_observer()->IsOpen(), kDefaultTimeout);
caller()->pc()->Close();
ASSERT_TRUE_WAIT(!callee()->data_observer()->IsOpen(), kDefaultTimeout);
}
#endif // WEBRTC_HAVE_SCTP
} // namespace
} // namespace webrtc